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Abstract—In recent years, mobile video streaming is gaining
overwhelming popularity and occupying an increasing proportion
in mobile data traffic. Video streaming is sensitive to viewing
interruptions and hungry for energy, so it is of great significance
to mitigate the effect of viewing interruptions and reduce energy
cost while enjoying video streaming services in cellular networks.
In this paper, considering both channel quality and user buffer
state, we propose a QoE aware and energy efficient online
scheduling scheme based on Lyapunov optimization framework.
In the scheme, a novel method by dynamically controlling the
weighting value of energy consumption is introduced to obtain
more energy saving and guarantee QoE performance. Simulation
results demonstrate that our proposed scheme can reduce both
rebuffering delay and energy consumption compared with the
state-of-art method.

I. INTRODUCTION

Video streaming services are becoming more and more pop-

ular in mobile networks with the rapid increase of hardware

capability of mobile devices and the transmission bandwidth of

cellular networks these years. According to Visual Networking

Index [1] from CISCO, more than half of the mobile data

traffic comes from video streaming services and it will increase

to 78% by 2021. DASH is a promising video streaming

technology and has attracted increasing attention. It is able to

cope with the heterogeneities of mobile device and wireless

network conditions and allows mobile viewers to select an

appropriate video version according to network conditions and

buffer states.

The majority of previous work is aiming at improving QoE

metrics including how to reduce initial delay, rebuffering delay,

the number of interruptions, etc [2]. However, energy cost

should be also taken into account because video streaming

is hungry for energy and battery capacity of mobile device is

limited. In fact, the fraction of energy consumed by wireless

interface occupies a large proportion in the total mobile energy

consumption.

Energy consumed by wireless interface is composed of

transmission energy and tail energy [3]. Transmission energy

is used to receive data for mobile device and tail energy is

the wasted energy which will be explained in detail in the

following part. In typical cellular technologies (3G or LTE),

there exists a radio resource control (RRC) protocol which

claims that the radio of mobile device should stay in high

power state until an inactivity timeout instead of switching

to a low power state immediately when data transmission is

completed [4]. If there is no transmission during that period,

there will be a considerable part of energy wasted during

that time which is also called tail time. The tail time is

introduced to reduce the frequency of mode switching so that

high signaling overhead could be avoided. However, once a

large amount of tail time is introduced, a large amount of tail

energy would be produced.

In consideration of such characteristics of energy consump-

tion in mobile devices, significant efforts have been put into the

research of reducing energy cost of mobile devices from differ-

ent aspects. F. Qian et al. [5] applied traffic prediction and fast

dormancy to optimize the inactivity timer to reduce tail energy.

S.Herrerła-Alonso et al. [6] proposed an adaptive DRX scheme

based on DRX technologies to improve energy efficiency with

a bounded packet delay in LTE networks. These efforts are not

targeting at streaming service. A.Schulman et al. [7] utilized

a signal strength prediction method to prefetch video content

when channel condition is good so that energy consumption

for receiving data could be reduced. Matti Siekkinen et al.

[8] used viewing statistics to predict user behavior so as to

determine the chunk size for the purpose of cutting down the

tail energy and traffic overhead.

However, traditional energy efficient methods based on

prediction are not well adapted to the dynamical mobile envi-

ronment. To break the bottleneck, recent efforts [9] [10] [11]

have introduced Lyapunov optimization framework based on

which a non-predication online scheduling scheme is always

designed. SALSA [9] considers both delay and wireless link

quality and designs a multi-interface online scheduler based on

Lyapunov optimization without considering the impact of tail

energy. Authors in [10] [11] add tail energy into consideration

but don’t take QoE metrics such as rebuffering delay or

viewing interruptions into account. Neither of them considers

resource competitions among users. The work [12] closest

to our research proposes a scheduling framework with two

complementary modes of which one is called EMA scheduling

algorithm aiming at reducing energy consumption of video

streaming users while guaranteeing their performance based

on Lyapunov optimization. However, the rebuffering delay

queue they construct for recursion relation cannot reflect the

actual rebuffering delay and they use a static weighted value of

energy consumption that is hard to work well in the complex



mobile environment.

Based on the previous work, we adopt Lyapunov framework

and design an online scheduling scheme considering energy

cost and users’ QoE metrics for video streaming service in

mobile network. Our contributions are twofold:

• We construct user buffer queue mechanism to reflect

buffer state, based on which we utilize Lyapunov optimization

to reduce energy consumption while keeping rebuffering delay

in a bounded range.

• We design a dynamic method to control the weighted

value of energy consumption to obtain more energy saving

and guarantee QoE performance.

The remainder of the paper is organized as follows. Section

II presents our system model and problem formulation. In

Section III, we introduce our proposed online scheduling

scheme embeded with two sub-algorithms and provide cor-

relative analysis. We simulate our method in Section IV and

conclude our work in Section V.

II. SYSTEM MODEL

In this section, we elaborate the models of wireless trans-

mission, energy consumption and performance metrics of

video streaming over cellular networks.

A. Transmission Model

We assume that downlink traffic is scheduled to transmit

in the unit of time slot that is composed of τ seconds. The

LTE protocols provide that data is transmitted in frames. Data

transmitted per frame is denoted as δ and it is related to signal

strength. Then we define a parameter ωi(n) to indicate the

number of frames transmitted to user i in slot n. In LTE

network, the total number of frames in a certain slot is limited

and we cannot serve infinite users at the same time so we

should satisfy the following restraint:

N∑
i=1

ωi(n) � S, (1)

where S is denoted as the number of frames in a slot and N

is the number of users.

In addition, the length of users’ buffers is always limited

and data transmitted to users cannot exceed the limit. We

utilize Vi(n) to represent the maximum transmittable frames

for user i in slot n due to buffer length limit, Vi(n) =⌊
(Buffer limit−buffi(n))×ratei(n)

δ(n)

⌋
, So ωi(n) should satisfy

another inequality as follows:

ωi(n) � Vi(n), (2)

where buff i(n) and ratei(n) are indicated as the current

buffering length and the current video bitrate respectively.

B. Energy Model

First we need to realize the entire energy consumption

for mobile device is composed of transmission energy and

tail energy. The transmission energy denoted as Etran
i (n) is

consumed for receiving data , which can be expressed by

Etran
i (n) = Pi(n)× τ, (3)

from above we can see if we transmit as much data as

possible when the channel quality is good then the trans-

mission energy will be greatly reduced. However, if there

is no data transmission, mobile device will suffer from tail

energy consumption until the inactivity timeout. The tail

energy is determined by tail time and power consumption of

different modes [13]. In LTE networks, there are two kinds of

modes in mobile device which are RRC CONNECTED (high

power state) and RRC IDLE (low power state) respectively.

In RRC CONNECTED mode there are short DRX cycles and

long DRX cycles and their timer periods are denoted as T1

and T2. Their average power consumption are expressed by p1

and p2 respectively. If there exists a long period when there is

no data transmission mobile device will switch to RRC IDLE

state. We utilize Δt to represent the time interval between two

transmission, and tail energy can be expressed as follows:

Etail(Δt) =

⎧⎨
⎩

p1 ·Δt 0 � Δt � T1

p1 · T1+p2 · (Δt−T1) T1 < Δt � T1+T2

p1 · T1 + p2 · T2 otherwise.
(4)

Combining equation (3) and (4), we can conclude the energy

consumption of user i in slot n could be expressed as follows:

Ei(n) =

{
Etran

i (n) ωi(n) �= 0
Etail

i (n) ωi(n) = 0,
(5)

from above we can get the time-average energy consumption

of all users in the following equation:

̂PE(T ) =
1

T

T−1∑
n=0

N∑
i=1

Ei(n), (6)

where T is denoted as the number of scheduling slots.

C. Performance Model
For video streaming service, we usually utilize quality of

experience (QoE) metrics to evaluate performance of service,

which are embodied by viewing interruptions and rebuffering

delay etc. Rebuffering delay means the time period for re-

suming playback when the playback gets stuck. If we define

buff i(n) as the current buffering length of user i in slot n,

then rebuffering delay denoted as rebuff i(n) can be derived

from

rebuff i(n) = max{τ − buff i(n), 0}. (7)

If data in the buffer could not satisfy the need of user playback

in a certain slot, viewing interruption event would take place

and rebuffering delay would be produced. We define P̂R as the

average rebuffering delay of all users in the total scheduling

period which can be expressed by

̂PR(N) =
1

N

T−1∑
n=0

N∑
i=1

rebuff i(n). (8)



III. QEOS SCHEME

In this section, we introduce our QoE aware and energy

efficient online scheduling (QEOS) scheme which is mainly

composed of two sub-algorithms. First, we consider QoE

requirements of users. We adopt rebuffering delay as the QoE

metric which has been proved to be one of the most influential

factors of user experience. As we discussed in the previous

sections, viewing interruption event is highly related with the

state of user buffer. Once the current buffering length is shorter

than the length of a slot, viewing interruption event will occur

and rebuffering delay is produced. The buffering length is

changing all the time and the variation can be expressed by

buff i(n+ 1) = buff i(n) + tsci (n)− τ, (9)

tsci (n) =
ωi(n)× δ

ratei(n)
, (10)

where ratei(n) is the required video bitrate of user i in slot n
and tsci (n) is denoted as playback time maintained by received

data of user i in the slot n. The total resource is limited

and there exist resource competitions among users. If too

much resource is allocated to a certain user, its buffer will be

adequate but other users may suffer from viewing interruption

events. If we can ensure the buffering length of users stay

stable, namely not too much or too little, we can achieve better

overall QoE performance in multiple users scenario.

Based on Eq. (9) and Eq. (10), Lyapunov optimization

framework is employed to control the state of user buffer.

First we set α as the threshold of buffer. When the current

buffering length is shorter than α, it indicates video player

enters into a dangerous state of interruption. Then we define

Q as a Lyapunov function factor which is equal to buff −α.

Namely Q can be regarded as equivalent buffer. From Eq. (9),

we can get the recursion relation of Q as follows:

Qi(n+ 1) = Qi(n) + tsci (n)− τ. (11)

Then we define a Lyapunov function L(n) which represents

a overall metric of queue congestion [14] for reflecting buffer

states of users:

L(n) =
1

2

N∑
i=1

(Qi(n))
2. (12)

As we discussed above, in order to guarantee QoE perfor-

mance we need to keep the queues stable by pushing the

Lyapunov function towards a lower congestion state.

Next we introduce Lyapunov drift Δ(L) as follows:

Δ(L) = E{L(n+ 1)− L(n) | Q(n)}

� B +
N∑
i=1

E{Qi(n)× (tsci − τ) | Q(n)}, (13)

where Q(n) represents the vector (Q1(n), ..., QN (n)) and

B =
1

2

N∑
i=1

(τ2 + (tscmax)
2), (14)

where tscmax is denoted as the maximum playback time main-

tained by any user in a slot. Referring to the Lyapunov

optimization approach [14], we take both performance metrics

and energy consumption into consideration, which leads to

drift-plus-penalty term below:

Δ(L) + ρ ·E{E(n) | Q(n)}, (15)

where E(n) =
∑N

i=1 Ei(n) is described as the total energy

consumption of all users and E{E(n) | Q(n)} represents the

average energy consumption. The parameter ρ is a weighted

factor which is used to balance Δ(L) and energy consumption.

Combining Eq. (13) with Eq. (15), we can deduce the upper

bound of the drift-plus-penalty problem into

Δ(L) + ρ ·E{E(n) | Q(n)}

�B +
N∑
i=1

E{Qi(n)× (tsci (n)− τ) | Q(n)}

+ ρ ·E{E(n) | Q(n)}.

(16)

According to Lyapunov optimization approach, in order to

minimize the energy consumption with performance guar-

anteed, we minimize the upper bound of drift-plus-penalty

problem. Since B and τ are constants, the problem Eq. (16)

can be transformed into

min ρ · E(n) +
N∑
i=1

{Qi(n)× (tsci − τ)}

�min

N∑
i=1

{ρ · Ei(n) +Qi(n)× (tsci (n)− τ)}

�min
N∑
i=1

F (i, ωi(n))

s.t.(1)&(2).

(17)

From Eq. (17), if Qi(n) is negative, which means the buffer

of user i enters into the risk area of interruption, we should

allocate more resource to the corresponding user to make

tsci (n)−τ become a positive value. However, if the user buffer

is sufficient, which is embodied by a great positive value of

Qi(n), then we can schedule less resource to the correspond-

ing user in that slot to keep tsci (n)− τ negative. Thus we can

wait for a better chance to transmit more data in the latter

case because energy could be saved if data were transmitted

in good channel quality. Our aim is to find the optimal ωi(n)
in each slot. We can adopt dynamic programming method

to solve the minimization problem. We define C as a two-

dimensional array which indicates the minimal accumulation

of F (i, ωi(n)). Specifically, C[i][M ] is denoted as the sum of

F (i, ωi(n)) of the previous i users when we decide to schedule

M data units to them. Hence C[i][M ] can be derived from the

following formula:

C[i][M ] = min{C[i− 1][M − ωi(n)] + F (i, ωi(n))}, (18)

where M is the number of data units scheduled to the previous

i users and ωi(n) is the number of data units we decide to



schedule to user i in slot n. Based on Eq. (17) and Eq. (18),

we design an online resource allocation algorithm (ORA) to

find the solution of problem (17).

Algorithm 1 ORA

Input: User number N , Slot length τ , The number of frames

per slot S, The transmittable data per frame δ(n), The

current buffer length buff i(n), Required video encoding

rate ratei(n), Lyapunov parameter ρ.

Output: Resource allocation ωi(n), i ∈ [1, N ]
1: Update Qi(n) by Eq. (11)

2: Initiate ωi(n) : ωi(n) ← 0, i ∈ [1, N ]
3: for M = 0 → V1(n) do
4: C[1][M ] = F (1,M)
5: Bd[1][M ] = M
6: end for
7: for i = 2 → N do
8: for M = 0 → S do
9: for m = 0 → min{Vi(n),M} do

10: C[i][M ] = min{C[i− 1][M −m] + F (i,m)}
11: end for
12: Bd[i][M ] = argminmC[i][M ]
13: end for
14: end for
15: ZN = argminMC[N ][M ], ωN (n) = Bd[N ][ZN ]
16: for i = N − 1 → 1 do
17: Zi = Zi+1 − ωi+1(n), ωi(n) = Bd[i][Zi]
18: end for
19: return ωi(n), i ∈ [1, N ]

As algorithm 1 illustrates, ORA first updates the queue Q
and initiates the allocated resource set to zeros (steps 1-2).

By solving the dynamic programming problem (steps 3-14),

we obtain all the possible resource allocation traces. Then we

select the best trace and use iteration method to obtain the

allocated resource set (steps 15-19).

In addition, according to Lyapunov optimization principles

[14], for any energy consumption weight ρ > 0, if we

increases ρ, more energy will be saved. However, performance

cost is increasing at the same time. So for any performance

cost constraint Ω, if we can find a certain ρ which ensures per-

formance cost close to but within Ω, then we can obtain more

energy saving while satisfying performance requirements.

Traditionally, we always choose a static ρ based on some

heuristic information but it is hard to work well in the

long run that we apply these traditional ways in a complex

mobile environment. As a result, we refer to the congestion

avoidance algorithm derived from TCP protocol and design

a dynamic scheme called D-ρ-A (dynamic ρ algorithm). We

increase ρ by σ gradually as long as performance cost does

not exceed the constraint so that we can obtain more energy

saving. Once the performance cost constraint is not met, we

cut ρ to a half to satisfy the performance requirements. We

calculate average performance cost R̄ every Γ seconds. The

work [11] has utilized this method in Lyapunov optimization

Algorithm 2 D-ρ-A

Input: Ω, n,Γ
Output: ρ

1: if n mod Γ equals 0 then
2: caculate R̄, R̄ = 1

N ·n
∑n−1

k=0

∑N
i=1 rebuff i(k)

3: if R̄ < Ω then
4: ρ = ρ+ σ
5: else
6: ρ = ρ/2
7: end if
8: else
9: ρ keeps the same.

10: end if
11: Call EERA to get ωi(n)

problem and proved its high convergence speed but it is not

targeting at video streaming service. Here we introduce this

method into QEOS to obtain more energy saving guarantee

QoE performance for video streaming service and the results

demonstrate the effectiveness of this method.

IV. SIMULATIONS

A. Parameters Setting

Our algorithms are implemented in Matlab simulation en-

vironment. The total simulation time T is set to 1000 seconds

and each slot τ lasts for one second. We consider a circular

area with a radius of 500m where a BS is located in the

center. The transmit power and bandwidth of the BS are set to

46dBm and 5MHz respectively. The corresponding path loss

is L(d) = 34+ 40log(d) where d is the distance between UE

and BS. The lognormal shadowing with a standard deviation

is set to 8dB. The noise power is assumed as -106dBm.

We assume UE is moving and the distance d follows a sine

function fluctuating within 500m. Since the initial position of

UEs may be different so we add different initial phases. The

performance cost constraint Ω is 0.1 and its statistic period

Γ is set to 50 seconds. The number of users is 50 and the

number of frames S is set to 100 for all the slots according to

LTE protocols. As for user requested video bitrate in each slot,

we introduce buffer-based bitrate adaptation mechanism and

UE would select bitrate adaptively according to the current

buffering length. The power consumption of UE is set to

1680mW and the average power consumption for short DRX

cycles (p1) and long DRX cycles (p2) are set to 1091.0mW

and 1075.5mW respectively. The corresponding timer periods

T1 and T2 are set to 3.82s and 7.64s.

B. Simulation Results

In this subsection we simulate our proposed QEOS scheme.

For comparison, we implement the state-of-art energy efficient

scheduling algorithm called EMA [12] which is also targeting

at video streaming service and has proved its advantage over

other non-prediction online scheduling algorithms such as

SALSA [9] and EStreamer [15]. Hence we only give the

comparison between QEOS and EMA in our simulation. In
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the following analysis we will present the comparison results

mainly from two aspects: energy consumption and rebuffering

delay.

As shown in Figure 1, QEOS can be more energy efficient

than EMA because QEOS takes both buffer state and channel

quality into account. It would wait for better channel condition

to transmit data as long as user buffer is not in the risk area

of interruptions. From Figure 2, we can prove that QEOS

outperforms EMA in rebuffering delay because QEOS would

not allocate too much resource to a user when the user buffer is

adequate. Instead, it would spare that part of resource to users

whose buffers are in the risk area so that we could achieve

better overall performance. Meanwhile, the dynamic weighted

value mehtod embedded in QEOS has played an important

role in obtaining more energy saving and guaranteeing QoE

performance. We have also calculated the average energy

consumption ( ̂PE(T )) and rebuffering delay ( ̂PR(N)) under

the same simulation conditions and find that QEOS could

reduce energy consumption and rebuffering delay by 1.2%
and 15.8% respectively.

V. CONCLUSION

In this paper, we propose an QoE aware and energy efficient

online scheduling (QEOS) scheme for video streaming service

which embeds two sub-algorithms including ORA and D-ρ-A.

Different from existing work, our focuses lie in how to keep

user buffer staying in a safe area in multiple users scenario, and

how to allocate wireless resource to save energy and enhance

performance. Simulation results show that our proposed algo-

rithm could save more energy while also reducing rebuffering

delay in cellular networks.

ACKNOWLEDGMENT

This work was funded by the NSFC under Grant 61271257,

61171107, and supported by the Fundamental Research Funds

for the Central Universities.

REFERENCES

[1] Cisco visual networking index: Global Mobile Data Traffic Forecast
Update, 2016-2021 White Paper, 2017.

[2] Vinay Joseph, and G. De Veciana. ”NOVA: QoE-driven Optimization of
DASH-based Video Delivery in Networks.” INFOCOM, 2014 Proceed-
ings IEEE IEEE, 2013:82-90.

[3] A. Pathak, Y. Hu, and M. Zhang, Where is the energy spent inside my
app?: fine grained energy accounting on smartphones with eprof, in Prof.
of ACM EuroSys, 2012.

[4] 3GPP, ”System impact of poor proprietary fast dormancy,” 3GPP discus-
sion and decision notes RP-090941, 2009.

[5] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck, ”Top:
Tail optimization protocol for cellular radio resource allocation,” in IEEE
International Conference on Network Protocols (ICNP) 2010.

[6] S.Herrerła-Alonso, M.Rodrłguez-Prez, M.Fernndez-Veiga and C.Lpez-
Garcła. ”Adaptive DRX scheme to improve energy efficiency in LTE
networks with bounded delay,” IEEE Journal on Selected Areas in
Communications, vol.33, no.12, pp.2963-2973, 2015.

[7] A.Schulman et al. Bartendr: a practical approach to energy-aware cellular
data scheduling. In MOBICOM, 2010.

[8] Matti SiekkinenMohammad Ashraful Hoque and Jukka K. Nurminen.
”Using viewing statistics to control energy and traffic overhead in mobile
video streaming, ”IEEE/ACM Transaction on Networking, vol.24, no.3,
pp.1489-1503, 2015.

[9] M.Ra et al. Energy-delay tradeoffs in smartphone applications. In MO-
BISYS, 2010.

[10] P.Shu et al. etime: energy-efficient transmission between cloud and
mobile devices. In INFOCOM, 2013.

[11] Y.Cui et al. Performance-aware energy optimization on mobile devices
in cellular network. In INFOCOM, 2014.

[12] Zeqi Lai et al. Joint Media Streaming Optimization of Energy and
Rebuffering Time in Cellular Networks. In ICPP, 2015.

[13] N.Balasubramanian et al. Energy consumption in mobile phones: a
measurement study and implications for network applications. In IMC,
2009.

[14] M. Neely, ”Stochastic network optimization with application to commu-
nication and queueing systems,” Morgan & Claypool Publishers, 2010.

[15] M.Hoque et al. Saving energy in mobile devices for on-demand multi-
media streaming-a cross-layer approach. ACM TOMCCAP, 2014.


