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Abstract. The reaction of the chiral telluro-amine, (R)-2 with 2-hydroxy-1-

naphthaldehyde has produced a new chiral telluro Schiff's base of (O,N,Te) type, (R)-1-

(((1-((4-methoxyphenyl)tellanyl)propan-2-yl)imino)methyl)naphthalen-2-ol (R)-3. The 

SOR, CHN and spectroscopic analysis were used to characterize the structure of (R)-3. 

The different intermolecular interactions were shown by the fingerprint plots and 

Hirshfeld surface analysis. To describe the optimal structure, FMO, and reactive 

characteristics, DFT studies were carried out. Additionally, the RDG-based isosurface 

analysis conducted to investigate the type and nature of interactions. 
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1 Introduction 

As chiral ligands in transition metal-mediated asymmetric organic transformations [12–14], 

and in biochemistry [6–11], schiff bases of the organochalcogen (organosulphur, 

organoselenium, and organotellurium) compounds [1–5] have attracted a lot of attention 

because of their potential uses. A variety of hybrid organosulfur/selenium/tellurium ligands, as 

well  nitrogen/oxygen ligand chemistry has been thoroughly researched over the past three 

decades [15–18]. Additionally, organotellurium compounds shown superior antioxidant 

activity in comparison to their comparable selenium and sulphur compounds [19,20]. In 

contrast to chiral organo-seleno- and -thioether Schiff bases compounds [21–25], the known 
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chiral tellurated Schiff bases compounds are extremely rare and have been studied sparsely in 

biology [6–11, 15-20] and asymmetric organic synthesis. By the reaction of tellurated 

aldehydes with various chiral amines, the corresponding chiral telluro Schiff baseligands were 

reported [26–28] but this method is limited due to non commercial availability of  the 

tellurated aldehydes and their synthesis is as not easy as like other.  

Chemical and biological research has benefited immensely from the development of 

computational tools in current years, which have made to facilitate in investigation of basic 

physical and chemical characteristics and comprehend the nature of noncovalent interactions. 

Theoretical and experimental studies further improve the structures and characteristics of 

substances [29]. There are some known chiral tellurium-ether ligands, and their computational 

behavior has been insufficiently explored. 

As a result, we have described the new chiral tellurium based Schiff base (R)-3, which was 

synthesized by utilizing chiral telluratedamine. (R)-3 was characterized by FT-IR 

spectroscopy, elemental analysis, polarimetry, 1H-NMR, and 13C{1H}-NMR. Furthermore, the 

QTAIM analysis and DFT computations were carried out. 

2 Experimental 

2.1 Materials and Methods 

Merck Ind. Ltd. provided the tellurium, anisole, (R)-2-Amino-1-propanol, 2-Hydroxy-1-

naphthaldehyde, and sodium borohydride (NaBH4), which were utilized exactly as supplied. 

Standard procedures were used to purify and dry the solvents as needed [30]. Merck 60 F254 

silica gel pre-coated aluminum TLC plates were used to monitor the reaction and the results 

were observed using UV light, KMnO4 solution, or ninhydrine stain. 

As described in the literature, the precursor compounds bis (4-methoxyphenyl) ditelluride 

(Ar2Te2) [31,32] and chiral telluro-amine, (R)-2 [28] were made. Melting points of the 

compounds measured , and the results were reported uncorrected. A cell with a path length of 

100 mm was used to measure the specific optical rotation (SOR) using a Rudolph Autopol-I 

automatic polarimeter. 1H-NMR and 13C{1H}-NMR spectras were recorded by using 

tetramethylsilane (TMS) as an internal standard (0 ppm) and the values are expressed in δppm. 

2.2 Synthesis of telluro Schiff base, (R)-3 

At room temperature, telluroamine, (R)-2 (1 mmol) dissolved in absolute ethanol, which is 

added to 2-hydroxy naphthaldehyde solution (1 mmol) dissolved in absolute ethanol with 

stirring, continued for 3 hrs. After employing a rotary evaporator pale yellow solid resulted of 

(R)-3. (Yield: 0.38 g, 85%); M.P.: 77-79 °C; [α]
26
𝐷

=−178°; Anal. Calcd. (found) for 

C17H18N2OS: C 42.91 (42.78), H 3.43 (3.34), N 2.38 (2.25); FTIR (ATR) ν, cm-1: 3436 (O-H), 

2919 (C-H), 1629 (C=N), 690 (ArC-Te), 606 (alkylC-Te); 1H-NMR (Solvent:DMSO-d6, 400 

MHz) δ ppm: 1.343-1.359 (doblet, J=6.4Hz, 3H, methyl), 2.691-2.742 (doublet of doublet, 

J=7.2Hz, 1H, -CH2-),  2.795-2.841 (doublet of doublet, J=7.6Hz, 1H, -CH2-), 3.811 (singlet, 

3H, OCH3), 3.846-3.893 (sextet, 1H, CH-N), 6.753-6.776 (doublet, J=9.2Hz, 2H, ArH, meta 

to Te), 7.130-7.263 (multiplet, 3H, ArH), 7.419-7.456 (doublet, 1H, ArH), 7.623-7.642 

(doublet, 1H, ArH), 7.712-7.736 (doublet, 1H, ArH),  8.062-8.083 (doublet, J=8.4Hz, 2H, 



 

 

 

 

ArH, ortho to Te), 9.080-9.103 (doublet, J=9.2Hz, 1H, -CH=N), 13.154 (singlet, 1H, OH); 
13C{1H}-NMR (Solvent:DMSO-d6, 100.64 MHz) δ: 21.895 (CH3), 27.343 (C-2), 31.605 

(OCH3), 58.428 (C-1), 119.137 (C-8), 122.795 (C-16), 125.179 (C-10), 125.947 (C-5), 

127.027 (C-14), 128.321 (C-15), 128.808 (C-13), 129.314 (C-12), 134.509 (C-11), 137.233 

(C-17), 139.782 (C-4), 157.442 (C-9), 159.282 (C-6), 175.916 (C-7). 

2.3 Quantum computational studies 

The LANL2DZ and B3LYP functional basis set are used in DFT to optimize the geometry of 

(R)-3. The absence of imaginary frequencies showed that the optimized structure 

corresponded to the true energy minima configuration. To investigate the electronic-

properties, global-reactivity parameters, and electrostatic-potential-surface, the FMO and MEP 

map were plotted respectively and examined at the same theoretical level. All calculations 

were done by using the Gaussian 16, and the Gaussview 5.0 tool was utilized to show the DFT 

findings [33]. Furthermore, the reduced density gradient (RDG) based isosurface was 

developed. The Bader's QTAIM analysis were conducted in order to understand the various 

types of interactions displayed by (R)-3. The Multiwfn software [34] was utilized to perform 

the QTAIM analysis, and Visual Molecular Dynamics (VMD) tool [35] was used to construct 

the isosurface plot. 

3 Results and discussion 

3.1 Synthesis 

 

Chiral telluro Schiff base, (R)-3 has been synthesised through the condensation reaction of 

telluro amine, (R)-2 with 2-hydroxynaphthaldehyde as mentioned in Scheme 1. Schiff base, 

(R)-3 was found insoluble in n-hexane, heptane, THF, benzene, toluene, and diethyl ether but 

freely soluble in CH3CN, DMF, CHCl3, CH2Cl2, CH3OH and DMSO.  



 

 

 

 

 

Scheme 1 Synthesis of (R)-3 

3.2 Spectroscopy 

The compound (R)-3 was characterized by, SOR, CHN analysis, IR, proton and carbon-13 

NMR spectroscopy. 

As per the FT-IR data of (R)-3, the O-H and >C=N- stretching vibrational frequencies were 

appeared at 3436 and 1629 cm-1. The ArC-Te and RC-Te stretching frequencies were appeared 

at 690 cm-1 and 606 cm-1. The appeared frequencies are found characteristic with the 

respective functional groups as reported in the literature. [36] 



 

 

 

 

 

Fig. 1 FT-IR spectrum of (R)-3 

In the proton Nuclear Magnetic Resonanace spectrum of (R)-3 (as shown in Fig. 2), At the 

low field region, the aromatic OH proton was appeared,at 14.3 δ ppm it was found as broad 

singlet and highly deshielded due to hydrogen bonding with imine nitrogen. The proton of the 

imine (CH=N) was acquired. at δ, 9.1 ppm. The asymmetric CH proton shown a broad quartet 

at δ, 3.85-3.89 ppm due to coupling with three protons of CH3 and CH3 protons formed a 

doublet at δ, 1.30-1.35 ppm due to coupling with one proton of CH. At δ, 2.69-2.74 and 2.79-

2.84 ppm, a series of doublets was produced by diasteroid CH2Te protons that are chemically 

non-equivalent. At their distinctive locations (δ ppm), the additional aromatic proton signals 

were visible [36,37]. 

 

Fig. 2 1H NMR spectrum of (R)-3 



 

 

 

 

In the carbon-13 Nuclear Magnetic Resonance spectrum of (R)-3 (as shown in Fig. 3) the 

CH2Te-C signal was obtained at 21.89 δ ppm. The CH -C gave peak at 58.43 δ ppm and imine 

carbon (C=N) was obtained at δ, 175.92 ppm and was found more deshielded. The Aromatic 

Carbon-OH peak was obtained at 159.28 δ ppm. The ArC-Te carbon signal was appeared at δ, 

106.31 ppm. At their distinctive locations (δ ppm), the other carbon signals were visible 

[36,37]. 

 

Fig. 3 13C{1H} NMR spectrum of (R)-3 

3.3 Quantum computational studies 

The Schiff base, (R)-3 optimized structure is shown in the Fig. 4 and the HOMO and LUMO 

was calculated [38]. The HOMO-LUMO gap of (R)-3 was obtained as 3.465 eV indicating the 

charge transfer occurring within the (R)-3 molecule. The electrophilic behaviour of (R)-3 was 

revealed by the higher electrophilicity index (3.665  eV) and lower chemical potential value (-

3.564 eV). The HOMO and LUMO energies provide the valuable insights into several key 

parameters including the electronegativity (χ), energy gap (∆Eg), electron affinity (EA), 

ionization energy (IE), chemical potential (µ), global softness (s), electrophilicity (ω) and 

global hardness (η) of (R)-3, as tabulated in Table 1. An essential measure of a compound's 

stability and reactivity is its energy gap; a higher gap indicates more molecular stability and 

aromaticity as well as less chemical reactivity. The frontier molecular orbital distribution of 

(R)-3 is as shown in Fig. 5. It is disclosed that the LUMO orbital is confined around the 2-

hydroxy naphthalene moiety, while the HOMO is dispersed over the tellurium atom. 



 

 

 

 

 

Fig. 4 Optimized structure of (R)-3 

 

Table 1: The global quantum chemical parameters of (R)-3 

Parameters Values 

ELUMO (eV) -1.831 

EHOMO (eV) -5.296 

ΔEg (eV) 3.465 

IE (eV) 5.296 

EA (eV) 1.831 

χ (eV) 3.564 

η (eV) 1.732 

s (eV)-1 0.577 

ω (eV) 3.665 

µ (eV) -3.564 

The optimal structure of (R)-3 was obtained using the QTAIM analysis, and the VMD 

program was used to create the RDG-based isosurface plot. The isosurface plot of (R)-3 is 

shown in the Fig. 6 which reveals the existence and nature of various interactions. The varied 

color codes in the plot reflect the type of interaction. The existence of interactions of the van 

der Waals kind is shown by the green regions that are seen between the neighbouring atoms. 

Interestingly, the presence of the ring coloured region was observed between the carbon and 

the tellurium atom connected to it. All the rings of aromatic benzene are found to be 

associated with the red colored region in the center indicating the presence of steric repulsion. 



 

 

 

 

 
 

Fig. 5. Frontier molecular orbital distribution of (R)-3 

 

Fig. 6 RDG based isosurface of (R)-3 

4 Conclusion 

A new chiral tellurium based Schiff base, (R)-3 was synthesized by the reaction of telluro-

amine, and (R)-2 and 2-hydroxy-1-naphthaldehyde. The synthesized Schiff’s base is 



 

 

 

 

characterized by SOR, elemental and spectroscopic analysis. The geometrical coordinates of 

(R)-3 was optimized using DFT and the orbital energy gap between HOMO-LUMO of (R)-3 is 

found to be 3.465 eV. Further, the electrophilic behaviour of (R)-3 was revealed by the higher 

electrophilicity index (3.665 eV) and lower chemical potential value (-3.564 eV). The HOMO 

orbital is found to be distributed over the telluriu atom, whereas the LUMO orbital is found to 

be localized over the 2-hydroxy napthalene moiety. The isosurface analysis revealed the 

nature and type of interactions exhibited by (R)-3. 
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