
Enhancing Enterprise Security through Cost-effective and Highly
Customizable Network Monitoring

Joshua Regenold
Department of Computer Science

Sam Houston State University
U.S.A.

jpr011@shsu.edu

Kai Wang
Department of Computer Science

Georgia Southern University
U.S.A.

kwang@georgiasouthern.edu

Gary Smith
Department of Computer Science

Sam Houston State University
U.S.A.

csc_gws@shsu.edu

Qingzhong Liu
Department of Computer Science

Sam Houston State University
U.S.A.

liu@shsu.edu

Lei Chen
Department of Information Technology

Georgia Southern University
U.S.A.

lchen@georgiasouthern.edu

ABSTRACT
Network monitoring and network traffic analysis software are
common tools used in an enterprise, giving IT administrators
valuable insight into the status of their servers and network
devices. Limited research has been done to highlight the security
benefits of low-level network traffic logging and analysis, though
much of it involves testing the network activity of malicious
software in lab environments, using cost-prohibitive software to
analyze traffic for a pre-determined amount of time. This is a
useful way to isolate network activity to only the malicious
software, but it also eliminates valuable baseline traffic
information for an enterprise network. There are significant
security benefits to be gained from analyzing how malware reacts
in – or alters – an enterprise network. This paper provides
techniques for getting a baseline of enterprise network traffic and
analyzes how different types of malware can affect this baseline.
Using only low- and no-cost software and services, we analyze
the storage requirements for historical network traffic data and
present techniques to filter out much of the noise, significantly
reducing the amount of data that must be stored and analyzed. The
results of our technique are compared against traditional anti-
malware and network traffic analysis methods, revealing our
approach to be a cost-effective, highly customizable and effective
layer of a complete defense-in-depth security strategy.

CCS CONCEPTS
• Networks Network services: Network monitoring

KEYWORDS
Data security, network traffic analysis, traffic logging, L2 and L3
analysis

1 INTRODUCTION
Sensitive information – including business secrets, consumer

information, credit card numbers, and more – is increasingly
being moved from a paper to a digital format. As a result, data
security is a critical component of any enterprise. Typical data
security methods focus on preventing the leak, exposure, or theft
of any sensitive information. Firewalls, intrusion detection
systems (IDS), intrusion prevention systems (IPS), and strict file
access policies can help ensure that only the right people see
certain data. However, cyber-attacks are on the rise and several
high-profile network breaches have highlighted the need for more
advanced data protection techniques.

Preventative techniques are necessary and useful for any
enterprise and should be considered the first line of protection in a
defense-in-depth strategy. However, the detection of and response
to a potential network or data security breach are critical
components of business security that are often either overlooked
altogether or severely underutilized. There have been several
high-profile, well-documented instances of malware infiltrating an
enterprise network and stealing sensitive information for months
on end before being detected and, eventually, removed. [1]

When properly implemented, advanced network monitoring
and traffic analysis can help quickly detect and contain security
breaches before the damage becomes irreparable. Typical network
traffic analysis is often performed only for a short period of time
and in search of specific problems – problems which are more
often related to performance issues rather than security issues.
One of the primary reasons network traffic analysis is
underutilized as a security tool is because the storage

requirements and complexity of network traffic captures for an
entire enterprise can quickly balloon to levels that make its use an
administrative nightmare. This paper presents a novel technique
that can be used to ensure only security-relevant network traffic is
captured and analyzed, resulting in significantly reduced storage
requirements for keeping historical network data.

This paper is structured as follows. Section 2 is a background
of traditional network monitoring and traffic analysis and its use –
or lack thereof – as a security tool. Section 3 features popular
network traffic analysis software. Emphasis is placed on where to
position network traffic analysis hardware and software within the
enterprise topology for efficient and thorough captures. Security-
focused capture filters are presented to ensure chatty network
protocols do not inflate traffic captures to an unmanageable size.
Section 4 is the initial setup and a brief discussion on capture
sizes. Section 5 covers the database structure and size. Section 6 is
gathering a network traffic type baseline and performing quick
internal checks. Section 7 discusses where to obtain external
blacklist and IP geolocation data, in addition to how to import into
and compare them against the traffic capture database. Section 8
is the impact malware has on network traffic. Section 9 closes
with conclusions, limitations, and future work possibilities.

2 TRADITIONAL NETWORK MONITORING
Network monitoring has existed in various forms for several

years. There are many free and commercial software products
available that serve different purposes, such as Nagios, Cacti,
Zabbix, Spiceworks, SolarWinds, PRTG, Observium, and more.
[2-8] The features of each piece of software vary widely and it is
not uncommon for an enterprise network to use more than one
monitoring solution for specific types of devices, applications, and
services; i.e., Nagios for the up/down status of network devices,
Cacti for historical bandwidth reporting, and Spiceworks to
monitor services on Windows servers. At its most basic level,
network monitoring is simply alerting and reporting on the status
of network devices. When a certain device triggers a pre-set
condition – interface bandwidth has reached a certain percentage
or a service on a mission-critical server has stopped, for example
– a notification is sent to an administrator, ideally an administrator
who will act upon the alert. This type of monitoring is a critical
component of business continuity because very nearly all
enterprises rely on network and server uptime to operate as
efficiently as possible. Similarly, network traffic analysis has
existed for several years, but its focus has largely been on
troubleshooting specific network performance or connectivity
issues. Even a small enterprise network can generate an enormous
amount of traffic, so any network traffic capture is often narrow in
focus and only between two devices – a server and a client
computer or a router and a switch, for example.

Another common use of network traffic analysis is runtime
monitoring of malicious software. [9, Sec. 1] This type of network
traffic analysis is done in an isolated, controlled environment to
prevent the malicious software from spreading to other machines
on the network and is an effective way of isolating traffic to only
what is generated by the malware. Authors Rossow et al. present a

system called Sandnet that enhances this analysis technique by
allowing the malware to run for an extended period of time. [9,
Sec. 3] While Sandnet is an improvement over traditional
dynamic malware analysis methods, it is unfortunately still
limited in that many of the 100,000 samples the authors tested
would not run in the test environment and the malware that did
run did not have the opportunity to coexist with enterprise
network traffic in a realistic manner. It is not uncommon for
malware to attempt to spread itself to other machines on a
network or to interact with local servers in some way, and
Sandnet, due to the isolated and controlled environment, would
never have the opportunity to discover such network activity.

Compared to wired networks, wireless networks present a
unique set of security challenges. Wireless access points (APs)
operate like hubs from several years ago, in that they do not
isolate traffic on a per-client basis [10], as is the case with
Ethernet switches. All clients connected to a wireless access point
can see traffic from all other clients. In addition to this
vulnerability, it is difficult to physically restrict access to a
wireless network, because they operate using radio waves instead
of switch ports and, as such, often extend beyond the walls of a
building. Security for a wireless network, then, depends nearly
entirely on the encryption of data between the client and the
access point. While encryption helps to prevent snooping outright,
authors Fragkiadakis et al. note, “…regardless the strength of the
security algorithm, and the effectiveness of the intrusion detection
system, an adversary can still overhear the wireless channel and
identify different periodic components by observing the encrypted
traffic.” [11] In simpler terms, this means that regardless of the
encryption method used, an attacker only has to take note of
where packets are coming from, where they are going, and in
what intervals to gather useful reconnaissance information about a
network such as routing protocols, operating systems in use, and
more.

Network monitoring of wireless networks typically consists of
little more than monitoring access points and controllers for a
number of associated clients and alerting an administrator when
that number exceeds a pre-defined maximum – which creates
performance issues – as well as the usual bandwidth and up/down
status of the APs themselves. This is useful for performance
monitoring, AP placement, and estimating future bandwidth and
hardware needs, but does little to enhance network security.
However, when a device is passively listening in on a wireless
network, it will often either intentionally or unintentionally
respond to certain packet types such as ICMP. [12] If a wireless
AP receives a packet back from a MAC address that does not
match the ARP binding that is already in place, this could signal
that an attack is taking place or, at the very least, that a device is
listening in on wireless traffic. This type of traffic can be captured
using network traffic logging and analysis.

3 NETWORK TRAFFIC ANALYSIS
SOFTWARE AND PLACEMENT
Network traffic analysis software allows a user to view all

network traffic that travels to and from a machine. There are

several different pieces of software available and they vary in
feature set and price. One of the most popular tools used is
Wireshark, formerly known as Ethereal. [13, 14, 15] The figures
and examples used in this paper will all be from Wireshark.
Wireshark has two different types of filters: capture and display.
Display filters, as the name implies, only filter traffic from
actually displaying in the Wireshark analysis window – they do
not prevent the traffic from actually being captured and stored.
Traffic filtered with a display filter still consumes space to store
and processor cycles to analyze. Capture filters, on the other hand,
discard uninteresting traffic so that it is neither stored nor
analyzed. Wireshark uses Berkeley Packet Filter (BPF) syntax to
filter out uninteresting traffic. As a result, the capture filter
examples used in this paper are portable and can be used in any
network traffic analysis software that supports BPF syntax.

3.1 Capture Filters and Storage Requirements
A simple capture filter to focus only on traffic destined to an

external – i.e., Internet – destination is
(port 53) or (ip and (dst net not 10.0.0.0/8 and dst net not

172.16.0.0/12 and dst net not 192.168.0.0/16 and dst net not
224.0.0.0/4 and dst net not 240.0.0.0/4 and dst net not
255.255.255.255/32 and dst net not 169.254.0.0/16))

This is a deliberately long-winded, versatile capture filter that
can be easily updated if traffic destined for internal subnets needs
to be captured as well. The dst net portion of the filter is an
abbreviated form of destination network and the not tells the
capture filter to discard that traffic. Subnets can be included in the
filter in standard classless inter-domain routing (CIDR) format.
The capture filter above excludes all standard private subnets, as
well as broadcast and multicast subnets, thereby focusing only on
traffic destined to – or return traffic from – the public Internet.
This is a useful security capture filter because malware often
contacts a command-and-control server at a location on the public
Internet. This filter will capture that traffic and discard all chatty,
non-DNS internal traffic.

Using the same test network previously discussed, Table 1
displays the results of a five minute capture both with and without
the example filter.

Table 1. Capture results with and without capture filter

Capture Filter File size Packet count

Without capture filter 33.81MB 137,204

With capture filter 5.37MB 34,662

The capture filter clearly has a significant impact on both the
packet count and file size of the capture. If viewing the traffic in
Wireshark, display filters can be used to further remove redundant
traffic from the capture, such as

not tcp.analysis.retransmission and not
tcp.analysis.duplicate_ack

For the capture purposes outlined in this paper, the interesting
information from network captures is the destination IP address.

This display filter will remove all unnecessary or duplicate TCP
requests to non-unique destination IP addresses, thereby reducing
the number of packets that must be analyzed while still ensuring
all unique destination IP addresses are captured and analyzed.

3.2 Traffic Analysis Machine Placement
As discussed previously, in the majority of enterprise networks

today, switches are used in place of hubs. Switches offer both
superior performance and increased security when compared to
hubs, in that each switch port is isolated from all other ports,
which makes snooping far more difficult and also prevents
collisions from occurring. While this is undoubtedly desirable in
nearly all deployment scenarios, it does make deploying a traffic
analysis machine more difficult. Connecting a network traffic
analysis machine to a switch that has been configured with no
special concessions will allow the machine to view nothing more
than its own traffic as well as any broadcast traffic on the subnet
or VLAN the machine is currently using.

To effectively and thoroughly capture all traffic on a specific
subnet or VLAN, a switch must be configured with port
mirroring. Port mirroring allows certain switch ports to be
designated as either source or destination ports. Traffic from
designated source ports is mirrored to the destination port or ports.
When the switch port connected to a router sub-interface in a
router-on-a-stick configuration is used as a source port, this allows
for all routed traffic on a subnet to be mirrored to the destination
port(s), which is the switch port that the traffic analysis machine
will be connected to. It is worth noting that a traffic analysis
machine must have more than a single NIC, because when a
switch port is configured as a destination port, it will no longer
pass traffic from the machine connected to it – it simply mirrors
all traffic from the designated source ports. Figure 1 illustrates a
simple network topology with a traffic analysis machine
deployed.

Figure 1: A simple topology with a traffic analysis machine.

In this example, only user PCs have their ports mirrored and,
therefore, their traffic replicated to the destination port with the

traffic analysis machine connected. In many enterprise networks,
it is also critical that high-priority servers have their traffic
mirrored to the traffic analysis machine to ensure they are
appropriately monitored. It is possible, as discussed earlier, to
mirror only the switch port connected to a router and capture all
routed traffic as well. These different deployment scenarios
highlight the flexibility that traffic logging and analysis permits,
allowing this solution to be deployed in enterprises of all sizes and
types.

4 INITIAL SETUP AND CAPTURE SIZES
The initial setup of the network monitoring and traffic analysis

solution described in this paper is a multi-step process. We will be
using the previously mentioned Wireshark for network captures,
as well as the open-source tool C5 SIGMA, which “takes network
packet capture data as input and produces a structured relational
database.” [16] C5 SIGMA is compatible with both SQL Server
and MySQL, but our test deployment will use SQL Server
exclusively. All queries, performance data, and storage
requirement information for the remainder of this paper have been
tested using SQL Server.

C5 SIGMA is command-line based and offers a great deal of
flexibility, which makes scripting the import of capture files into a
database a trivial task. The basic C5 SIGMA command used in
our test deployment is

SIGMA.exe -in "..\captures" -out "..\captures\Output" -dbh
"<database hostname or ip>" -dbu "C5" -dbp "pass" -ts "<tshark
location>\tshark.exe" -pre Basic

The –dbu and –dbp switches allow for the use of an SQL
Server authenticated user name and password, respectively.
Windows integrated authentication is also available for increased
security, by simply replacing the –dbu and –dbp switches with the
–dbi switch. The –in switch specifies where traffic capture files
are stored and the –out switch specifies where C5 will store the
temporary files necessary to import information into the database.
Note that even using relatively small capture file sizes, discussed
next, results in C5 creating several temporary files that total
approximately 1GB in size. Only a single set of temporary files is
created regardless of the number of captures files being imported
at once and these files can be deleted immediately once the
database import is complete.

One issue we ran into with our test deployment was that C5
SIGMA would attempt to import capture files from Wireshark
even while Wireshark was actively updating the open file. This
would result in duplicate entries, because the file could not be
deleted by our script – due to it being open and used in Wireshark
– so the same data would be imported again during successive C5
runs. The workaround for this issue is to create a staging folder
that Wireshark saves captures files in and then move those files to
an input folder that C5 monitors, versus having C5 and Wireshark
use the same single folder. The basic PowerShell script used in
our test deployment is below.

Move-Item "C:\Users\Administrator\Desktop\staging*"
"C:\Users\Administrator\Desktop\captures\"

if (Test-Path C:\Users\Administrator\Desktop\captures* -
exclude output)

{
C:\scripts\C5script.bat
cd "C:\Users\Administrator\Desktop\captures"
Remove-Item * -exclude output
cd output
Remove-Item *
}
The Move-Item command moves all completed capture files

into an input folder monitored by C5. This command will not
move files that Wireshark has open, removing the risk of
duplicate data. The second line of the script checks for the
existence of capture files and, if found, runs the C5 command
listed earlier in the paper, which we saved as a separate batch file
called C5script.bat. Once the database import is complete, the
script deletes the capture files as well as the temporary files
created by C5. In our test deployment, we set this PowerShell
script to run as a scheduled task once every five minutes,
removing the need for user intervention beyond the initial setup.

With all of these prerequisites in place, the next step in the
deployment is to ensure that the file size of the captures is going
to be administratively manageable. Wireshark has a built-in
feature that allows traffic captures to be split up either by file size
or after a predetermined amount of time. For our test deployment,
we tried several different capture file sizes, but the most efficient
and usable configuration was to have Wireshark create a new
capture file every 5MB. On our low-end database server outfitted
with a mid-range quad-core processor, a standard 7200RPM hard
disk, and 8GB of RAM, C5 SIGMA was able to import a 5MB
capture file in approximately three minutes. This time could be
significantly reduced using the newer, faster hardware that is
typical of even low-end enterprise servers.

4.1 Controlling Capture Sizes
As previously discussed, one of the primary reasons that

network traffic capture and analysis is not used more frequently or
as a security tool is because of the sheer amount of data that is
generated. While a large portion of this data will be discarded
using the capture filter above, it is still important to understand
exactly how much storage space will be required both from a
capture file and database perspective. To achieve this, before
beginning a traffic capture on our entire test network, we isolated
single machines running unaltered, fresh installs of varying
operating systems. This allowed us to see how much traffic they
would generate in a twenty-four hour period. That data can be
seen in Table 2 below.

Table 2: Capture sizes of popular operating systems

Operating System File size Packet count
Ubuntu 14.04.2 LTS 123KB 1,178
Windows 7 Professional 84KB 193
Windows Server 2008 R2 258KB 1,427
Windows XP 118KB 1,274

The URLs generated by each of these captures can be found in
appendix B. This data is useful because not only does it provide a
good idea of what URLs can be filtered out or discarded as
harmless when querying the traffic capture database, but it also
shows just how little data is generated by a machine at rest. One
thing to note is that these capture sizes do not include address
resolution protocol (ARP) traffic. Based on the network topology
and configuration – the DHCP lease time, specifically – capturing
ARP traffic may or may not be necessary. This traffic can be
useful in associating a machine with its unique media access
control (MAC) address for accurate identifications, though ARP is
a chatty protocol that frequently uses broadcasts and, as a result,
can increase capture sizes significantly based on the number of
machines on a subnet or VLAN. The queries used later in this
paper will alternate between including and excluding the MAC
addresses of devices.

Capturing traffic on the test network previously discussed
resulted in a capture size of approximately 2.5MB per minute
during the business hours of 8AM to 5PM, but this dropped to just
over 400KB per minute during non-business hours. These
averages come to approximately 1.35GB of capture traffic during
business hours and 400MB during non-business hours for a 24-
hour total of just under 1.75GB – a moderate amount of data by
any standard, though this will increase when imported into a
database, as discussed next. These averages were taken using two
full weeks of capture data on our test network.

5 DATABASE STRUCTURE AND SIZE
Using C5 SIGMA to import capture files into a database

results in the creation of several tables, which can vary in both
size and number depending on how much and what type of
network traffic is included in the capture files. For example, if
ARP traffic is excluded from the traffic capture, there will not be
an ARP table in the database – the tables are dynamically created
based on traffic type. In the queries presented in this paper, we are
most interested in the following tables: ip, arp,
dns_answer_namespec, tcp, udp, icmp, http, http_httpdata, and
http__value, as well as two manually created tables called
locations and domains for IP geolocation information and
blacklist data, respectively. To view how the database is generally
built, the structures of the ip, tcp, and dns_answer_namespec
tables can be seen in appendices C through E, respectively.

When importing captures files into a database with C5, the size
of the database is initially approximately 16 times larger than the
captures files themselves. Using the 1.75GB example from the
previous section, this would result in a database size of 28GB,
which is administratively unmanageable for a single day’s worth
of traffic captures. However, when using the database solely for
security purposes, approximately seventy percent of the
information stored in the largest tables can be dropped, resulting
in a database of just over 8GB, which is far more usable. Using
data from our test network, Table 3 displays the top 13 largest
tables and their size percentage of the entire database.

Table 3. Top largest tables

Table % of total DB size
ip 18.26
geninfo 12.36
eth_dst 11.11
eth_src 11.11
tcp 9.16
tcp_flags 8.04
ip_dsfield 6.27
ip_flags 4.02
eth 2.52
tcp_analysis 2.31
ip_checksum 2.23
ssl_handshake_ciphersuites 2.13
tcp_checksum 2.06

The ip and geninfo table make up more than 30% of the entire
database. The geninfo table contains information on the name and
location of the capture files and, because this information is of no
value in a security context, can be completely dropped. From the
ip table, the only relevant security information are the unique
source and destination addresses. In our test network, this
information made up less than 1% of the total addresses, so the
majority of that table can be dropped. Using the capture filters
described earlier in the paper, the eth_dst table will contain
information of virtually no security value, so it can be completely
dropped. The eth_src table is only necessary if the DHCP lease
time on the network where traffic is captured is short and MAC
addresses are needed to accurately identify machines, versus
simply using their IP addresses. Similar to the geninfo table, the
tcp_flags, ip_dsfield, and ip_flags, tcp_analysis, ip_checksum,
ssl_handshake_ciphersuites, and tcp_checksum tables all contain
information of no security value in the deployment described in
this paper and can therefore be dropped. Once each of these tables
is either cleaned up or dropped altogether, the database size is far
more manageable. This step combined with the capture filter
described earlier are essential in ensuring that the amount and type
of data gathered from network traffic captures remains useful and
manageable.

6 NETWORK BASELINE AND QUICK
CHECKS
With all of the initial setup previously described in place,

network traffic can be captured and imported into a database in
real time while keeping both the capture file size and the database
itself administratively manageable. Before this database is of any
security value, however, it must be queried and analyzed. Many of
the tables created by C5 – and the ip table especially – can quickly
grow to several million rows. Sorting through the noise and
getting to the security-relevant traffic can be done quickly and
efficiently through standard SQL queries, many of which are
described in the sections to follow.

6.1 ARP to IP and Baseline URLs
In the event that the network topology and DHCP lease time

require MAC addresses to be captured in addition to IP addresses,
an important first step before querying against the database is to
put the IP to MAC bindings in a new table. This new table reduces
the number of joins that must be executed in many queries and
ensures that two of the largest database tables – the ip and eth_src
tables – are not repeatedly searched. The query for creating this
new table is below.

select ip.ip_src_host, ip.ip_dst, arp.arp_src_hw_mac
into arp_to_ip
from ip
join arp on ip.ip_src_host = arp.arp_src_proto_ipv4
where ip.ip_src_host is not null
group by ip.ip_src_host, ip.ip_dst, arp_src_hw_mac
order by ip.ip_src_host, ip.ip_dst;
This creates a new table called arp_to_ip which is both much

smaller and much faster than querying both the ip and eth_src
tables repeatedly to associate MAC addresses with source IP
addresses. The arp_to_ip table created, the next basic query to
check for any information specific to a network that can be
discarded as harmless is below.

select distinct arp_to_ip.arp_src_hw_mac,
arp_to_ip.ip_src_host, arp_to_ip.ip_dst,
dns_answers_namespec.dns_resp_name
from arp_to_ip
join dns_answers_namespec on arp_to_ip.ip_dst =
dns_answers_namespec.dns_resp_addr
where dns_resp_name not like '%<domain>%';
This query will search the newly created arp_to_ip table in

addition to one of the DNS tables that C5 creates, called
dns_answers_namespec, returning all DNS responses on a per-
machine basis. The where dns_resp_name not like
‘%<domain>%’ line at the end will vary between networks and
filters out the majority of internal-only traffic. This query will
initially come back with several results, though many of the
domains included can be identified as non-malicious – Facebook,
Google, Evernote, Microsoft, etc. – and the query updated as a
result.

6.2 Connection Count Check
With the database appropriately setup and a good baseline of

public Internet traffic to build off of using the queries above, we
can now move forward with more malware- and security-focused
queries. Malware itself varies significantly in both how it infects a
machine and what it does to the machine once it is infected. It is
not uncommon for malware to turn an Internet-connected
computer into a bot, which is a machine that reports back to a
botmaster or command-and-control server somewhere on the
public Internet. If a piece of malware is effective enough, it can
spread to several Internet-connected machines all reporting to the
same botmaster, creating a bot army or botnet. [17] One of the
more popular tasks these botnets are used for is a distributed
denial-of-service (DDoS) attack, which occur when the botmaster
instructs the botnets to attack a single site or small group of sites

on the Internet in an effort to bring the target site offline. During
these attacks, each bot within the botnet will repeatedly attempt to
access a certain portion of the target site, using as much Internet
bandwidth as it has available. From a network capture
perspective, this type of attack is very noisy. The attack can be
quickly identified by analyzing the network capture database for
the number of external connections every machine has made,
accomplished using the query below.

select ip.ip_src, count(ip.ip_src) as 'conn_count'
from ip
group by ip.ip_src
order by conn_count desc;
This query will count each of the connections made by every

machine on the network where traffic is captured and order them
from greatest to least. Certain machines – a DNS server, for
instance – are expected to have a high connection count and so
this does not necessarily indicate the presence of malware.
However, any client machine that has a connection count several
times higher than the rest of the client machines on the network
has likely been infected. On occasion, in an effort to avoid
detection, certain types of malware will not run during business
hours. If this is the case, the query can be updated to what is
below.

select ip.ip_src, count(ip.ip_src) as 'conn_count'
from ip
where (cast(_timestamp as time) >= '18:00'
and cast(_timestamp as time) <= '23:59')
or (cast(_timestamp as time) <= '07:00'
and cast(_timestamp as time) >= '00:00')
group by ip.ip_src
order by conn_count desc;
This is the same as the original query for checking connection

count, but casts the _timestamp portion of the database table that
C5 creates as an actual time, allowing traffic to be flitered by
business hours. What will be considered an unusually high
connection count will vary from network to network, but having
the connection count of all machines available at once makes
relative comparisons possible and infected machines will stand
out.

6.3 Non-Standard Port and UDP Detection
Much like a high connection count on a machine, non-

standard TCP or UDP port use could indicate the presence of
malware or, potentially worse still, the use of peer-to-peer (P2P)
software. P2P – also commonly known as torrenting – software
allows users to download bits and pieces of large files from
several different other machines on the Internet and is well-known
within enterprise networks to be both bandwidth intensive and a
good way for users to unknowingly download malicious software.
While many modern P2P clients can, with the correct
configuration, operate on top of standard, well-known ports such
as HTTP port 80, [18] in their default configuration this is not
often the case. Using the query below, we can check our traffic
capture database for non-standard port use.

select distinct ip.ip_src, ip.ip_dst, tcp.tcp_dstport

from ip
join tcp on ip._timestamp = tcp._timestamp
where tcp_dstport != '80'
and tcp_dstport != '443'
and tcp_dstport != '53'
and tcp_dstport != '3389'
This will generate a list of the unique TCP destination ports of

all machines on the network where traffic is captured. The query
above excludes four well-known ports – HTTP, HTTPS, DNS,
and RDP, in that order – but can be updated on a per-network
basis to exclude uncommon ports that custom developed internal
applications may use.

Many P2P clients also rely heavily on the use of UDP, which
is a type of network traffic that will stand out in a capture
database. As a result, getting the UDP connection count of all
machines on the network is a good indicator of machines that are
possibly using P2P software and can be accomplished using the
query below.

select arp_to_ip.arp_src_hw_mac, ip.ip_src,
count(udp.udp_dstport) as 'conn_count'
from udp
join ip on ip._timestamp = udp._timestamp
join arp_to_ip on arp_to_ip.ip_src_host = ip.ip_src_host
group by arp_to_ip.arp_src_hw_mac, ip.ip_src
order by conn_count desc;
Much like the IP connection count query described previously,

this query will list the number of UDP connections made by every
machine on the network in order from greatest to least. One thing
to note from the results of this query is that another common
protocol that uses UDP is DNS, so it is very likely that a DNS
server will be at or near the top of the list. This can be safely
ignored as non-malicious and the query updated to exclude the IP
in the future.

6.4 Network Scans and ICMP
Getting away from checking for malware for a section,

another potential security vulnerability in an enterprise network is
port scans. Port scans are a common method of probing a network
for open services on servers or desktop machines in an attempt to
find vulnerabilities. While there are many different types of
software available for port scans, one of the most common
protocols they all use is ICMP. Using the capture filter listed
earlier in this paper, ICMP traffic is not captured, but this can be
remedied simply by including icmp in parentheses alongside port
53. Once ICMP traffic is stored in the capture database, any
machine that scans for open ports can be identified using the
query below.

select count(ip.ip_dst) as 'icmp_count', ip.ip_src
from ip
join icmp on icmp._timestamp = ip._timestamp
group by ip.ip_src
having count(ip.ip_dst) > 100
order by icmp_count desc;
One thing to note about port scans is that they can be either

high- or low-impact, sometimes called “stealth,” scans. [19] High-
impact port scans will send out as many ICMP probes as the
machine can handle in an effort to get data back as quickly as

possible. These types of scans are the easiest to detect because of
how noisy they are. Low-impact scans send out probes at a much
slower rate, in an effort to avoid detection. The above query will
immediately detect a high-impact scan, but for a low impact scan
the 100 in the query would need to be significantly reduced,
depending on the date range of data being queried. If the query
above comes back with an IP address, the following query will
reveal what ports the machine was scanning to find open.

select distinct ip.ip_src, ip.ip_dst, tcp.tcp_dstport
from ip
join tcp on ip._timestamp = tcp._timestamp
where ip.ip_src = ‘<IP from previous query>’
order by ip.ip_dst;
This query will list each of the destination IPs that the

machine scanning the network probed as well as the TCP ports
that were scanned. It is important to note that Internet-facing
interfaces on servers are constantly being probed from various
locations, but because our traffic capture machine is deployed
internally, these scans will not be included. External probes are a
common security issue that is typically dealt with from a firewall,
but internal probes are more dangerous and difficult to detect. If
the machine probing a network is on the same subnet or VLAN as
the machines being probed, it is going to be difficult to detect port
scans using any security method other than the traffic capture
database described in this paper.

6.5 HTTP Checks
Virtually all enterprise networks use HTTP and HTTPS both

internally and externally for web traffic. As a result, firewalls
commonly allow outbound traffic on ports 80 and 443 with few
restrictions. A popular method for ensuring that this web traffic is
securely managed is to send it through a proxy server. A proxy
server is a machine that network traffic filters through on its way
to the intended destination and the proxy server chooses to either
permit or deny the traffic, based on predefined rules or lists.
While a proxy server can be used for several different protocols, it
is most commonly used to filter web traffic. When deploying a
traffic capture machine, where and how web traffic traverses the
network is an important consideration.

Ensuring that web traffic is being accurately and efficiently
captured, one way of detecting malware is by viewing the HTTP
user agent. The user agent of an HTTP session can be manually
coded by a piece of software, so while it is far from an iron clad
malware detection method, it is still not uncommon for poorly
coded malware to use a user agent that stands out. The query
below will check and count all unique user agents in the traffic
capture database.

select http_user_agent, count(http_user_agent) as 'count'
from http
where http_user_agent is not null
group by http_user_agent
order by count desc;
A cursory glance at the data generated by the list will

generally reveal that two or three unique user agents are far more
popular than others, though this will vary by network. Many user
agents can be dismissed offhand as non-malicious, though if the
list contains one or two either with a low number of occurrences
or an unusual name, this could indicate the presence of malware.
This query can be expanded to compare the list generated from
the traffic capture database to an external user agent blacklist –

similar to the queries presented in the next section – though the
above is useful for getting a baseline of different user agents and
how often they appear.

Another security-focused HTTP query is checking the traffic
capture database for the presence of the HTTP POST command.
HTTP POST is used both in form submission and for file uploads.
The query below will list all HTTP POST commands from the
traffic capture database.

select cast(http_httpdata._timestamp as date) as date,
cast(http_httpdata._timestamp as time) as time, ip.ip_src,
http.http_host, MAX(http.http_request_full_uri) as
'http_full_uri', http__value._value,
http_httpdata.http_request_method
from dbo.http_httpdata
join http on http._timestamp = http_httpdata._timestamp
join ip on ip._timestamp = http_httpdata._timestamp
join http__value on http__value._timestamp =
http_httpdata._timestamp
where
http_request_method = 'POST'
group by http_httpdata._timestamp, ip.ip_src,
http.http_host, http__value._value,
http_httpdata.http_request_method
order by ip_src, date;
Because POST is also used for form submission, there will be

several lines in the results that are not necessarily file uploads.
However, these generally come from non-malicious domains and
so can be excluded by updating the where portion of the query to
include http_host not like ‘%<domain>’, which will vary from
network to network.

7 USING EXTERNAL BLACKLISTS AND
GEOLOCATION DATA
Each of the queries described in the previous section are

useful in getting a baseline of internal network traffic and spotting
outliers using data relative to machines on the network. Another
benefit of storing network traffic data in a relational database is
that it becomes a simple task to use IP and URL location and
blacklists that are available online and compare stored network
traffic against these lists. While there are several free and paid
sites available [20], as a proof-of-concept, the list from
http://malware-domains.com/files is what is used in this paper.
This list is distributed as a flat text file, which we imported into
our database as a table called “domains” using SQL Management
Studio’s Import feature. Many of the sites distributing these lists
use Really Simple Syndication (RSS) to push out updated
versions, which makes automating the download and import of the
most up-to-date list in SQL Server a trivial task.

Once the blacklist has been imported into a database table,
captured traffic stored in the database can be compared against it
using the query below.

select distinct arp_to_ip.arp_src_hw_mac,
arp_to_ip.ip_src_host, arp_to_ip.ip_dst,
dns_answers_namespec.dns_resp_name
from arp_to_ip
join dns_answers_namespec on arp_to_ip.ip_dst =
dns_answers_namespec.dns_resp_addr
join domains on domains.url =
dns_answers_namespec.dns_resp_name
where dns_resp_name not like '%<domain>%';

If this query returns any results, it immediately raises a red
flag. Because each of the rows in our domain table contains a
known-malicious URL, any machine sending or receiving traffic
from that URL is likely infected with malware. For near real-time
blacklist detection, an SQL job can be setup to run every X
number of minutes with the following query.

IF EXISTS (
<above query>
)
EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'Blackist Item Detected',
@recipients = 'email@domain.com',
@subject = 'Blacklist Item Detected',
@query = ‘<above query>’,
@attach_query_result_as_file = 0;
This same query can be used to setup a daily or weekly report

with each of the queries presented in this paper. However, while
the other queries are useful for gathering baseline data and
looking for possible anomalies, blacklist detection virtually
guarantees an infected machine should be checked more
frequently.

Similar to comparing URLs against a blacklist, IPs stored in
the traffic capture database can be queried against IP geolocation
information to gather information on where, geographically,
network traffic is flowing. The geolocation database we use in this
paper is available from http://dev.maxmind.com/geoip [21], but
there are several, more accurate lists available for a nominal fee.
We used a table called “locations” in our database to store the
information. Importing the geolocation information can be done
as either a flat file or using an automated process with an RSS
feed, just like with the blacklist data.

One issue we ran into when comparing our traffic capture
database against the freely available IP geolocation databases is
that the geolocation databases all use IP ranges instead of several
individual IP addresses. Because IP addresses cannot simply be
compared as number, we had to come up with a way to accurately
and efficiently compare a single IP to see if it was within a range
of IPs. Fortunately, stackoverflow user RBarryYoung [22] had
already come up with the solution, as seen below.

CREATE FUNCTION dbo.fnBinaryIPv4(@ip
VARCHAR(15)) RETURNS BINARY(4)
AS
BEGIN
 DECLARE @bin AS BINARY(4)
 SELECT @bin = CAST(CAST(PARSENAME(@ip, 4)

AS INTEGER) AS BINARY(1))
 + CAST(CAST(PARSENAME(@ip, 3) AS

INTEGER) AS BINARY(1))
 + CAST(CAST(PARSENAME(@ip, 2) AS

INTEGER) AS BINARY(1))
 + CAST(CAST(PARSENAME(@ip, 1) AS

INTEGER) AS BINARY(1))
 RETURN @bin

END
go
This creates a function called fnBinaryIPv4, which will

convert the IP addresses stored in our traffic capture database to
binary after breaking them into four parts. Converting the IPs
stored in the geolocation database to this same format will allow
the two tables to be accurately compared, which can be
accomplished using the query below.

select distinct ip.ip_src, ip.ip_dst, locations.country,
dns_answers_namespec.dns_resp_name
from ip
join locations on dbo.fnBinaryIPv4(ip.ip_dst) between
convert(varbinary, locations.startip) and
convert(varbinary, locations.endip)
left join dns_answers_namespec on ip.ip_dst =
dns_answers_namespec.dns_resp_addr
where locations.country != 'United States'
order by ip.ip_src;
This query will compare all public IPs in our database against

the IP geolocation table and return back any IP and, if available,
DNS name that is not in the United States. Malware very often
originates from and phones home to countries outside of the
United States – China, Russia, and the UK, for instance – so if a
domestic-only company sees an abnormal amount of network
traffic traveling overseas, this could be indicative of an infected
machine.

8 MALWARE’S IMPACT ON NETWORK
TRAFFIC
To test our real-time network traffic analysis deployment, we

installed various types of popular malware on our Windows 7
virtual machine. The virtual machine was running on an isolated
network with only one other machine, which was a separate
Windows 7 virtual machine running several popular services –
HTTP and DNS, most notably – to give the appearance of an
active Internet connection to the malware-infected machine. With
Wireshark running on the malware-infected machine, we were
able to capture all relevant network traffic and then import that
file into our traffic capture database. Because these traffic
captures were taken simultaneously, this approach allowed us to
merge all network traffic from our malware-infected machine with
traffic from our test network.

The most notable observation from our tests is that outside of
botnet machines participating in a DDoS attack, very rarely did
any malware generate an abnormally large amount of network
traffic. Unusual port use was common, with the Neutrino Exploit
Kit (EK) using port 8000 to both send and receive traffic. Other
types of malware used varying port numbers as well, each of
which stood out in our capture database. Another common theme
among many of the different pieces of malware we tested was that
they would check for an active Internet connection before doing
anything else. One of the most common URLs that would appear
during this step was http://checkip.dyndns.com. While not a
malicious site in and of itself, this URL could be added to the
blacklist table in an effort to spot potential malware checking for
Internet connectivity. In our test network, it was only malware
that attempted to access this site.

Overall, we were surprised to find that as far as a percentage
of overall network traffic volume, malware-infected machines do
not stand out – finding them becomes similar to searching for a
needle in a haystack. However, with an accurate network baseline
gathered from the queries presented in this paper, it is possible to
dismiss a large majority of harmless traffic all at once, leaving
only a small amount of unique and malicious traffic to analyze.

9 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

As more and more personal data is converted from a paper to
a digital format and transferred across the Internet, the attack
surface and potential return on investment (ROI) for cyber
criminals significantly increases. Large-scale network and data
breaches are becoming commonplace and they cost corporations
millions of dollars. Malware that sits on supposedly secure
networks for months on end and transfers private data to an
external location is a common culprit and the deployment ideas
and examples presented in this paper are an attempt to detect and
mitigate this type of attack. Information security should always
adopt a multilayer approach and the preventative techniques that
enterprises typically rely exclusively on offer little protection for
detecting or mitigating attacks after they have breached the
network perimeter. We attempted to design and deploy a solution
that was both cost-effective and end-user transparent, increasing
security without increasing costs or impacting network or machine
performance. In light of these goals, our deployment proved a
success. Port mirroring did not significantly affect network or
switch performance and capturing and storing traffic in a database
can be done using only no-cost software. With the appropriate
capture filters and database queries to drop unnecessary or
redundant tables and data, captured traffic can be kept at a
manageable size.

Limitations to the ideas presented in this paper include the
assumption that enterprise networks are already operating with all
of the prerequisites discussed in this deployment. Without
managed switches capable of port mirroring already in place,
additional hardware would need to be purchased. Additionally, a
network topology that lends itself well to breaking network traffic
into manageable subnets is required. These are limitations that can
be worked around by limiting the scope of the deployment –
monitor only the highest priority servers, for instance – or by
replacing unmanaged switches with their managed counterparts,
which brings a wealth of additional network performance and
security features.

Future work possibilities for this project are virtually endless.
It is a safe assumption that cyber-attacks will never stop, so
different queries can be developed to detect new malicious traffic
and protocols. A web interface could be developed to allow the
queries to be run on demand, while charting historical data and
automatically detecting anomalies. The deployment presented
here is intended simply as a proof-of-concept that network traffic
captures do not have to be relegated to spot-checking performance
or connectivity issue and can have enormous security value if
properly handled.

REFERENCES
[1]. Michael Riley, Ben Elgin, Dune Lawrence, and Carol Matlack, “Missed

Alarms and 40 Million Stolen Credit Card Numbers: How Target Blew It,”
March 2014. Available: http://www.bloomberg.com/bw/articles/2014-03-
13/target-missed-alarms-in-epic-hack-of-credit-card-data

[2]. Nagios. (2015). Retrieved Feb. 10, 2017 from http://www.nagios.org/
[3]. Cacti. The complete rrdtool-based graphing solution. (2012). Retrieved Feb.

10, 2017 from http://www.cacti.net/
[4]. Zabbix. The Enterprise-class Monitoring Solution for Everyone. (2015).

Retrieved Feb. 10, 2017 from http://www.zabbix.com/
[5]. Spiceworks: Where IT goes to work. (2015). Retrieved Feb. 10, 2017 from

http://www.spiceworks.com/
[6]. Solarwinds. The Power to Manage IT. (2015). Retrieved Feb. 10, 2017 from

http://www.solarwinds.com/
[7]. Paessler. The network monitoring company. (2015). Retrieved Feb. 10, 2017

from http://www.paessler.com/prtg
[8]. Observium. Network monitoring with intuition. (2015). Retrieved Feb. 10,

2017 from http://www.observium.org/

[9]. Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo Cavallaro,
Maarten van Steen, Felix C. Freiling, and Norbert Pohlmann. 2011. Sandnet:
network traffic analysis of malicious software. In Proceedings of the First
Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security (BADGERS '11). ACM, New York, NY, USA, 78-88.

[10]. Xiaohong Yuan, Percy Vega, Jinsheng Xu, Huiming Yu, and Yaohang Li.
2007. Using packet sniffer simulator in the class: experience and evaluation. In
Proceedings of the 45th annual southeast regional conference (ACM-SE 45).
ACM, New York, NY, USA, 116-121.

[11]. Alexandros Fragkiadakis, Ioannis Askoxylakis, "Malicious traffic analysis in
wireless sensor networks using advanced signal processing techniques," 2013
IEEE 14th International Symposium on "A World of Wireless, Mobile and
Multimedia Networks" (WoWMoM), pp. 1-6

[12]. Liran Ma; Teymorian, A.Y.; Xiuzhen Cheng, "Passive Listening and Intrusion
Management in Commodity Wi-Fi Networks," Global Telecommunications
Conference, 2007. GLOBECOM '07. IEEE, pp.327-331, 26-30 Nov. 2007

[13]. Vasil Y. Hnatyshin and Andrea F. Lobo. 2008. Undergraduate data
communications and networking projects using opnet and wireshark software.
SIGCSE Bull. 40, 1 (March 2008), 241-245.

[14]. Wireshark. Go Deep. (2015). Retrieved Feb. 10, 2017 from
https://www.wireshark.org/about.html

[15]. Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang,
Lihua Yuan, and Ming Zhang. 2012. NetPilot: automating datacenter network
failure mitigation. SIGCOMM Comput. Commun. Rev. 42, 4 (August 2012),
419-430.

[16]. Command Five. (2015). Retrieved Feb. 10, 2017 from
https://www.commandfive.com/downloads/c5sigma.html

[17]. Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. 2006.
A multifaceted approach to understanding the botnet phenomenon. In
Proceedings of the 6th ACM SIGCOMM conference on Internet measurement
(IMC '06). ACM, New York, NY, USA, 41-52.

[18]. Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and Kc claffy. 2004.
Transport layer identification of P2P traffic. In Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement (IMC '04). ACM, New York,
NY, USA, 121-134.

[19]. Lawrence Teo. 2000. Port Scans and Ping Sweeps Explained. Linux J. 2000,
80es, Article 2 (November 2000)

[20]. Malware Domain Blocklist. (2008). Retrieved Feb. 10, 2017 from
http://www.malwaredomains.com/

[21]. GeoLite Legacy Downloadable Databases. (2015). Retrieved Feb. 10, 2017
from http://dev.maxmind.com/geoip/legacy/geolite/

[22]. Datatype for Storing IP Address in SQL Server. (September 2009). Retrieved
from http://stackoverflow.com/questions/1385552/datatype-for-storing-ip-
address-in-sql-server

