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Abstract. New Schiff bases, 5a-5d have been synthesized by the condensation of L-2-

amino-3-(benzylthio)-N-(3,4-dimethoxyphenethyl)propanamide (4) with substituted 

aldehydes such as 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, Orthovanillin and 

3,5-ditertbutylsalicylaldehyde. The compounds were characterized by elemental and 

spectroscopic analysis. The antibacterial and antifungal activities of 5a-5d against 

pathogenic microbial strains revealed that they showed a considerable growth of 

inhibition. The insilico studies of 5a-5d within the active site of DNA Gyrase (PDB: 

3G75) showed a favorable binding energies (-5.78 to -6.64 kcal/mol). Similarly, 

molecular docking with N-Myristoyl transferase (PDB: 1IYL) exhibited binding energies 

between -10.72 and -11.85 kcal/mol. Notably, compounds participated in hydrogen 

bonding with the target. 
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1. Introduction 

During the last 3 to 4 decades a range of biologically active peptide compounds were 

identified and studied thoroughly. The search for drug-like target compounds in synthetic 

organic chemistry entails replacing the natural amino-acid groups in peptides. The design of 

peptidomimetic compounds, which are anticipated to have the same therapeutic effects as 

their natural peptide counterparts with the added benefit of metabolic stability, and drug 

design are two areas in which this research is highly fascinating [1-4].  

Many biological activities, which include antibacterial, antiviral, antifungal, anti-malarial, 

antioxidant, cytotoxic, pesticidal, enzyme inhibitory, and anticancer, inclusive of DNA 

damage, had been suggested to be displayed with the aid of Schiff bases and their metallic 

complexes when used therapeutically [5-16]. 
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The biological activities of Schiff bases generated from physiologically significant molecules, 

like isatin, 2-azetidinone, and cephalothin, are being studied [17]. Although, amino acid and 2-

(3,4-dimethoxyphenyl)ethanamine have been utilized very recently to create Schiff bases [18].  

Hence, we have reported herein the synthesis, cyclic voltammetry and molecular docking 

study of new aminoacid amide based Schiff bases compounds 5a-5d by using L-2-amino-3-

(benzylthio)-N-(3,4-dimethoxyphenethyl)propanamide (4) with respective salicylaldehyde 

derivatives. The compounds were characterized by elemental and spectroscopy studies. 

Further, the antimicrobial studies of 5a-5d are asessed [18]. 

2. Experimental  

2.1   Materials and methods 

Orthovanillin, substituted salicylaldehydes, boc-L-benzyl cysteine and N, N’-dicyclohexyl 

carbodiimide (DCC) were purchased from Merck (India) Pvt. Ltd. The reactions were 

monitored by Merck 60 F254 TLC aluminum sheets. Elemental composition was analyzed 

using a LECO–CHNSO–9320 analyzer, and UV-Visible spectral data were collected with an 

Agilent Cary-60 spectrophotometer (200-800 nm spectral range). The FT-IR spectra were 

obtained using Perkin Elmer Frontier MIR/FIR spectrometer (ATR method). The cyclic 

voltammetry studies were performed by using CHI608E model potentiostat with a standard 3 

electrode cell (glassy carbon working electrode, platinum wire counter electrode, and 

Ag/AgCl reference electrode) in CH3CN with 0.1M tBu4N(PF6) as supporting electrolyte. 1H- 

and 13C-NMR spectra were recorded by using Agilent VNMRS-400 and Bruker WM-400  

NMR spectrophotometers TMS as an internal standard. The antimicrobial activity was 

assessed using micro dilution technique. Using Biosolve IT and GOLD 5.1, Insilico studies 

were conducted on all the synthesized Schiff bases. 

 

2.2 Procedure for the preparation of Schiff bases (5a-5d). 

A methanol solution of L-2-amino-3-(benzylthio)-N-(3,4-dimethoxyphenethyl)propanamide 

(4) (1.0 mmol) added to respective salicylaldehydes (1.0 mmol), 5-chlorosalicylaldehyde/5-

bromosalicylaldehyde/orthovanillin/3,5-ditertbutylsalicylaldehyde, stirred for 2-3 hrs at RT. 

After completion of the reaction the solvent was removed using a rotary evaporator to yield a  

yellow compound of 5a-5d.  

 

5a: Yield: 88%; m.p. 78-80˚C; Elemental Anal. Calcd. (Found) for C27H29N2O4SCl: C, 63.21 

(63.25); H, 5.70 (5.72); N, 5.46 (5.50); UV-vis (λmax nm): 332, 436; FT-IR (ATR, ῡ cm-1): 

3385, 2920, 2840, 1657, 1633, 1541, 1511, 1262, 1237, 1141, 1027, 916, 810, 760, 700, 640, 

599; 1H NMR (399.82 MHz, CDCl3, δ ppm): 12.152 (s, 1H, O-H), 8.040 (s, 1H, >CH=N), 

7.295-7.335 (m, 2H, H21, H25), 7.237-7.278 (m, 3H, H22, H23, H24), 6.932-6.954 (d, 2H, 

H15, H14), 6.740-6.840 (m, 1H, H17), 6.641-6.652 (m, 3H, H6, H9, H10), 6.019 (s, 1H, 

NHCO), 3.842-3.857 (m, 1H, CH), 3.806 (s, 6H, OCH3), 3.637-3.713 (d, 2H, H19), 3.428-

3.551 (m, 2H, NCH2), 3.155-3.198 (dd, 1H, H18), 2.767-2.825 (m, 1H, H18), 2.721-2.755 (t, 

2H, H4); 13C {1H} NMR (100 MHz, CDCl3, δ ppm): 168.95 (C2), 166.82 (C11), 158.67 

(C13), 148.59 (C7), 147.30 (C8), 137.58 (C20), 132.72 (C5), 130.84 (C12), 130.26 (C15), 

128.47 (C17), 128.14 (C25, C21), 126.76 (C22, C24), 123.46 (C23), 120.15 (C6), 118.24 

(C14), 111.21 (C10), 110.84 (C9), 76.58 (C1), 55.344 (OCH3), 55.305 (OCH3), 40.22 (C3), 

36.68 (C4), 35.86 (C18), 34.54 (C19). 



 

 

 

 

 

5b: Yield: 90%; m.p. 80-82 ˚C; Elemental Anal. calcd. (found) for C27H29N2O4SBr: C, 58.17 

(58.20); H, 5.24 (5.20); N, 5.02 (5.09); UV-vis (λmax nm): 329, 433; FT-IR (ATR, ῡ cm-1): 

3343, 2956, 2876, 1647, 1620, 1512, 1437, 1362, 1232, 1156, 1031, 804, 764, 707, 642; 1H 

NMR (399.821 MHz, CDCl3, δ ppm): 12.175 (s,1H, OH), 8.037(s,1H, >CH=N), 7.450-7.478 

(d, 1H, H23), 7.376-7.382 (d, 1H, H15), 7.260-7.319 (m, 4H, H21, H22, H24, H25), 7.224-

7.240 (m,1H, H17), 6.890-6.912 (d, 1H, H14), 6.642-6.654 (m, 3H, H6, H9, H10), 5.998 (bs, 

1H, NHCO), 3.847-3.861 (m, 1H, CH), 3.811 (s, 3H, OCH3), 3.787 (s, 3H, OCH3), 3.673-

3.682 (d, 1H, H19), 3.447-3.537 (m, 2H, NCH2), 3.159-3.202 (dd, 1H, H18), 2.767-2.824 (dd, 

1H, H18), 2.723-2.757 (t, 2H, H4); 13C {1H} NMR (100, CDCl3, δ ppm): 168.94 (C2), 166.74 

(C11), 159.67 (C13), 148.70 (C7), 147.32 (C8), 137.58 (C20), 135.54 (C5), 133.85 (C12), 

130.23 (C15), 128.46 (C17), 128.14 (C25,C21), 126.77 (C22, C24), 120.14 (C23), 119.14 

(C6), 118.67 (C16), 111.20 (C14), 110.85 (C10), 110.29 (C9), 76.53 (C1), 55.36 (OCH3), 

55.31 (OCH3), 40.21 (C3), 36.69 (C4), 35.88 (C18), 34.53 (C19). 

 

5c: Yield: 85%; m.p. 79-82 ˚C; Elemental Anal. calcd. (found) for C28H32N2O5S: C, 66.12 

(66.15); H, 6.34 (6.30); N, 5.51 (5.55); UV-vis (λmax nm): 330.3, 440; FT-IR (ATR, ῡ cm-1): 

3367, 2994, 2931, 2836, 1667, 1622, 1512, 1460, 1247, 1139, 1025, 765, 698, 628; 1H NMR 

(399.821 MHz, CDCl3, δ ppm): 12.630 (s, 1H, OH), 8.170 (s, 1H, >CH=N), 7.267 (bs, 5H, 

H21, H22, H23 H24, H25), 6.994 (m, 1H, H16), 6.910 (bs, 2H, H15, H17), 6.665 (s, 3H, H6, 

H9, H10), 6.169 (bs, 1H, NHCO), 3.924 (s, 3H, OCH3), 3.801 (s, 3H, OCH3), 3.778 (s, 3H, 

OCH3), 3.709 (m, 1H, CH), 3.670 (bs, 2H, H19), 3.424-3.503 (m, 2H, NCH2), 3.154-3.187 (m, 

1H, H18), 2.775-2.832 (m, 2H, H18), 2.724 (t, 2H, H4); 13C {1H} NMR (100 MHz, CDCl3, δ 

ppm): 169.28 (C2), 168.08 (C11), 150.20 (C13), 148.598 (C14), 147.85 (C7), 147.22 (C8), 

137.61 (C20), 130.39 (C5), 128.48 (C12), 128.08 (C15), 126.65 (C25, C21), 123.244 (C22, 

C24), 120.19 (C23), 118.47 (C6), 117.82 (C16), 114.56 (C17), 111.22 (C10), 110.90 (C9), 

76.534 (C1), 55.67 (OCH3), 55.30 (OCH3), 55.30 (OCH3), 40.38 (C3), 36.71 (C4), 35.98 

(C18), 34.75 (C19). 

 

5d: Yield: 88%; m.p. 84-85 ˚C; Elemental Anal. calcd. (found) for C35H46N2O4S: C, 71.15 

(71.20); H, 7.85 (7.82); N, 4.74 (4.79); UV-vis (λmax nm): 331, 430; FT-IR (ATR, ῡ cm-1): 

3376, 2928, 2839, 1655, 1633, 1534, 1513, 1480, 1258, 1232, 1138, 1023, 831, 809, 763, 704, 

633, 598; 1H NMR (399.821 MHz, CDCl3, δ ppm): 12.668 (s,1H, OH), 8.192 (s, 1H, 

>CH=N), 7.466-7.471 (d, 1H, H23), 7.275-7.360 (m, 2H, H21, H25), 7.204-7.259 (m, 2H, 

H22, H24), 7.103-7.108 (d,1H, H15), 6.756- 6.804 (m,1H, H17), 6.659-6.708 (m, 3H, H6, H9, 

H10), 6.212-6.239 (t, 1H, CONH), 3.838-3.863 (m, 1H, CH), 3.752 (s, 3H, CH3), 3.723 (s, 3H, 

OCH3), 3.688 (s, 2H, H19), 3.407-3.607 (m, 2H, NCH2), 3.157-3.200 (dd, 1H, H18), 2.796-

2.879 (dd, 1H, H18), 2.733-2.767 (t, 2H, H4), 1.391-1.430 (s, 9H, tBu), 1.323 (s, 9H, tBu); 13C 

{1H} NMR (100 MHz, CDCl3, δ ppm): 169.59 (C2), 169.26 (C11), 157.21 (C13), 148.65 

(C7), 147.26 (C8), 140.50 (C20), 137.66 (C5), 137.11 (C12), 136.49 (C15), 131.39 (C17), 

128.52 (C25), 128.06 (C21), 127.83 (C22), 127.36 (C24), 126.62 (C23), 126.39 (C14), 120.36 

(C16), 116.99 (C6), 111.76 (C9), 110.80 (C10), 73.27 (C1), 55.44 (OCH3), 55.29 (OCH3), 

40.34 (C3), 36.66 (C4), 35.95 (C18), 34.69 (C19), 34.33 ( tBu), 33.72 (tBu), 30.96 (tBu), 28.95 

(tBu). 

 

2.3 Antimicrobial activity 

The antimicrobial activity of 5a-5d were screened by using agar well diffusion method [19] as 

per the reported procedure [23] against 4 bacteria (Gram -ve bacteria: K. aerogenes, E. coli, P. 



 

 

 

 

desmolyticum; Gram +ve bacteria: S. aureus) and 2 fungi (A. flavus and C. albicans) and the 

reulted values were tabulated.  

 

2.4 Molecular docking 

The docking calculation of 5a-5d was carried out using HP Intel® xenon® processor E3-

1200v2. Accelrys Discovery studio client 3.5 was used for docking preparation, Biosolve IT 

and GOLD 5.1 are docking software’s used for binding energy calculation. 

3. Results and discussion 

3.1 Synthesis 

The compound 4 was synthesized as per the related reported procedure [20]. The Schiff’s 

bases (5a-5d) were obtained by the condensation reaction of compound 4 with various 

salicylaldehyde derivatives such as 5-chloro salicylaldehyde, 5-bromo salicylaldehyde, and 

orthovanillin in 1:1 equimolar ratio as given in Scheme 1. The Schiff’s base (5a-5d) are 

obtained as yellow solid and are freely soluble in CHCl3, C2H5OH, CH3OH, CH2Cl2, DMSO 

and DMF. The compounds were purified by recrystallization by using 1:1 solvent mixture of 

CHCl3 and n-hexane. The structures of 5a-5d were represented in Chart 1.  

  

Scheme 1 Synthesis of 5a-5d 
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Chart 1. Structure of 5a-5d 

3.2 UV-Visible Spectra 

 

The UV–Visible spectral data of 5a-5d (2.5 × 10-5 M) have been recorded in DMSO solvent 

and are shown in Fig. 1. The intense absorption bands observed at around λmax, 330 nm due to 

the  n→π* and π→π*  transitions within the delocalized π-system. The less intense bands 

appeared at λmax, 430-435 nm, which were due to the charge transfer transitions within the 

delocalized π-system.  
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Fig. 1 UV-Visible spectra of the compounds 5a-5d 



 

 

 

 

3.3 FT-IR Spectroscopy 

In FT-IR spectra of 5a-5d (Fig. 2), the N-H and >C=N- stretching bands were 

observed in the range of ῡ, 3345-3385 cm-1 and 1620-1635 cm-1 respectively. The amide 

>C=O stretching bands are observed around ῡ, 1645-1670 cm-1 and the band around ῡ, 1230-

1260 cm-1 appeared due to the C-O stretching. [20,22,23]  
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Fig. 2 FT-IR spectra of 5a-5d 

3.4 NMR Spectroscopy 

In 1H-NMR spectra of 5a-5d (Fig. 3), the OH peak appeared at around δ, 12-12.5 

ppm and found deshielded due to Ar-O-H∙∙∙N=C< hydrogen bonding interaction. The ArCH2 

and CH2N protons found as triplets at around δ, 2.73-2.77 and 4.64-3.59 ppm respectively. 

The imine -N=CH- proton found as a singlet at around δ, 7.90-8.35 ppm whereas CO-NH- 

proton appeared as a triplet at δ, ~6 ppm respectively in 5a-5d. The peaks for other protons in 

5a-5d found at their characteristic δ ppm.  

In 13C-NMR spectra of 5a-5d (Fig. 4), the benzylic carbon (Ar-CH2) signal was 

found at δ, ~35 ppm while the N-CH2 carbon observed at δ, ~40 ppm. The -N=C and CO-N 

carbon peaks appeared at δ, ~170 ppm and the C-OH carbon found at δ, 150-159 in all 5a-5d. 

The H1 and 13C-NMR spectral data correlated with the respective structure of  5a-5d.  

 

 



 

 

 

 

 

 

 
Fig. 3 1H NMR Spectra of 5a-5d 



 

 

 

 

 

 

 

 

Fig. 4 13C{1H} NMR Spectra of 5a-5d 



 

 

 

 

3.5 Cyclic voltammetry (CV) 

The CV of 5a-5d were studied as per the reported procedure [21]. In 5a-5d (Fig. 5), the two 

oxidation peaks (Eox) were observed for compounds, 5a (+0.457V, +0.861V) and 5b 

(+0.457V, +0.861V) whereas 5c (+1.094V) and 5d (+1.311V) have been showed only one 

oxidation peak but there was no observable reduction peaks. The energy of HOMO and 

LUMO were determined based on oxidation potential and band gap respectively, and were 

calculated corresponding to the onset λmax as given in the Table 1. 
 

Table 1. UV-Visible and CV data of 5a-5d 

Compound 5a 5b 5c 5d 

λmax (nm) 332.438 332.434 333.435 331.435 

Eox (V) +0.457; +0.861 +0.525; +0.982 +1.094 +1.311 

Ered (V) -0.658 -0.619 -0.636 -0.674 

EHOMO (eV) -5.261 -5.382 -5.494 -5.711 

ELUMO (eV) -1.538 -1.662 -1.782 -1.971 

Eg (eV) 3.723 3.720 3.712 3.741 

EHOMO = - (Eox (Fc/Fc+) + 4.8) eV, Fc/Fc+= 0.4; ELUMO= EHOMO + Eg; Band gap, Eg = 1240/λmax. 
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Fig. 5 Cyclic Voltammetry of 5a-5d scan rate of 100-300 mV/s 



 

 

 

 

3.6 Antimicrobial activity and antifungal activity 

The inhibition values of 5a-5d shown appreciable antibacterial and antifungal activities [22] 

and corresponding results were tabulated in Table 2 and 3 and their graphical representations 

are given in Fig. 6. 

Table 2 Antibacterial activities of 5a-5d 

Compound 
Treatment 

(µg/µL) 

K.aerogenes 

(Mean ± SE) 

E. coli 

(Mean ± SE) 

S. aureus 

(Mean ± SE) 

P. desmolyticum 

(Mean ± SE) 

Cipro 5/50 14.67 ± 0.03 11.67 ± 0.05 15.00 ±0.03 13.67 ± 0.03 

5a 
500/50 

1000/100 

1.50 ± 0.03 

2.90 ± 0.23 

1.35 ± 0.01 

2.70± 0.17 

1.25 ± 0.00 

2.55 ± 0.07 

1.80± 0.01 

3.00 ± 0.17 

5b 
500/50 

1000/100 

1.60 ± 0.00 

2.90 ± 0.09 

1.50 ± 0.00 

2.80 ± 0.06 

1.75 ± 0.00 

3.10 ± 0.00 

2.10 ± 0.00 

3.40 ± 0.17 

5c 
500/50 

1000/100 

1.80 ± 0.02 

3.50 ± 0.07 

1.60 ± 0.06 

3.20 ± 0.02 

1.90 ± 0.07 

3.55 ± 0.07 

2.50 ± 0.00 

4.10 ± 0.03 

5d  
2.10 ± 0.02 

4.20 ± 0.01 

2.00 ± 0.02 

4.10 ± 0.01 

2.30 ± 0.00 

4.50 ± 0.01 

2.60 ± 0.02 

4.70 ± 0.00 
Values are the mean ± SE of zone of inhibition in mm, Cipro: Ciprofloxacin 

Table 3. Antifungal activities of 5a-5d 

Sample Treatment (µg/µL) A. flavus (Mean ± SE) C. albicans (Mean ± SE) 

Fluconazole 200/50 10.30 ± 0.03 11.60 ± 0.06 

5a 
250/25 

500/50 

1.80 ± 0.00 

2.40 ± 0.06 

1.90 ± 0.03 

2.80 ± 0.03 

5b 
250/25 

500/50 

1.65 ± 0.03 

2.40 ± 0.03 

1.85 ± 0.01 

2.60 ± 0.02 

5c 
250/25 

500/50 

1.95 ± 0.00 

2.90 ± 0.03 

2.00 ± 0.03 

3.00± 0.03 

5d 
250/25 

500/50 

2.10 ± 0.00 

3.20 ± 0.02 

2.80 ± 0.01 

3.50 ± 0.02 
Values are the mean ± SE of zone of inhibition in mm 

 
Fig. 6 Antibacterial and Antifungal activity of 5a-5d 



 

 

 

 

3.7 Insilico studies  

The 5a-5d structures were drawn using Chemdraw and optimization was achieved as per the 

reported method [24,25]. The refined molecules of ligands and protein docked using DS 3.5 

which is based on the FlexX docking approach. The interaction modes between the 5a-5d with 

protein were studied using Biosolve IT FlexX and the results are tabulated in Table 4 and 5. 

The binding mode analyses of the compounds are given in Fig. 7. 

 

Table 4 Docking results of 5a-5d against 3G75 target 

Comp. Pose Binding Energy (delta G) No. of interactions H bonding 

5a 2 -5.78 2 Asn-392, Tyr-225 

5b 8 -6.64 1 Tyr-225 

5c 3 -5.9 2 His-227, Asn-392 

5d 8 -6.05 0  
 

Table 5 Docking results of 5a-5d against 1IYL target 

Comp. Pose Binding Energy (delta G) No. of Interactions H bonding 

5a 10 -11.34 2 Asn-392, Tyr-225 

5b 4 -10.75 1 Tyr-225 

5c 10 -10.72 2 His-227, Asn-392 

5d 5 -11.85 0  

 

The docking of 5a-5d into the active site of target protein 3G75 and 1IYL revealed 

that the compounds showing binding energy of -5.78 to -6.64 and -10.72 to -11.85 kcal/mol. 

The compounds 5a, 5b and 5d are involved in the hydrogen bonding with target. The binding 

poses of the compounds with 3G75 and 1IYL are given in Fig. 7 and 8 respectively. 
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Fig. 7 Binding pose of 5a, 5b and 5d with DNA gyrase target 
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Fig. 8 Binding pose of 5a-5d with N-myristoyl synthase transferase 



 

 

 

 

4. Conclusion 

The S-benzyl-L-cysteine based Schiff base compounds, 5a-5d have been synthesized 

via condensation of L-2-amino-3-(benzylthio)-N-(3,4-dimethoxyphenethyl)propanamide (4) 

with salicylaldehyde derivatives and characterised by FT-IR, UV–Visible, Cyclic 

voltammetry, 1H- and 13C{1H}-NMR spectroscopy. Docking simulations of 5a-5d revealed the 

favorable binding interactions within the active site of the target protein, with binding energies 

in the variety of -5.78 to -6.64 kcal/mol. Moreover, docking into the fungal goal protein 

validated even more potent binding affinities, with energies spanning from -10.72 to -11.85 

kcal/mol. Hydrogen bonding analysis suggested that the compounds 5a–5c form interactions 

with the goal protein besides 5d.  
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