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Abstract

Climate change poses a critical risk to the sustainable development of many regions in Vietnam, especially in
the Mekong River. In this paper, we show the specific extreme value distributions of rainfall, flow, and crest of
salinity based on the hydrological data from 1975 to 2017 in An Giang and Ca Mau provinces in the Mekong
Delta. We also derive a theoretical model and validate its accuracy compared to the empirical data over the
years. The results demonstrate that the extremely high flows increase in both magnitude and frequency, while
the extremely low ones are projected to occur less often under the climate change. The results can further help
the local governments reduce the risk of lack water in dry season, control the salinization, and avoid the threat
of flooding in the downstream of the Mekong Delta.
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1. Introduction
The Mekong Delta is located at the end and in the
lowest region of the Mekong river, in the far south
of Vietnam. The delta consists of 13 provinces in a
triangle form of 3.9 million hectares beginning from
Tien Giang province in the east, to An Giang and Kien
Giang provinces in the northwest, and down to Ca Mau
province in the southernmost tip of Vietnam. The delta
is very flat and its average elevation is about 0.8m above
the mean sea level. The Mekong river gets through
a network of canals and runs into the East Sea and
the Gulf of Thailand (West Sea). In the wet season,
most of the water discharge (80-85%) run into the two
main branches, i.e., Bassac and Mekong. The remaining
portion (15-20%) spreads over the overland.
In this region, agriculture plays an important role and

employs most of the total workforce. However, about
50% portion of the delta area and more than 2 million

∗Corresponding author. Email: dkcuong@hcmuaf.edu.vn

people, especially in the Plain of Reeds and the Long
Xuyen quadrangle, are affected by seriously seasonal
flooding of 3m depth. In addition, in the dry season,
over 1.4 million hectares of the coastal regions in the
delta are under the effect of salt water intrusion. The
Mekong Delta has been facing many challenges due to
not only climate change but also hydropower causing
more droughts and saltwater intrusion [1].

Under climate change scenarios, the temperature in
the Mekong Delta region is projected to increasing
rapidly. Meanwhile, the increase in precipitation is not
significant in all the seasons of the year. Especially in
summer, the temperature is very high but a little bit
increase in precipitation [2–4]. Consequently, there is
a high risk of longer droughts in summer. Moreover,
the Mekong Delta is the region mostly affected by the
highest sea level rise in the 21st century in Vietnam.
Both the problems of climate change and sea level rise
are able to make more droughts and salinization in the
Mekong Delta [5, 6].
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Recently, many dams for hydropower plants have
been built in the upstream of the Mekong river as
planned by Laos, China, and Thailand [7]. Under the
effect of many hydropower plants, the flow water
quantity of the Mekong river coming to the Mekong
Delta is reduced significantly. The flooding season
cannot be utilized because of very short period
and the lack of water. Taking into account all the
aforementioned problems, the droughts and saltwater
intrusion sooner or later becomes serious disasters.
In this paper, we study the specific extreme value

distributions of rainfall, flow, and crest of salinity based
on the hydrological data from 1975 to 2017 in two
typical provinces: An Giang and Ca Mau. These two
coastal provinces have been mostly affected by the lack
of fresh water from the Mekong River and the sea-
water intrusion, in the Mekong Delta, Vietnam. The
results show that the magnitude and the frequency
of extremely high flows increase, while extremely low
ones are projected to be less frequency. Importantly,
a theoretical model is derived and compared to the
empirical data over the years to evaluate its accuracy.
These findings can help the local governments reduce
the risk of lack water in dry season, control the
salinization, and avoid the threat of flooding in the
downstream of the Mekong Delta in future.
The rest of this paper is organized as follows. In

Section II, we introduce the extreme value distributions.
Section III is dedicated to applying the extreme value
distributions to the hydrological model and analysis in
Ca Mau and An Giang provinces. Finally, we conclude
the paper in Section IV.

2. Extreme Value Distributions
Let X1, X2, ..., Xn be a sequence of independent
random. The maximum value of this sequence,
max {X1, X2, . . . , Xn}, has a cumulative distribution
function given by

Hn(x) = P (max{X1, X2, ..., Xn} ≤ x) (1)

= P {X1 ≤ x, X2 ≤ x, ..., Xn ≤ x}
= P {X1 ≤ x}P {X2 ≤ x}...P {Xn ≤ x}
= Fx1(x)Fx2(x)...Fxn(x).

If the random variable Xi (i = 1, 2, ..., n) is indepen-
dent and has the same distribution FX(x), the cumula-
tive distribution functions of maximum Hn and min-
imum Ln = min {X1, X2, . . . , Xn} drawn from a popula-
tion with cumulative distribution function FX(x) are
respectively expressed as

Hn(x) = P (max{X1, X2, ..., Xn} ≤ x) = (FX(x))
n (2)

and

Ln(x) = P (min{X1, X2, ..., Xn} ≤ x) = 1 − [1 − FX(x)]n.
(3)

To avoid degeneracy, we find a linear transformation
such that

lim
n→∞

Hn(an + bnx) = lim
n→∞

(FX(an + bnx))
n = H(x) (4)

and

lim
n→∞

Ln(cn + dnx) = lim
n→∞
{1 − [FX(an + bnx)]

n} = L(x).

(5)

2.1. Definition 1
A given distribution F(x) is said to belong to the maximal
(or minimal) domain of attraction of H(x) (or L(x)) if (4)
(or (5)) holds for at least one pair of sequences {an} and
{bn > 0}.

Feasible limit distribution for maxima [8, 9]. The only
nondegenerate family of distributions that satisfies (4)
is

Hβ(x, λ, δ) =exp
{
−
[
1 − β

(x − λ
δ

)] 1
β

}
, (6)

β , 0, 1 − β
(x − λ

δ

)
≥ 0,

where x ≤ λ + δ
β if β > 0 and x ≥ λ + δ

β if β < 0. In
addition, if β = 0, the family of distributions is obtained
by taking the limit of (6) as β → 0, we have

H0(x, λ, δ) = exp
[
− exp

(x − λ
δ

)
]
, x ∈ R. (7)

The distributions in (6) and (7) are called themaximal
generalized extreme value distributions (GEVDs).
This maximal GEVD family includes the well-known
Fréchet, Weibull, Gumbel families for maxima, which
are respectively given by

HGD (x) = exp
[
− exp

(x − λ
δ

)]
,−∞ < x < +∞, (8)

HWD (x) =

exp
[
−
(
x−λ
δ

)β]
, if x ≤ λ, β > 0,

1, otherwise.
(9)

and

HFD (x) =

exp
[
−
(

δ
x−λ

)β]
, if x ≥ λ, β > 0,

0, if x < λ.
(10)
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Feasible limit distribution for minima. The only nondegen-
erate family of distributions that satisfies (5) is

Lβ(x, λ, δ) =1 − exp
{
−
[
1 + β

(x − λ
δ

) 1
β
]}
, (11)

β , 0, 1 − β
(x − λ

δ

)
≥ 0,

where x ≥ λ + δ
β if β > 0 and x ≤ λ + δ

β if β < 0. In
addition, if β = 0, the family of distributions is obtained
by taking the limit of (11) as β → 0, we have

L0(x, λ, δ) = 1 − exp
[
− exp

(x − λ
δ

)
]
, x ∈ R. (12)

The distributions in (11) and (12) are called
the minimal generalized extreme value distributions
(GEVDs). This minimal GEVD family includes the well-
known Fréchet, Weibull, Gumbel families for maxima,
which are respectively given by

LGD (x) = 1 − exp
[
− exp

(x − λ
δ

)]
,−∞ < x < +∞, (13)

LWD (x) =

0, if x < λ,

1 − exp
[
−
(
x−λ
δ )β

]
, otherwise.

(14)

and

LFD (x) =

1 − exp
[
−
(

δ
x−λ )

β
]
, if x ≤ λ,

1, otherwise.
(15)

2.2. Theorem 1
Let {ξi ; i = 1, 2, ...} be a sequence of independent distributed
random variables belonging to the maximal domain of
attraction of Hβi (x, λi , δi) ≡ Hi and let {ηi ; i = 1, 2, ...} be
a sequence of independent distributed random variables
belonging to the minimal domain of attraction of
Lβi (x, λi , δi) ≡ Li , we have

n∑
i=1

(E(Hi) + E(Li)) = 2
n∑
i=1

λi (16)

and
n∑
i=1

(V ar(Hi) + V ar(Li)) =

π2

3
∑n

i=1 δ
2
i , if:Hi ∼MaxGD;Li ∼MinGD,

2
∑n

i=1 δ
2
i

[
Γ
(
1 + 2

βi

)
− Γ 2

(
1 + 1

βi

)]
,

if:Hi ∼MaxWD;Li ∼MinWD,

2
∑n

i=1 δ
2
i

[
Γ
(
1 − 2

βi

)
− Γ 2

(
1 − 1

βi

)]
,

if:Hi ∼MaxFD;Li ∼MinFD.

(17)

Proof. of (16)
Let Hi ∼MaxGD and Li ∼MinGD, we have

E(Hi) =
∫ +∞

−∞
exp

[
− exp

(x − λi

δi

)]
xdx = λi − δiΓ ′(1).

(18)

and

E(Li) =
∫ +∞

−∞

{
1 − exp

[
− exp

(x − λi

δi

)]}
xdx = λi + δiΓ

′(1).

(19)

Similarly, let Hi ∼MaxWD and Li ∼MinWD, we have

E(Hi) =
∫ λi

−∞
exp

[
−
(x − λi

δi

)βi ]
xdx = λi − δiΓ ′(1 + 1/βi).

(20)

and

E(Li) =
∫ λi

−∞

{
1 − exp

[
−
(x − λi

δi

)βi ]}
xdx (21)

= λi + δiΓ
′(1 + 1/βi).

And finally, let Hi ∼MaxFD and Li ∼MinFD, we have

E(Hi) =
∫ +∞

λi

exp
[
−
( δi
x − λi

)βi ]
xdx = λi + δiΓ

′(1 − 1/βi).

(22)

and

E(Li) =
∫ +∞

λi

{
1 − exp

[
−
( δi
x − λi

)βi ]}
xdx (23)

= λi − δiΓ ′(1 − 1/βi).

Based on the results from (18) to (23), we obtain
(16).

Proof. of (17)
Let Hi ∼MaxGD and Li ∼MinGD, we have

V ar(Hi) = V ar(Li) =
π2δ2i
6

. (24)

Similarly, let Hi ∼MaxWD and Li ∼MinWD, we have

V ar(Hi) = V ar(Li) = δ2i
[
Γ
(
1 +

2
βi

)
− Γ 2

(
1 +

1
βi

)]
. (25)

And finally, let Hi ∼MaxFD and Li ∼MinFD, we have

V ar(Hi) = V ar(Li) = δ2i
[
Γ
(
1 − 2

βi

)
− Γ 2

(
1 − 1

βi

)]
. (26)

Based on (24), (25), and (26), we obtain (17).
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3. Applications to Ca Mau and An Giang Provinces
In this section, we apply the extreme value distributions
to the two particular Ca Mau and An Giang provinces.
We first present the extreme value distributions in
hydrological model in terms of problems and solutions
of maximum distribution functions and then analyze
the hydrological results in these provinces in the sequel.

3.1. Extreme Value Distributions in Hydrological
Models: Problems and Solutions
There are three problems studied in this paper
including 1) finding the maximumGumbel distribution
function for maximum rainfall in Ca Mau based on
the data at the hydrological station, i.e., Ca Mau
hydrological station located at the left side of Ganh Hao
river, Ca Mau town, Ca Mau province, from 1976 to
2017); 2) finding the maximum Gumbel distribution
function for maximum water lever in Tien river based
on the data at the hydrological station in Tan Chau
district, An Giang province, from 1976 to 2017; and
3) finding the maximum Gumbel distribution function
for maximum of salinity peak in Ca Mau based on the
data at the hydrological station in Ca Mau province,
from 2000 to 2017. The experimental data was provided
by the Southern Regional Hydrometeorological Center.
The problem are solved specifically as below.
First, we derive the expectation and the variance of

Gumbel distribution given as follows:

EX = µ + 0, 577216σ (27)

and

V arX =
(πσ )2

6
. (28)

where 0, 577216 ≡ Euler constant.
By using moment method, we find the statistical

estimation expressed asX = µ + 0, 577216σ,

S2 = (πσ )2

6 .
(29)

And then we haveµ ≈ X − 0, 4501S,
σ ≈ 0, 7797S.

(30)

where X =
∑n

i=1 Xi
n and S2 =

∑n
i=1(Xi−X)2

n−1 .
Second, we use maximum likelihood method for

parameter estimation in distribution maximum to
illustrate the use of actual data through Newton
– Raphson algorithm. To building the likelihood

function, we have

L(µ, σ ) = f (x1, x2, ..., xn | µ, σ ) =
n∏
i=1

f (xi | µ, σ ) (31)

=
n∏
i=1

1
β
exp

{
−
xi − µ
σ

}
exp

(
− exp

{
−
xi − µ
σ

})

=
(
1
σ

)n
exp

{
−

n∑
i=1

[
xi − µ
σ

+ exp

{
−
xi − µ
σ

}]}

From eq. (31), we further define Λ as

Λ = ln

(
L(µ, σ )

)
(32)

= −nln(β) −
n∑
i=1

[
xi − µ
σ

+ exp

{
−
xi − µ
σ

}]

And its partial derivatives with respect to µ and σ are
respectively given by

∂∧
∂µ

= −
n∑
i=1

[
−1
σ

+
1
σ
exp

{
−
xi − µ
σ

}]
(33)

=
n
σ
− 1
σ

n∑
i=1

exp

{
−
xi − µ
σ

}
.

and

∂∧
∂σ

= −n
σ
−

n∑
i=1

[
−
xi − µ
σ2 +

xi − µ
σ2 exp

{
−
xi − µ
σ

}]
(34)

= −n
σ

+
n∑
i=1

+
xi − µ
σ2 −

n∑
i=1

xi − µ
σ2 exp{−

xi − µ
σ
}.

We select µ̂ and σ̂ such that they satisfy the following
system equations: ∂∧

∂σ = 0
∂∧
∂δ = 0

(35)

So far, we apply the Newton – Raphson algorithm
by computing the second-order partial derivatives
presented as

∂2∧
∂µ2

= − 1
σ

n∑
i=1

(
1
σ

)
exp

{
−
xi − µ
σ

}
(36)

= − 1
σ2

n∑
i=1

exp

{
−
xi − µ
σ

}
.
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∂2∧
∂µ∂σ

= − n

σ2 +
1
σ2

n∑
i=1

exp

{
−
xi − µ
σ

}
(37)

− 1
σ

n∑
i=1

xi − µ
σ2 exp

{
−
xi − µ
σ

}

= − n

σ2 +
1
σ2

n∑
i=1

exp

{
−
xi − µ
σ

}

− 1
σ3

n∑
i=1

(xi − µ)exp
{
−
xi − µ
σ

}
.

∂2∧
∂σ2 =

n

σ2 −
2
σ3

n∑
i=1

(xi − µ) (38)

+
2
σ3

n∑
i=1

(xi − µ)exp
{
−
xi − µ
σ

}

− 1
σ4

n∑
i=1

(xi − µ)2exp
{
−
xi − µ
σ

}
.

and finally, by setting

f =

∂∧∂µ∂∧
∂σ

 , K =

 ∂2∧
∂µ2

∂2∧
∂µ∂σ

∂2∧
∂µ∂σ

∂2∧
∂σ2

 ,
we yield[

α(j+1)

σ (j+1)

]
=

[
α(j)

σ (j)

]
− K−1

(
α(j), σ (j)

)
f

(
α(j), σ (j)

)
. (39)

The aforementioned computations are repeated until
the following inequalities hold[[

µ(j+1)

σ (j+1)

]
−
[
µ(j)

σ (j)

]]T [[
µ(j+1)

σ (j+1)

]
−
[
µ(j)

σ (j)

]]
< k (40)

and

∆j = (µ(j+1) − µ(j))2 + (σ (j+1) − σ (j))2 < k = 10−4. (41)

3.2. Hydrological Analysis
The problem of maximum rainfall in Ca Mau. Based on
the values of µ0 = 97, 225 and σ0 = 23, 688 calculated
by moment method in the maximum likelihood and
Newton – Raphson algorithm, we get the detailed step
by step results as shown in Table 1 below.

Table 1. Maximum rainfall in Ca Mau province

Step j µj σ j ∆j < k = 10−4

0 97,225 23,688
1 96,37 23,464 0,0375 > 10−4

2 96,378 23,481 4, 67.10−7 < 10−4

The extreme distribution function in this problem is

F1(x) ≈ exp

[
− exp

(
−(x − 96, 378)

23, 481

)]
. (42)

The problem of maximum water lever in Tien river, An Giang
province. Based on the values of µ0 = 97, 225 and σ0 =
23, 688 calculated by moment method in the maximum
likelihood and Newton – Raphson algorithm, we got the
detailed step by step results as shown in Table 2.

Table 2. Maximum water lever in Tien river, An Giang province

Step j µj σ j ∆j < k = 10−4

0 379,37 46,573
1 376,761 53,52 55,585 > 10−4

2 375,862 59,728 39,336 > 10−4

3 375,414 62,899 10,2533 > 10−4

4 375,317 63,497 0,365 > 10−4

5 375,313 63,514 0,000338 > 10−4

6 375,313 63,514 4, 93.10−7 < 10−4

The extreme distribution function in this problem is

F2(x) ≈ exp

{
− exp

{
−(x − 375, 313)

63, 514

}}
. (43)

The problem of maximum salinity peak in Ca Mau province.
Similarly, based on the values of µ0 = 30, 77 and σ0 =
2, 377 calculated by moment method in the maximum
likelihood and Newton – Raphson algorithm, we get the
detailed step by step results as shown in Table 3.

Table 3. Maximum salinity peak in Ca Mau province

Step j µj σ j ∆j < k = 10−4

0 30,77 2,337
1 30,6953 72,549 0,0458 > 10−4

2 30,6,778 2,6016 3, 07.10−3 > 10−4

3 30,6767 2,6049 1, 27.10−5 < 10−4

And the extreme distribution function in this
problem is

F2(x) ≈ exp

{
− exp

{
−(x − 30, 6767)

2, 605

}}
. (44)

4. Conclusion
In this paper, we have presented the hydrological
impact assessments in An Giang and Ca Mau provinces
in Mekong River basin focusing on hydrological
extremes. We found the maximum Gumbel distribution
function for maximum rainfall in Ca Mau based on
the data at the hydrological station Ganh Hao, from
1976 to 2017 and the maximum Gumbel distribution
function for maximum water lever in Tien river based
on the data at the hydrological station in Tan Chau
district, An Giang province, from 1976 to 2017. We also
derived the maximumGumbel distribution function for
maximum of salinity peak in Ca Mau based on the
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data at the hydrological station in Ca Mau province,
from 2000 to 2017. It is noted that the extremely high-
flow events increase in both magnitude and frequency.
In addition, the extremely low flows are projected to
occur less often. These findings are useful for the local
governments to efficiently reduce the risk of lack water
in dry season, control the salinization, and avoid the
threat of flooding in the downstream of the Mekong
Delta in future.
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