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Abstract. Blunt head trauma is the highest cause of death in criminal crime. Various 

attempts have been conducted to find alternative substitutes for the autopsy to determine 

the cause of death. NSE levels have been used as biomarkers in blunt head trauma in a 

living patient. The purpose of this study was to analyze NSE levels of CSF and serum in 

cause and time of death determination. This study was an experimental study with a post-

test only group design, with the treatment of death due to blunt head trauma compared to 

deaths from acute ketamine poisoning. The number of treatment groups was 8, with 

samples of each group were 6 adult Sprague Dawley Rattus novergicus. NSE levels were 

examined at 0 hours, 1 hour, 2 hours and 3 hours after death. Analysis of NSE levels of 

CSF and serum in determining the cause and time of death was undertaken with the 

General Linear Model Repeated Measure test. We found increases in NSE levels of CSF 

and serum in both groups of deaths due to blunt head trauma and acute ketamine poisoning, 

and there was a significant difference between the two groups with p = 0.005 of serum 

NSE levels. There was no significant difference in the time of death between NSE levels 

of CSF and serum. Overall, there are increases in NSE levels of CSF and serum in deaths 

due to blunt head trauma and acute ketamine poisoning. 
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1   Introduction 

Blunt head trauma is an important issue in forensic medicine as it is the most common cause 

of death due to criminal crime and is also known as the most numerous case of death in the 

world [1].  In 2002, the trauma caused 4.5 million deaths or 1 in 10 deaths worldwide. Various 

cases could induce a blunt head, yet the highest number is due to traffic accident [1],[2],[3]. 

In the case of investigation for criminal acts, determining the cause of death is very urgent 

for law enforcement officers. Determination of the cause of death should be conducted by 

performing an internal examination (autopsy), but the examination received much rejection 

from the public [7]. 

Autopsy rejection rates in Indonesia, especially in West Sumatra are very high. At M. 

Djamil Padang Hospital, almost 80% of families resisted autopsy, and the most common reason 

was they were unwilling the body manipulation. Autopsy refusal is not only happened in 

Indonesia, worldwide, but the number of autopsies also decreased by 40-50%. According to 

Burton et al. and Corona et al. and Cit Stawicki et al., in the United States, the number of 
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autopsies decreased by 41% of all bodies that should have been autopsied in 1960 to 5-23% 

[8],[9]. 

Conventional procedures to estimates of the time of death are often carried out by 

examining changes in the body of the victim, including bruising, corpse stiffness, temperature 

changes, decay, stomach contents of the body. According to Dimaio et al., all those parameters 

used are untrustworthy and inaccurate. Several studies related to the time of death estimation 

continue to be performed by more objective techniques such as biochemical, histology and 

serology examination of various body fluids and body tissues. The body fluids that are common 

to be studied are blood, vitreous, cerebrospinal fluid, pericardium fluid and synovial fluid 

[12],[17],[18],[19]. 

Head injuries will cause several abnormalities such as hypoxia/brain ischemia, brain edema, 

metabolic disorders, changes in vascular permeability, reduced blood flow, inflammation, 

extensive axonal injury and increased intracranial pressure [27],[28]. All the changes that occur 

will cause damage or even death from other cells and brain tissue, which cell damage will cause 

an increase in several enzymes. Increased enzymes in head trauma have been used as biomarkers 

in clinical settings.  

Neuron-specific enolase (NSE) is the main glycolytic enzymes found in the cytoplasm of 

neurons and also can be found in small amounts on platelets and red blood cells. Specific enolase 

neurons are a marker of neuronal death, and they increase after head trauma at all severity 

degrees. Elevation of serum NSE levels is correlated to the increase in intracranial pressure [29]-

[33]. 

In this study, NSE levels in cerebrospinal fluid and postmortem serum in mortality due to 

blunt head trauma and death due to acute ketamine poisoning were being correlated to the 

determination of cause and time of death. 

2 Method 

This research was an experimental study with a post-test only group design. The treatment 

to treatment group rats was conducting blunt trauma to the head and euthanasia by injecting 

lethal dose ketamine, then undergoing an enzyme examination after the rat died. Measurements 

of enzyme levels for both groups were carried out at 0 hours after death, 1 hour after death, 2 

hours after death and 3 hours after death. 

3 Result 

Cerebrospinal fluid NSE levels in deaths due to blunt head trauma and death from acute 

ketamine poisoning were described in Table 1. 

Table 1. CSF NSE levels in deaths from blunt head trauma and acute ketamine poisoning based on the 

time of death. 

Time of death Group n Mean ± SD (ng / ml) 

0 hours 
Acute ketamine poisoning 6 29.9 ± 8.4 

Blunt head trauma 6 37.6 ± 7.6 

1 hour Acute ketamine poisoning 6 18.1 ± 6.9 



 

 

 

 

Blunt head trauma 6 24.6 ± 11.0 

2 hours 
Acute ketamine poisoning 6 36.2 ± 14.5 

Blunt head trauma 6 51.5 ± 20.6 

3 hours 
Acute ketamine poisoning 6 37.3 ± 24.3 

Blunt head trauma 6 22.2 ± 7.0 

 

In Table 1, the mean of CSF NSE levels was higher in deaths due to blunt head trauma than 

deaths due to acute ketamine poisoning at 0 hours, 1 hour and 2 hours. Whereas at 3 hours after 

death, CSF NSE levels were higher in deaths due to acute ketamine poisoning than deaths due 

to blunt head trauma. 

To see a graph of changes in CSF NSE levels based on the time of death and method of 

death can be seen in Figure 1. 

 

Fig. 1. Changes in LCS NSE levels based on time and method of death. 

To see whether the data is normally distributed, a normality test was conducted following 

Shapiro Wilk, p> 0.05 in 6 data groups and p <0.05 in the death data group after an hour blunt 

head trauma and death after 3 hours acute ketamine poisoning. It is concluded that data is not 

normally distributed. Therefore, the General Linear Model (GLM) test requirements for 

repeated observations of the two groups are not fulfilled. 

To see the difference in CSF NSE levels between deaths due to acute ketamine poisoning 

and the   death due to blunt head trauma at 0 hours and 2 hours (normal data distribution), an 

unpaired t-test was performed. 

Table 2. Differences in LCS NSE Periods of group manner of death. 

Time of death Manner of death n Mean ± SD (ng/ml) P 

0 hours 
Acute ketamine poisoning 6 29.9 ± 8.4 

0.132 
Blunt head trauma 6 37.6 ± 7.6 

2 hours 
Acute ketamine poisoning 6 36.2 ± 14.5 

0.166 
Blunt head trauma 6 51.5 ± 20.6 



 

 

 

 

In Table 2, the unpaired t-test for 0 hours obtained p = 0.132 and 2 hours obtained p = 0.166. It 

was concluded that there was no significant difference in CSF NSE levels in deaths from acute 

ketamine poisoning and death due to blunt head trauma at 0 hours and 2 hours of the time of 

death. 

Serum NSE levels in deaths due to blunt head trauma and death due to acute ketamine 

poisoning can be observed in Table 3. 

Table 3. Serum NSE levels in deaths due to blunt head trauma and acute ketamine poisoning based on 

time of death. 

Time of death Kelompok n Mean ± SD (ng/ml) 

0 hours 
Acute ketamine poisoning 6 4.6 ± 0.6 

Head blunt trauma 6 4.7 ± 0.3 

1 hour 
Acute ketamine poisoning 6 5.3 ± 0.4 

Head blunt trauma 6 5.1 ± 0.7 

2 hours 
Acute ketamine poisoning 6 6.7 ± 0.2 

Head blunt trauma 6 5.7 ± 1.4 

3 hours 
Acute ketamine poisoning 6 5.5 ± 0.7 

Head blunt trauma 6 4.0 ± 0.2 

 

In Table 3, the mean of serum NSE levels of acute ketamine poisoning was higher in deaths 

from than deaths due to blunt head trauma, except at 0 hours of the time of death. 

In Figure 2, a graph shows changes in serum NSE levels based on time and method of death. 

 

 

Fig. 2. Changes in serum NSE levels based on time and manner of death 

Furthermore, a normality test was performed by Shapiro Wilk, obtained p-value > 0.05 in all 

groups of data, so it was concluded that data were normally distributed. 

To see differences in serum NSE levels based on time and manner of death, the General 

Linear Model (GLM) test was performed for repeated observations of the two groups. 



 

 

 

 

Table 4. Multivariate test results for changes in serum NSE levels based on time of death and method of 

death 

 F P 

Time of death (0,1,2,3 hours) 6.438 0.016 

Manners of death (acute ketamine poisoning, blunt head trauma) 4.061 0.037  

 

In the multivariate test results, there were significant differences in serum NSE levels based 

on the time of death with a value of p = 0.016. There were significant differences in serum NSE 

levels in deaths due to acute ketamine poisoning with death due to blunt head trauma (p = 0.037). 

The difference in serum NSE levels based on the time of death both in the death group due 

to blunt head trauma and death due to acute ketamine poisoning can be observed in the result of 

tests of within-subject contrasts in Table 5. 

Table 5. Changes in serum NSE levels based on time of death. 

Comparison of time of death F p 

1 hour vs 0 hours 3.079 0.110 

2 hours vs. 0 hours and 1 hour 17.422 0.002 

3 hours vs. 0 hours, 1 hour and 3 hours 8.208 0.017 

 

In Table 5, the test results in accordance with the measurement of time of death for deaths due 

to acute ketamine poisoning and death due to blunt head trauma showed no significant 

difference in serum NSE levels between 1 hour mortality and 0 hours (p> 0.05), and there were 

significant differences in serum NSE levels between 2 hours of death time and 0 hours and 1 

hour; and between the time of death 3 hours and 0 hours, 1 hour and with 2 hours (p <0.05). 

Table 6. Changes in serum NSE levels affected by manners of death 

Manner of death F p 

Acute ketamine poisoning  

Blunt head trauma 
13.179 0.005 

 

Table 6 is the result of the test of between-subject effects, showed p = 0.005 (p <0.05) which 

meant there were significant differences in serum NSE levels between deaths due to acute 

ketamine poisoning and death due to blunt head trauma, where serum NSE levels were higher 

in deaths due to acute ketamine poisoning. 

4 Discussion 

The rate of CSF NSE in the group of death due to blunt head trauma was higher than in the 

group of deaths due to acute ketamine poisoning, except in 3 hours after death. There was not 

any significant difference in CSF NSE levels in deaths from acute ketamine poisoning and death 

due to blunt head trauma. In both groups, CSF NSE levels increased from normal. 



 

 

 

 

Research by Hans et al. obtained LCS NSE levels in cisterna magna samples in normal 

living mice with <4.4 ng/ml. According to Palmio, CSF NSE levels in the normal human 

population are 17.34,6 ng/l. Casimiro et al. in his study of the normal population, found CSF 

NSE levels were twice as high as serum NSE levels. Ondruschka et al. concluded that the higher 

the NSE level, the smaller the time of death with trauma. According to Siman, NSE levels are 

used as a marker of acute brain damage. An increase in NSE levels corresponds to the severity 

of brain damage [31,35,41-47]. 

The average change in LCS NSE levels based on the time of death cannot be used to 

estimate the time of death. 

In this study, the mean postmortem serum NSE levels were higher in deaths due to acute 

ketamine poisoning than deaths due to blunt head trauma, except at 0 hours of death. There were 

significant differences in serum NSE levels in both groups. NSE levels of deaths due to acute 

ketamine poisoning and death due to blunt head trauma increased from normal. 

Chekhonim et al. found normal serum NSE levels in mice ranged from 1.7 ± 1.3 ng/ml. 

Research by Skogseid et al., Zahra et al. and Olivecrona et al. concluded, in patients who had a 

head injury an increase in serum NSE levels were related to the severity of brain injury. 

According to Skogseid et al., NSE is a marker of acute brain damage [34,48]. 

In the table of within-subject contrasts test, it was concluded that changes in serum NSE 

levels based on the time of death could not be used as a basis for estimating the time of death 

because changes in serum NSE levels were not significant at all levels of time of death with the 

time of previous death. 

Enolase is the main enzyme for energy metabolism found in all cell cytoplasm [49]. NSE 

involved in the glycolysis pathway in the change of 2-phosphoglycerate to phosphoenolpyruvate 

at the ninth stage of the glycolysis process. In head injury, there is an increase in intracell 

calcium levels which will cause intracellular catabolic processes [31,42,50-52]. 

According to Brunswick et al. and Zetterberg et al., increased activity of various membrane 

pumps to restore ion balance causes increased glucose consumption, reduction in energy 

storage, Ca2 + enter mitochondria, imbalance of oxidative metabolism and glycolysis with 

lactate production, so that in this process, NSE cannot function [36,53]. In the case of neuron 

damage, the excessive enzyme is not functional because the aerobic glycolysis process 

decreases. 

In this study, it was found that NSE levels were higher than normal levels with 6 times 

higher than serum levels of NSE. In a study of normal population, CSF NSE levels were twice 

higher than serum NSE levels [54]. CSF NSE levels increased 6 times higher than serum 

possibly due to blood contamination in CSF fluid when sampling, high levels of LCS NSE 

indicated that NSE was released in brain trauma. NSE is a marker of increased neuronal trauma 

after focal or diffuse ischemia [49]. In this research, NSE levels increases were mostly due to 

neuronal cell damage by direct trauma. Besides, the increases also influenced by the process of 

cell damage that began to occur in secondary injuries. In cell damage setting, NSE neurons are 

released out of the cytoplasm [50]. Neuronal damage and impaired blood-brain barrier integrity 

can be detected by NSE released into CSF and then into the blood. So it can be concluded that 

NSE levels can be used as biomarkers in deaths due to blunt head trauma [49,50]. 



 

 

 

 

5 Conclusion 

There was an increase in postmortem cerebrospinal fluid NSE level in deaths due to blunt 

head trauma and acute ketamine poisoning, but there was no significant difference in correlation 

to the time of death. There was an increase in serum postmortem NSE level in deaths due to 

blunt head trauma and acute ketamine poisoning, but there was no significant difference in 

correlation to the time of death. 
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