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ABSTRACT

This paper presents two novel joint greedy algorithms for
signal reconstruction in the case of impulsive noise. The
performance of most existing greedy algorithms based on
the assumption of Gaussian noise significantly deteriorates
when the noise is impulsive noise that has heavy tails. To
address the impulsive noise, in this work, it is modeled as
a-stable distribution and formulated as a sparse signal in
the time domain. Therefore, the noise suppression problem
becomes an estimation one. With this reformulation, two
methods by simultaneously estimating the signal of interest
and noise are developed based on sparsity adaptive matching
pursuit (SAMP). The numerical studies demonstrate that
the proposed approaches provide excellent performance in
both the signal recovery and noise suppression.p
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1 INTRODUCTION

In the past decade, compressive sampling (CS) has been a
hot research topic because it provides a much lower sampling
rate than traditional sampling methods [8]. As an important
step of CS, sparse signal reconstruction is also widely used to
recover the signal of interest (SOI) from a lower-dimension
[1, 6].

The key idea behind sparse signal reconstruction is to
exploit the spare feature of a signal in a certain domain [4].
For example, images are sparse in wavelet domain, which is
also the core idea to many lossy compression techniques such
as JPEG [8]. Once the domain is determined, the process
of finding the sparse solution is nonlinear, where ¢p-norm
is usually utilized to promote the sparsity. However, the
fo-norm based formulation is a NP-hard problem, and to
efficiently obtain the sparse solution, there are usually two
types of solutions. The first type is to convert the sparse
solution finding problem into a convex optimization by utiliz-
ing £1-norm, which is known as basis pursuit. Alternatively,
by finding the support set from dictionary matrix, greedy
algorithm are developed such as orthogonal matching pursuit
(OMP), compressing sampling matching pursuit (CoSaMP),
subspace pursuit (SP) [2], to name a few, to directly solve £o-
norm based optimization. The consensus is that the greedy
algorithm are more time efficient than the basis pursuit.

Generally speaking, the noise contained in the received sig-
nal is usually assumed to be Gaussian distributed for the most
considerations. Therefore, the algorithm above-mentioned
cannot recover the SOI that is corrupted by impulsive noise
that is a more common noise source in practice. To suppress
the impulsive noise, a joint algorithm for signal recovery in
the case of impulsive noise was proposed in [7], where the
impulsive noise is modeled as a-stable distribution that is
sparse in the time domain. Based on the reformulation, the
SOI and impulsive noise are estimated simultaneously by
the proposed algorithm. Unfortunately, the problem is that
the sparsity of the signal must be known beforehand. In
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practice, that information is very hard to obtain and if the
wrong sparsity is assumed, the performance will be inevitably
degraded.

In this paper, the objective is to perform joint SOI recovery
and impulsive suppression without the prior knowledge of the
signal sparsity. To achieve that goal, the impulsive noise is
still formulated as a vector that is sparse in the time domain.
Similar to [7], the joint optimization problem is developed
to simultaneously obtain the SOI and to suppress the noise.
To efficiently solve the optimization and to satisfy the re-
quirement of the lack of the sparse degree, two algorithms
are developed based on sparsity adaptive matching pursuit
(SAMP).

The rest of the paper is organized as follows. In Section 2,
the problem overview is provided that includes the descritions
of the impulsive noise and dual reconstruction development.
In Section 3, two solvers based on the SAMP are developed to
perform simultaneously the SOI reconstruction and impulsive
noise suppression. Simulations are presented in Section 4 to
demonstrate the performance of the proposed approaches.
Finally, this paper concludes with a brief summary in Section
5.

2 PROBLEM OVERVIEW
2.1

Impulsive noise consists of sudden on\off noise pulses at
relatively short duration [9], and it is at low energy in the most
times and at relatively large energy at an sudden incident
lasting very short period of time, demonstrated in Figure 1.
In this paper, we consider the signal is only corrupted by
impulsive noise, which is model by a-stable distribution [5],
and its characteristic function is given by

o(t) = exp{jp — Y[t|*[L + jBsign(t) tan(F)]} a#1
exp{jp — y[t|*[L + jBsign(t)F log |t[]}

Impulsive Noise

a=1,

(1)
where «, 3, 7, p respectively are the characteristic exponent,
the symmetry parameter, the scale parameter, and the loca-
tion parameter. When g = 0.5, v = 1 and p = 0, Figure 2
depicts the probability density function (PDF) of a-stable
distribution in terms of different values of . It is seen when
a becomes smaller, the tail of the PDF becomes heavier
indicating it is highly possible that significantly large values
are present in the amplitudes. This observation suggests that
the impulsive noise indeed is sparse in time domain.

2.2 Dual signal reconstruction

Suppose impulsive noise is present, the received signal is

2)
where y is observed signal, s is the SOI, and e is the impulsive
noise. In this work, we also assume that the SOI has a sparse
representation in a transform domain ®, namely s = ®x
where x is the coefficient vector that is sparse in ®. With
the sparse property in e, the received signal in (2) becomes

3)

y=s+e,

y = &x + Ie,
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Figure 2: Probability density function for different
values of a

where I is an identity matrix of proper size. The signal
s and noise e are sparse separately in different domains,
which provides one a chance to estimate them simultaneously
utilizing the method of sparse representation. To obtain the
solution in (3), the following optimization is formaulted by

minimize ||x|lo + 7|elo .

subject to [y — ®x —Ie||2 <, @)
with variables x and e. In (4), the 7 and € respectively are
penalty and precision constants, and £p-norm is utilized to
promote sparse solution.

3 JOINT ALGORITHM DESCRIPTION

Since both the SOI and impulsive noise have sparse represen-
tations in separate domains, it is feasible to estimate them in
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different dictionary matrices based on the iteration of resid-
ual. The remainder of this section will introduce two novel
methods to estimate the signal whose sparsity is unknown.

3.1 Joint SAMP

The SAMP is developed for the reconstruction of the practical
signal whose sparsity is unknown. The SAMP algorithm sets
an iteration step to find the matched sparsity by comparing
the present residual and the last residual at each step. The
original SAMP algorithm [3] is provided as follows.

(1) Initialize the iteration step, sparsity variable L and
residual
Multiply the residual with the inverse of dictionary
matrix to obtain the candidate list of columns in
dictionary.
Perform the least square solution to find the final
list of column index (the L largest values in the
estimated solution).
Calculate the residual and compare the residual with
the last residual to decide if the sparsity needs to be
changed and if the residual needs to be updated.
(5) Check if the iteration criteria is satisfied.
As discussed early, the SAMP has the ability to adjust the
sparsity level at each step to finally obtain the correct solu-
tion. Therefore, based on SAMP, a joint SAMP (JSAMP)
algorithm is developed to recover the SOI and to suppress
the noise. The core idea behind the JSAMP is that the
estimates of SOI and noise are iteratively performed based
on the separation property of the variables of x and e. The
steps of JSAMP are summarized in Table 1.

(2)

®3)

(4)

3.2 Sparsity Adaptive Dual Matching
Pursuit (SADMP)

In the development of JSAMP, at each step the original
SAMP is completely implemented. By doing so, the compu-
tational complexity can be high. A more economical way to
realize joint estimation is to perform simultaneous updates
for the SOI and the noise at each iteration step. Inspired by
this thinking, an approach termed as sparsity adaptive dual
matching pursuit (SADMP) is developed in which the SOI
and noise are simultaneously updated. The implementation
details of the SADMP are provided in Table 2.

4 SIMULATIONS

In order to access the performance of the proposed algorithms,
simulations are conducted where the frequency estimation
problem in case of impulsive noise is studied. For comparison
purposes, the results from JCoSaMP [7] that requires the
sparsity levels are also provided . In the simulations, the
parameters of Ty = T5 = 10,7 = 5 and § = 10~° for JSAMP
are chosen, and also, § = 107 is selected for SADMP. In
Figure 3, impulsive noise is generated by a = 0.6, 8 = 1,
v =2, and § = 0. In figure 4, the value of 7 is varied
to produce different SNR levels. To generate the SOI, two
sinusoidals of length M = 128 with w; = 0.0487, wy =
0.1087, and their amplitudes being unit are synthesized. To
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reveal the sparsity of SOI, the frequency domain as a sparse
domain is utilized because the spectrum of sinusoidal signals
is concentrated along the true frequencies. The dictionary
required to represent the SOI is given by

sin(wo) sin((wo + dw)) sin(wn)
sin(2wo)  sin(2(wo + dw)) sin(2wn)
¢ = : : : '
sin(Mwo) sin(M (wo + dw)) sin(Mwn)

(5)
where dw is frequency forward step.
To perform accurate assessment on the proposed approach-
es, the recovery ratio that is defined below is utilized as a
performance measure.

> (we (i) — Te)(wo(i) — To)

VR el ) (woli) - 7o)
©)

where z.(4) and xo(4) respectively represent the reconstructed
signal and the clean signal, = performs the average operation.
For a ideal signal reconstruction method, the recovery ratio
k should be close to 1 since the recovered signal should be
close to the clean signal as much as possible.

The simulation results obtained from JSAMP and SADMP
are depicted in Figure 3 in which both JSAMP and SADMP
have excellent ability to estimate SOI. For the noise, on
the other hand, the JSAMP tends to overestimate the noise
producing more spikes. Surprisingly, the SADMP performs
more consistently than JSAMP in terms of noise suppression
ability. The recovery ratio for SOI and noise are provided
in Figure 4 versus different SNRs. Generally speaking, the
SADMP produces better recovery ratio than the JSAMP.
When SNR is low, the recovery ratio of the SADMP has
better rate to approach unit than the JSAMP in terms of
SOI recovery. When SNR is high meaning the noise is low,
the recovery ratio of both approaches drops, but the SADMP
still maintains a steady decline. For JCoSaMP approach,
when the assumed the sparsity level is correct, the recovery
ratio can be excellent, see the the green dash line in Figure 4a,
denoted by JCoSaMP (K1=2), whereas when the assumed
the sparsity level is wrong, the performance of JCoSaMP
deteriorates significantly, see the pink solid line, denoted by
JCoSaMP (K1=1). In Figure 4b, either K2 =2 or K2 =6
matches the true sparsity level for the noise, its performance
in noise recovery is inferior to the other approaches.

recovery ratio: K

’

5 CONCLUSION

In this work, two approaches of dual signal estimation based
on SAMP are proposed without the prior information on
the sparse levels of the signals. Utilizing different sparse
domains of the SOI and the impulsive noise, the proposed
algorithms recover the SOI and suppress the noise simultane-
ously. Simulations demonstrate the proposed algorithms are
able to reconstruct the SOI and also to produce satisfactory
performance in the noise suppression.
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Table 1: Joint SAMP Algorithm.

Objective function: minimize ||x||1 + 7||e|l1 subject to ||y — ®x — Ie|2 < €
Inputs: y, @, 1

Outputs: Estimates of x and e
Initialization: r = y,t = 1, r = 0 {residue for o}, re = 0 {residual for a}, xo and eg
Repeat

t=t+1

Step 1: Estimate the @ as (z', r%) + SAMP(y,r,®,T1)
Step 2: Estimate the e as (e, rL) < SAMP(y,r,I,T»)
Step 3: Update the global residue as r =y — r%, — 7
Until ¢ > T {maximum iteration} or norm(r) < § {predefined threshold}

Table 2: Sparsity Adaptive Dual Matching Pursuit (SADMP).

Objective function: minimize ||x||; + 7|le||: subject to |ly — Px — Qell2 < €
Inputs: y, &, 2 =1
Outputs: Estimates of x and e

Initialization: X = 0 & = 0 {estimation initialization}
r = y Residual initialization
L, =1, L. = 1{Sparsity Initialization}
F, = @, F. = @ {Finalist initialization}
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t=0 {Iteration index}

Repeat

t=t+1

Step 1: S = Maxz(] 'R |, Ly) {Preliminary Test}
Se = Max(| QR |, L)

Step 2: Cy = F,|JS» {Making candidate list}
Ce = Fe U Se

Step 3: Fi, = Max(| ¢, R |, L,) {Finalist test}
F. = Max(| ®¢_ R |, Le)

Step 4: ift = (@/’ﬁl Py ):11<I>me {Least square}
e= (9 Q) Qpy

Step 5: rnews =y — Pp, - &, rnewe. =y — Qp, - ¢ {Obtain new residual}

If rnew, >= ry or rmewe. >= e
if rnew, >=r, then L, = L, + 1;
if rnewe >=r. then L. = L. + 1;
t=t-1;{iteration index remains}

Else
F, = F, {Update Finalist}
F.=F.

Ty = rNeWg, T'e = IMEW,

R =y — rnew, — rnew, {Update Total residual}

Until ¢ > 7T {maximum iteration} or norm(R

) < ¢ {predefined threshold}
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