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Abstract. The gut-brain axis is an intricate bidirectional communication system between 

the gastrointestinal tract and the central nervous system that the gut microbiota can 

commonly influence. Recent studies have shown that the gut microbiome is crucial for 

colorectal cancer development and progression. The focus is on the close interaction 

between the gut microbiota and the development of colon cancer by explaining the 

microbial composition, metabolic byproducts and immune modulation. We also 

investigated how dysbiosis can promote carcinogenesis through inflammation, 

genotoxicity and immune evasion. In addition, we consider promising microbiota-

targeted therapeutic approaches, such as the use of probiotics and faecal microbiota 

transplantation, together with the development of biotherapeutics and their ability to 

improve conventional colon cancer treatments. By elucidating the gut-brain-microbiome 

interplay, this manuscript aims to provide a comprehensive understanding of its impact 

on colon cancer, opening new avenues for innovative and effective treatment modalities.  

Keywords: Gut-brain axis, colon cancer, probiotics, prebiotics, faecal microbiota 

transplantation, microbiome-based biomarkers. 

Abbreviations: NF-kB, nuclear factor kappa B; iNOS, nitric oxide synthase; JNK, Jun 

N-terminal kinase; MNNG, N-methyl-N-nitro-N-nitrosoguanidine; MNU, N-methyl-N-

nitrosourea; ILCs, Innate lymphoid cells; PTGS2, prostaglandin-endoperoxide synthase; 

Th 17, T helper 17. 

1 Introduction 

Colon cancer, or colorectal cancer (CRC), is a global health threat influenced by genetic, 

environmental, and lifestyle factors, ranking third in prevalence and fourth in cancer-related 

mortality worldwide [1].Colorectal cancer ranks third in women and fourth in men globally, 

with regional variations in prevalence; in 2023, the US reported 106,970 new cases, while 

worldwide, approximately 1.9 million new cases and 935,000 deaths occur annually, 

according to the WHO[2]. The gut microbiome, a community of bacteria, viruses, and 

eukaryotes, supports metabolism, immunity, and neurotransmitter production, notably 

serotonin, highlighting its role in the gut-brain axis[3].A healthy microbiome balances pro- 

and anti-inflammatory functions, preventing excessive inflammation while responding quickly 

to infections.[4]Age, diet, and environment influence the microbiome, but dysbiosis, linked to 
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various disorders, causes pronounced changes affecting the gut's transcriptome, proteome, and 

metabolome[5]. Oxygen may play a role in altering the microbiota composition in individuals 

with dysbiosis. This concept suggests that increased gut permeability, such as inflammation, 

leads to increased oxygen availability in the intestinal lumen [6]The gut-brain axis, a 

bidirectional communication system, influences colon cancer by modulating microbiota 

composition, inflammation, neurotransmitters, immune responses, and gut barrier integrity, 

highlighting its role in cancer risk and potential interventions[7]. 

2. The role of microbial metabolites and their effects on colon cancer 

cells 

Microbial metabolites, small molecules produced in the gut, influence colon health and 

behaviour, exerting protective or harmful effects based on their nature and context.Some key 

microbial metabolites and their effects are discussed below. 

 

2.1 Short-chain fatty acids (SCFAs) 

Short-chain fatty acids are produced by the gut microbiota from fermentable non-digestible 

carbohydrates [8]. Two main bacterial groups produce SCFAs: the Bacteroidetes phylum 

produces acetate and propionate, and Firmicutes produces butyrate. These bacteria are also 

capable of producing additional SCFAs[9]. SCFAs not only affect the colon but can also affect 

other organs through systemic circulation (Fig.1). Some research studies found that diseases 

such as diabetes, gastrointestinal distress, atherosclerosis and colorectal cancer can develop 

due to the influence of SCFAs [10]. Clinical case research has indicated that the concentration 

of SCFAs is lower than that in the control group, suggesting that there was a reduction in the 

number of bacterial colonies such as those of Bifidobacterium sp., Roseburia sp., 

Lachnospiraceae, and other bacteria [11, 12] SCFA receptors are G-Protein coupled receptors 

(GPCRs) and they are widely distributed throughout the human body. They can affect a 

variety of cellular pathways. GPR109A, also known as hydroxycarboxylic acid receptor 2 

(HCA2, encoded by niacr1), is a receptor found on the apical membranes on the cell surface of 

macrophages, colonocytes, and adipocytes[13–15]. The role of GPR109A is to release stored 

fats in situations such as hunger.[16]The only SCFA with anti-tumor action that binds to the 

receptor GPR109A is butyrate. It can form tight junction proteins and fortify gut integrity by 

activating the Akt/mTOR signalling pathway in CRC cell line (Caco-2)[17, 18]. Along with 

downregulating NF-kB activity, it can also enhance the synthesis of cytokines like TNF-α, IL-

1β, and IL-6 and decrease the expression of immune regulatory enzymes like COX-2 and 

iNOS[19]. GPCR43 and GPCR41 regulate appetite, gut function, electrolyte balance, and 

inflammation, with GPR41 found in enterocytes, renal epithelium, and neurons, while GPR43 

is in colonocytes and endocrine cells. Acetate and propionate bind to these receptors, reducing 

tumor formation and inflammation by phosphorylating JNK and p38, thereby lowering MCP-1 

synthesis in response to TNF-α.[20].  



 

 

 

 

 

Fig.1. The microbiota ferments the dietary fiber and produces SCFAs 

 

2.2. Conjugated linoleic acids (CLAs) 
Conjugated linoleic acids (CLAs) are considered to be beneficial to health and useful food 

ingredients. A collection of linoleic acid's geometric and positional isomers is known as 

CLAs. They help in energetic metabolism and function in maintaining body composition [21, 

22].Probiotics such as Lactobacillus acidophilus, Lactobacillus bulgaricus, Lactobacillus 

casei, and Lactobacillus plantarum,etc. use the byproduct of hydrogenation to create CLAs 

from linoleic acid[23].It has been demonstrated that CLAs have anti-carcinogenic activity, 

inhibiting cell proliferation in-vitro in human colon cancer cell lines such as HN-29 and Caco-

2. It can affect the signalling pathway APC-β-catenin-TCF4, which suppresses genes linked to 

colonocytemultiplication of cells[24]. In addition to this activity, in colon cancer cells (SW 

480), CLAs can cause caspase-dependent apoptosis by switching between caspase-3 and 

caspase-9, raising the level of Annexin V, and reducing the expression of Bcl-2 [25].  

 

2.3. Polyamines (PAs) 

Firmicutes in the gut produce microbial metabolites like cadaverine, putrescine, and 

spermidine, all of which are polyamines[26, 27].Host cells can also produce polyamines, 

Which the upper gut can absorb from food[28].Polyamines, as polycationic compounds, bind 

to cell's negatively charged components, such as phospholipids in membranes and nucleic 

acids [29].The production of siderophores, defence against free radicals and other acids, and 

stability of the cell wall are all facilitated by polyamines in bacteria[30].Founded on 

investigations utilizing cell cultures and animal models. Cancers of the breast, colon, lung, 

prostate, and skin have also been connected to altered levels of intracellular PAs and changes 

in their metabolism, in addition to clinical observations[31]. According to a study by Russell 

and Snyder, cells that are actively dividing, such as rat liver regeneration, chicken embryos, 

and different tumours, have higher levels of PA synthesis [32].The enzyme responsible for the 

rate-limiting process in PA biosynthesis is ornithine decarboxylase (ODC). Elevated ODC 

activity and, in turn, higher PA concentrations are associated with the development of 

colorectal cancer (CRC). Probiotic bacteria's ability to change the concentration of PAs in the 

intestinal lumen is one of their anticancer properties [33].After feeding the rats a probiotic 



 

 

 

 

cocktail that was enhanced with Bifidobacterium, Lactobacillus, and Streptococcus spp., the 

rats' PA levels dropped. Additionally, it has been noted that colonocytes exhibit decreased 

ornithine decarboxylase (ODC) activity[34]. 

 

2.4. Polyphenols 
It was found that an increase in the concentration of polyphenols in blood serum decreased the 

risk of breast cancer and colon cancer [35, 36]. Most of the polyphenols cannot be digested by 

host cells in the small intestine and enter into the large intestine where bacteria (Clostridium 

sp., Eubacterium sp., Bifidobacterium sp., Lactobacillus sp.) convert those polyphenols into a 

small number of aromatic compounds, which the body absorbs and circulates throughout the 

body [37, 38]. Polyphenol metabolites inhibit the cell cycle and induce apoptosis, which has 

anti-tumor activity [39, 40]Polyphenols suppress COX-2, modulate cytochrome P450, and 

induce apoptosis via the mitochondrial pathway. Their phenolic hydroxyl groups enable metal 

chelation, ROS reduction, and inhibition of NOX and ATPase. By activating the Nrf2/ARE 

pathway, compounds like resveratrol and curcumin enhance antioxidant defence, while 

flavonoids and gallic acid mitigate oxidative stress by promoting antioxidant enzymes and 

preventing lipid peroxidation[41]. 

 

2.5. Tryptophan (Trp) 

The necessary amino acid tryptophan (Trp) is a substrate for the bacterial production of 

vitamin B3, serotonin, and melatonin[42].Indole lactic acid, indole acetic acid, indole 

propionic acid, indole acrylic acid, tryptamine, indole acetaldehyde, indole, indolic acid, and 

indicant skatole are the main Trp derivatives [43]. When there is a change in the composition 

of gut microbiota it can affect the concentration of Trp in plasma [44].Gut bacteria like 

Lactobacillus sp., Ruminococcusgnavus, and Clostridium sporogenes are primarily 

responsible for the metabolism of tryptophan. Some pathogenic bacteria are also included such 

as Escherichia coli, Proteus vulgaris, Paracolobactrum coliforme, Achromobacter 

liquefaciens, and Bacteroides spp [45, 46].It has been demonstrated that Trp and the 

metabolites it produces in bacteria are essential for the development of many types of cancer. 

Additionally, certain research has indicated that Trp can enhance the malignant characteristics 

of cancer cells and inhibit the anti-tumor immune response [47].IDO, a key enzyme in 

tryptophan metabolism, is overexpressed in cancer and linked to poor prognosis; while Trp-

like molecules inhibit IDO as anti-cancer therapy, gut microbiota metabolism may reduce 

treatment efficacy and impact immune function[48]. 

 

2.6. Bile acids  

Cholesterol largely originates in the liver and is the source of primary bile acids, including 

chenodeoxycholic acid and cholic acid[49]. Bile acids do not directly cause colon cancer in 

rodents but enhance tumor formation by carcinogens. In humans, high-fat diets increase bile 

acid release, correlating with CRC risk. Lithocholic and deoxycholic acids induce DNA 

damage and apoptosis via ROS production. Chronic exposure to deoxycholate may select 

apoptosis-resistant cells, reducing colon crypt cell apoptosis and promoting cancer 

development.[50]. 

 

2.7. Lipopolysaccharides 

Lipopolysaccharides (LPS) can promote colon carcinogenesis by activating Toll-like receptor 

4 (TLR4) signaling pathways, as shown in a TLR4-mediated colon carcinogenesis model 

[51].Elevated TLR4 expression in chronic intestinal inflammation induces Cox-2 and PGE2 



 

 

 

 

production, promoting colonocyte proliferation, while TLR4 signaling in tumor-associated 

macrophages and LPS-induced activation contribute to tumor development, immune evasion, 

DNA damage, and altered apoptosis in colon cancer cells[52]. 

 

2.8. Aryl hydrocarbon receptor (Ahr) ligands  
The main sources of ligands for the aryl hydrocarbon receptor (AhR), which is present in host 

immunological and epithelial cells, are microbial metabolites of polyphenols and 

tryptophan[53–55]. It has been demonstrated that AhR affects gut barrier metabolic balance, 

mucosal immune response, and cell differentiation. Changes in AhR activity have been shown 

to induce both intestinal tumors and cell proliferation[56]. When Trp is supplemented during 

dextran sodium sulphate-induced colitis, AhR activity-induced acute inflammation is reduced, 

which in turn leads to less cytokines (IL-6, TNF-α, IL-1β) and chemokines (CCL2, CXCL1, 

CXCL2) being produced[57]. AhR promotes the growth of innate lymphoid cells (ILCs), 

which enhances gut integrity and the immune system[58]. ILCs have reduced IL-22 levels and 

a higher rate of apoptosis when AhR is absent. The onset of CRC corresponds with ILC's 

synthesis of IL-22. By lowering inflammation and inhibiting the immune system, AhR ligands 

can support cancer. Through Trp catabolism, cancer cells can create AhR ligands to ward off 

immune cells[59]. Urolithin A, a microbial metabolite of ellagic acid, exhibits anti-

inflammatory effects by reducing PTGS2 and IL-6 expression, though its role in cancer 

remains under investigation[60]. 

3. The Gut-Brain Axis and Colon Cancer 

There has long been acceptance of the theory that the brain is influenced by the 

gastrointestinal (GI) system and vice versa. Writers on medicine like Hippocrates, Galen, and 

Soranus recognized the importance of the stomach and its digestive processes in maintaining 

morality, physical and mental health, and general well-being[61]. According to Martin et al., 

and Mayer, the gut-brain axis is a complex communication and control system that connects 

the gut and brain. It is a bidirectional signalling network made up of neurons, hormones, 

immune cells, and microbial metabolites[62, 63]. Numerous pathways, including innervated 

and neuronal ones, as well as small molecule communication systems in the stomach and brain, 

could be used for communication between the gut and brain [64].The vagus nerve, key to the 

microbiota-gut-brain axis, links the CNS to gut immunity, where symbiotic bacteria regulate 

Th17 cell activity and gastrointestinal function[65, 66].Bacteria-derived neurotransmitters and 

metabolites stimulate the vagus nerve and cross the blood-brain barrier, influencing brain 

function and systemic responses.Examples of these metabolites are tryptophan derivatives, 

short-chain fatty acids, and secondary bile acids (Fig. 2). [62, 67–69].Depression and anxiety 

disrupt the ANS by increasing sympathetic tone, reducing parasympathetic activity, and 

activating the HPA axis to elevate CRF and cortisol levels[70]. Downstream effects include 

activation of local inflammatory systems and cytokines, as well as changes in gut flora and 

secretory activity. These changes may respond to signaling molecules like catecholamines or 

environmental changes [71].From various research studies, it was found that the progression 

of colorectal cancer can also occur due to stress, depression and anxiety, these factors change 

the microenvironment in the gut and due to the change of microenvironment tumor 

progression takes place [72, 73].   

 



 

 

 

 

 

Fig. 2. The gut-brain axis communication is bidirectional and mediated by several pathways. This 

communication is performed through hormonal (hypothalamic-pituitary-adrenal axis), immunological 

and metabolic pathways (SCFAs and neurotransmitters). Furthermore, the gut microbiota can directly 

influence the vagus nerve and enteric nervous system, which in turn affects the brain through the gut 

microbiota, or indirectly through the pathway being affected locally by neuroactive substances (such as 

noradrenaline, serotonin, dopamine, tryptophan, and short-chain fatty acids). 

4. Microbiome-Based Interventions for Colon Cancer 

Research studies have proven that probiotics have the potential anti-carcinogenic activity, 

among which colon and gastric cancer cells were commonly studied. A study by Lee et al., 

showed that the cytoplasmic fractions of Lactobacillus acidophilus, Lactobacillus casei and 

Bifidobacterium longum have anti-carcinogenic activity in some cancer cell lines [74]. Studies 

by Russo et al., and Orlando et al., have proved that cytoplasmic extracts of Lactobacillus 

rhamnosus strain GG (LGG) have anti-proliferative action in colon and gastric cancer 

cells,[75] while Bifidobacterium adolescentis SPM0212, a probiotic product, has inhibited the 

proliferation of three human colon cancer cell lines (HT-29, SW 480 and Caco-2) [76]. In 

addition to that, Cousin et al., reported that Propionibacterium freudenreichii present in 

fermented milk has enhanced the cytotoxic effect of camptothecin, used as a chemotherapeutic 

agent for gastric cancer [77]. 

 

4.1.  Mechanistic effect of probiotics for decreasing the chance of colorectal cancer 

4.1.1. Modulation of microbiota composition by probiotics 

A balanced intestinal microbiota (eubiosis) helps prevent colorectal cancer (CRC), while 

dysbiosis disrupts this balance, leading to chronic inflammation and carcinogen production, 

increasing CRC risk[78, 79]. Sobhani et al. found significant gut microbiota differences in 

CRC patients, with higher Bacteroides, Prevotella, Clostridium, and lower Lactobacillus, 

while probiotics can help restore microbial balance by increasing protective lactic acid 

bacteria[80].Bacteroides fragilis is a particular concern because it produces a toxin called 

fragilysin (BFT). This toxin activates pathways in the body that lead to increased cell growth 

and inflammation, promoting cancer progression, especially in the advanced stages of CRC 



 

 

 

 

[81]. Fusobacterium nucleatum, prevalent in CRC patients, promotes tumor progression and 

immune evasion, making it a potential CRC biomarker[82]. Escherichia coli, especially 

strains from groups B2 and D, produce harmful toxins that can interfere with cell processes 

and contribute to chronic inflammatory bowel diseases, increasing the risk of CRC [83]. Other 

bacteria, such as Streptococcus gallolyticus and Enterococcus faecalis, are also associated 

with CRC [84]. Probiotics aid cancer prevention by producing antimicrobial substances like 

lactic acid, hydrogen peroxide, and bacteriocins, inhibiting harmful bacteria and competing for 

space and nutrients in the gut[85]. 

 

4.1.2 Beneficiation of Probiotics for the Intestinal Epithelial Barrier 

Intestinal barrier dysfunction allows allergen penetration and pathogenic invasion, triggering 

localized inflammation and impairing epithelial defense, increasing susceptibility to colorectal 

cancer (CRC)[86].According to Hsieh et al., certain strains of Bifidobacterium enhance the 

integrity of the epithelium and shield it from TNF-α-induced disruption[87]. Lactobacillus 

probiotics strengthen tight junctions (occludin, claudin-3), reduce oxidative stress and 

inflammation, and help restore intestinal barrier function after colitis[88]. Beneficial bacteria 

preserve the integrity of tight junction proteins and increase mucus defensins from the goblet 

cells, which aid in the reconstruction of the epithelial barrier. This process prevents harmful 

substances and antigens from leaking and enhances this barrier's integrity [86, 89]. 

 

4.1.3. Probiotics metabolites against colorectal cancer and as an anti-oxidant 

The probiotic bacteria produce short-chain fatty acids, conjugated linoleic acids, and phenols 

when they ferment dietary fibre. These compounds have anti-cancer properties that can fight 

colorectal cancer [78]. Butyric acid, produced by bacteria like Clostridium and Roseburia, 

supports gut health by promoting cancer cell apoptosis, regulating colon cell balance, 

strengthening the intestinal barrier, reducing inflammation, and modulating key proteins 

involved in apoptosis and antioxidant activity[78, 90].Probiotic strains of Lactobacillus and 

Propionibacterium produce conjugated linoleic acid (CLA), which exhibits anti-inflammatory 

and anti-cancer effects by suppressing eicosanoids and modulating the PPAR-γ 

receptor[91].Some probiotics like Lactobacillus and Pedicoccus can even produce 

antioxidants that may inhibit tumours from forming [92]. 

 

4.1.4. Probiotics as an anti-inflammatory agent  

Probiotics support immune function by promoting immune cell growth, regulating responses, 

inducing antioxidants and anti-inflammatory compounds, and modulating cytokine expression 

to prevent immune-related diseases[93]. Probiotics interact with TLRs, modulate IL-8 and 

TNF production, inhibit NF-kB activation, and influence PPAR-γ and MAPK pathways, 

supporting immune regulation and anti-cancer responses. Lactobacillus strains modulate 

immune responses by influencing cytokine secretion, enhancing cellular immunity, producing 

SCFAs like butyrate and propionate, and stimulating T and B lymphocytes to support anti-

cancer activity and intestinal protection[94]. Probiotics and their metabolic byproducts, 

including fatty acids, CLA, and phenols, support normal cell development, reduce DNA 

damage, inhibit cancer cell growth, and induce apoptosis, aiding in colorectal cancer 

prevention and treatment. 



 

 

 

 

5. Fecal microbiota transplantation as a Therapeutic approach in 

Colon cancer treatment 

Fecal microbiota transplantation (FMT) restores gut microbiota, treating Clostridium difficile 

infections, IBD, hematological malignancies, and antibiotic-resistant bacterial colonization, 

including resistant strains like Klebsiella pneumoniae, ESBL+ Escherichia coli, and 

Pseudomonas aeruginosa, with 75% achieving complete bacterial decolonization and 80% 

showing partial reduction, even in neutropenic patients[95,96]. FMT is gaining interest as a 

potential colorectal cancer treatment by reducing inflammation, slowing cell proliferation, and 

counteracting cancer-related pathways, but further research is needed to confirm its efficacy. 

[97,98]. Figure 3 represents the process of fecal microbiota transplantation from a healthy 

donor to a patient through endoscopy or oral capsules. 

 

 

Fig. 3. Schematic diagram of fecal microbiota transplantation 

6. Conclusions and Future Perspectives 

Colon cancer risk is closely tied to the gut microbiome, with dysbiosis potentially promoting 

tumor growth. Factors like diet, lifestyle, and stress impact this microbiome, influencing 

cancer progression through microbial metabolites and the gut-brain axis. Innovations such as 

probiotics, prebiotics, and fecal microbiota transplantation (FMT) show promise for 

prevention and treatment, while microbial biomarkers may enable early detection. However, 

challenges like individual microbiome variability, ethical concerns, and limited understanding 

of mechanisms remain. Future research into microbial pathways, engineered probiotics, and 

integrated therapies could lead to personalized strategies, improving outcomes and addressing 

the multifaceted nature of colon cancer. 
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