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ABSTRACT
This work addresses speech denoising problem in the pres-
ence of impulsive noise in transform domains. The impulsive
noise, in this work, is modeled by an unknown sparse vec-
tor so that it can be actively suppressed. The speech signal
is sparsely represented by the wavelet domain. To achieve
the simultaneous speech recovery and the noise suppression,
a joint estimation is devised based on the fact they have
sparse representations in different domains. To efficiently
solve the problem, the alternating direction method of mul-
tipliers (ADMM) is adopted to obtain the solution. Simu-
lation results demonstrate the superior performance of the
proposed approach.
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1 INTRODUCTION
The speech denoising is a fundamental problem in the appli-
cations of speech enhancement and speech recognition [2, 7,
10]. Its main objective is to recover the clean speech from
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received measurements that are corrupted by noise, or inter-
ferences, or both. In this study, noise as a negative factor
to the clean speech is considered. Speaking of noise, the
widely discussed one is Gaussian because of its simplicity
and power to model large of numbers of independent events.
Many approaches are developed over the years to handle
the speech denoising problem in the presence of Gaussian
noise. The spectral subtraction [2] is a popular choice due
to its computational efficiency, which performs subtraction
of a noise spectral estimate from a noisy speech spectrum.
Based on the assumptions that the speech and noise signals
are Gaussian distributed, Wiener filtering [10] performs fil-
tering of noisy speech signal by using a filter designed using
the minimum mean-square error criterion. In recent studies,
based on sparse coding sparse code shrinkage analyzes a sta-
tistical method that is shown to be very closely connected
to the wavelet shrinkage method. In [7], for Gaussian noise,
by soft thresholding of the sparse components, reduction of
Gaussian noise is achieved. The advantage of sparse coding
method is that the shrinkage nonlinearities can be adapted
to the data.

In practice, we often encounter an another type of noise
that in distribution has thicker tail than that of Gaussian
distribution. This type of noise is impulsive noise and is
usually modeled by α-stable distribution [8]. The difficulty
of dealing with this noise comes from the fact that its second
moment is infinite, and therefore the Gaussian distribution
assumption based approaches will fail. To handle impulsive
noise, the most popular option is to utilize �p-norm because
‖x‖p is finite when p < α [11]. However, the noise reduction
ability is not superior. Recent studies show that by utilizing
the sparse property of the impulsive noise in time domain,
the noise can be actively suppressed, and as a result, the
noise suppression ability is greatly enhanced [5, 9].

The main objective of this work is to perform the speech
recovery in the presence of impulsive noise by utilizing sparse
transform domains. To that end, the time domain is still uti-
lized to sparsely represent the noise. For speech signal, in
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this work, the wavelet domain is chosen because of its abil-
ity of modelling nonstationary signal and providing a sparse
representation. As a result, a joint estimation approach is
devised to simultaneously estimate the signal and suppress
the noise in transform domains. To efficiently solve the opti-
mization problem, the solver based on alternating direction
method of multipliers (ADMM) [3] is developed.

2 PROBLEM FORMULATION
In this study, the noise corrupted speech signal is considered,
given by

y = x+ n, (1)

where y, x, and n respectively represent the noisy speech,
clean speech, and impulsive noise. For more information
on the α-stable distribution or the impulsive noise, the in-
tersected readers are referred to [5, 8, 9]. In Figure 1, the
recorded clean speech, its wavelet coefficients, and impulsive
noise with α = 1 are presented. In the wavelet domain, the
speech does have a sparse representation since most coef-
ficients are small, whereas in the time domain, the sparse
property of the impulsive noise is also observed because of
few large spikes and many small amplitudes.

In this work, the matrix W is used to indicate the wavelet
decomposition and WT denotes the wavelet reconstruction.
With these notations, the received noisy speech in (1) be-
comes

y = WTα+ n

= WTα+ s+ e,
(2)

where α denotes the wavelet vector that is sparse, s is noise
sparse vector that represents the large spikes in n, and e is
the remodelling residue, and see [5, 9] for more information
on the noise reformulations. To simultaneously recover the
speech and suppress the noise, the following optimization
problem is devised, given by

‖y −WTα− s‖2 + λ‖α‖0 + τ‖s‖0, (3)

where ‖ · ‖0 is �0-norm that is known to enforce sparse solu-
tions [4]. To efficiently obtain the solution in (3), the convex
relaxation is usually applied because �0-norm is NP hard. To
perform convex relaxation, �1-norm is utilized to replace the
�0-norm. That is,

‖y −WTα− s‖2 + λ‖α‖1 + τ‖s‖1. (4)

By solving (4), one achieves the objective of simultaneous
speech recovery and noise suppression. In what follows, an
approach is developed based on ADMM method.

3 APPROACH BASED ON ADMM
It is seen from (4) that the optimization in terms of variables
of α and s is separable. To efficiently solve the optimiza-
tion problem in (4), a two-step iterative process is utilized.
First, suppose that α is known, the sub-problem becomes a
convex optimization problem with variables s. Second, the
sub-problem also is another convex optimization one with

variable α. In each step, the ADMM is utilized to efficiently
obtain the solution.

In the first step, the estimation in terms of s is rewritten
in its equivalent form as

minimize ‖y − s‖22 + τ‖s‖1 (5)

with variable s. For this problem, the ADMM steps for esti-
mating the s at lth iteration are given by

sl+1 = minimizes
(‖y − s‖22 + (ρ/2)‖s− zl + ul‖22

)

zl+1 = minimizez
(
τ‖z‖1 + (ρ/2)‖sl+1 − z+ ul‖22

)

ul+1 = ul + sl+1 − zl+1.

(6)

In the s-step of (6), setting the derivative of the cost function
with respect to s to zero produces

−2y + 2s+ ρ(s− zl + ul) = 0. (7)

Rearranging the terms in (7) obtains

(ρ+ 2)s = ρ(zl − ul) + 2y. (8)

By the use of (8), the estimate of s in a closed-form expres-
sion is

s = (ρ(zl − ul) + 2y)/(ρ+ 2). (9)

In the z-step of (6), based on subdifferential calculus, the
estimate of z is obtained by componentwise soft thresholding
as

zl+1 = Tλ/ρ

(
sl+1 + ul), (10)

where the soft thresholding operator T is defined by

Tλ/ρ(a) =

⎧⎨
⎩

a− λ/ρ, a > λ/ρ
0, |a| < λ/ρ

a+ λ/ρ, a < −λ/ρ.
(11)

It is known that soft thresholding is the proximity operator
of the �1 norm, see [3].

To estimate α, the optimization problem now is

minimize ‖y −Wα− n̂‖22 + λ‖α‖1 (12)

By symmetry, the ADMM steps of α at lth iteration are

αl+1 = minimizeα
(‖y −Wα− n̂‖22 + (ρ/2)‖α− gl + vl‖22

)

gl+1 = minimizeg
(
λ‖g‖1 + (ρ/2)‖αl+1 − g + vl‖22

)

vl+1 = vl +αl+1 − gl+1.

(13)

By the procedures developed in (7)-(11), the estimates for
α and g can be respectively calculated by

α = (ρI+ 2WHW)−1(ρ(gl − vl) + 2WH(y − n̂)). (14)

gl+1 = Tλ/ρ

(
αl+1 + vl). (15)

To summarize, the steps of solving optimization problem in
(4) are presented in Table 1.

For comparison purposes, the joint greedy algorithms in
[6] to solve (3) are also conducted. During the study, it
is found that StagewiseWeak orthogonal matching pursuit
(SWOMP) [1] requires no prior information of the sparse
degree of the signal, but using a threshold to select atoms.
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Figure 1: Illustration of transforms.

Table 1: Algorithm 1: ADMM based approach.

Objective function: ‖y −WTα− s‖2 + λ‖α‖1 + τ‖s‖1.
Outputs: Estimates of s and α

Initialization: l = 1
Repeat

l = l + 1
Step 1: Produce the estimate of s by (6)-(11)
Step 2: Produce the estimate of α by (13)-(15)
Step 3: Update the residual ỹ = ỹ − (WTα+ s)

Until l > T {maximum iteration} or norm(ỹ) < δ {predefined threshold}.

Therefore, it provides certain advantage over the OMP. The
SWOMP algorithm is conduced in the following step:
(1) Initialize the residue and let the index be a empty set of
∅.
(2) Calculate the inner product. If it is greater than the
threshold value, corresponding columns in Φ are selected.
(3) Estimate the signal using the new support by least squares
(LS) and update the residue.
(4) Iterate until certain stopping criterion is met.

By adopting the same concept in [6], the joint SWOMP
(JSWOMP) is provided in Table 2 to solve (3) to simulta-
neously perform speech recovery and noise suppression. For
JOMP and JCoSaMP algorithms, the interested readers are
referred to [6].

4 NUMERICAL STUDIES
In this section, numerical studies are presented to demon-
strate the performance of the proposed joint estimation method.
In the all simulations, the maximum iteration and the pre-
defined threshold are 500 and 10−8, respectively. The clean
speech signal shown in Figure 1a is utilized, and the α-stable
distribution with α = 1.5 and different values of γ is used to
generate the impulsive noise at different SNR levels, which is
defined by SNR = 10 log10(

Psig

2γ2/α ), where Psig indicates the
signal power. The recovered speech and noise are provided
in Figures 2, 3, 4 5, respectively, and it is seen that ADMM is

able to reconstruct the speech and noise accurately, demon-
strated in Figure 2b. For joint greedy algorithms such as
JCoSaMP, JSWOMP, and JOMP, the recovered speech ob-
tained by JCoSaMP and JSWOMP approaches are close
to the clean one, whereas JOMP produces a over sparse
solution. To quantitatively access the performance of the
proposed method, two performance measures of Segmental
signal-to-noise ratio (SegSNR) and perceptual evaluation of
speech quality (PESQ) are employed, and their results are
presented in Figures 6 and 7, respectively, by average of 50 in-
dependent runs. Inspecting Figures 6 and 7 reveals that the
ADMM based approach outperforms the joint greedy algo-
rithms, which agrees with the conclusion obtained from the
recovered speech. In the greedy algorithms, the JCoSaMP
performs the best and JOMP produces the worst indexes,
which is also consistent with results in [6].

5 CONCLUSION
In this work, a joint estimation approach of impulsive noise
suppression and speech recovery is developed. By utiliz-
ing the time domain, the sparse property of the impulsive
noise is revealed and clean speech is sparsely represented
by wavelet domain. The joint optimization is able to simul-
taneously recover the speech and suppress the noise in the
transfer domains. To efficiently solve the optimization prob-
lem, the original optimization problem is decomposed into
two sub-problems in which each sub-problem is solved by
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Table 2: JSWOMP algorithm.

Inputs: y, Φ, I, T {the number of iterations},
a {the threshold parameter, the default is 0.5}.

Outputs: Estimates of x and s

Initialization: t = 1, r = y, rα = 0 {the residue for α},
rs = 0 {the residue for s}, α0, and s0.

Repeat
t=t+1
Step 1: Estimate the signal α as (αt, rtα) ← SWOMP(y, r,W)
Step 2: Estimate the signal s as (st, rts) ← SWOMP(y, r, I)
Step 3: Update the global residue as r = y − rtα − rts

Until t > T {maximum iteration} or norm(r) < δ {predefined threshold}.
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Figure 6: SegSNR of different approaches in terms
of SNR.
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ADMM approach. The numerical simulations demonstrate
that the ADMM based approach outperforms the greedy al-
gorithms based approaches by generating much better recov-
ered speech and higher performance measure indexes.
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Figure 2: Signal and noise reconstructions by the ADMM method.
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Figure 3: Signal and noise reconstructions by the JCoSaMP method.
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Figure 4: Signal and noise reconstructions by the JSWOMP method.
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Figure 5: Signal and noise reconstructions by the JOMP method.


