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Abstract

INTRODUCTION: Absence seizures are characterized by a typical generalized spike-and-wave electroen-
cephalographic (EEG) pattern around 3Hz. The automatic identification of this pattern and consequently its
corresponding seizure is a valuable information towards the reliable patient’s clinical image and treatment
planning. In this paper, we propose a method for absence seizures detection based on EEG signals decompo-
sition via the Matching Pursuit (MP) algorithm.
METHODS: Based on the ictal EEG semiology, MP features were extracted able to track the ictal pattern. This
analysis was performed in a clinical dataset of 8 pediatric patients (4 females, 4 males) suffering from active
absence epilepsy, containing 123 absence seizures in total. Automatic classification schema based on Machine
Learning techniques were employed to categorize the MP patterns into non-ictal and ictal states.
RESULTS: The seizure detection system achieved a time window based discrimination accuracy of 97.3% by
using a Support Vector Machine (SVM) classifier and 10-fold cross-validation, in that way accomplishing a
good state of the art performance.
DISCUSSION: Compared to other popular spectral analysis methods, Matching Pursuit appears to be a robust
and efficient method regarding absence seizures detection on EEG signals and our results indicate that the MP
features proposed in this work are features that can be used effectively in seizure detection procedure.
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1. Introduction
Epilepsy constitutes the fourth (4th) most common
neurological disorder for all ages [1] and the most
common chronic neurological disorder in childhood
in many countries [2]. According to the World Health
Organization, it is estimated that in 2019, epilepsy
affected around 50 million people worldwide [1]. In
2017, the prevalence and incidence of epilepsy are
estimated to be 6.38 and 0.61 per 1000 persons
respectively [3, 4].

After different seizure classification approaches
dating from 1970, ILAE introduced the ILAE 2017
classification scheme [5] which remains in use until
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now. According to this classification, seizures are
divided into seizures with focal onset (limited to one
hemisphere of the brain), seizures with generalized
onset (both hemispheres of the brain), seizures of
unknown onset (may be reclassified as focal or
generalized when new information is available) and
unclassified.

Childhood Absence Epilepsy (CAE) presents mainly
generalized non-motor seizures (absence seizures). In
CAE the seizures start between 3 and 8 years of age
(peak ∼6–7 years) [6]. During the ictal interval patients
present brief staring spells during which they are not
aware or responsive. The development of children with
childhood absence epilepsy usually evolves normally,
however they may have higher rates of attention
problems. They can also present another epileptic
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syndrome such as juvenile absence epilepsy where
absence seizures can be combined with generalized
tonic clonic seizures. The duration of each seizure is
about 10 sec (range 4–20 sec) and the ictal EEG is
characterized by the pattern of spike and slow-wave
discharge with frequency around 3Hz with a gradual
frequency decline during the seizure [6].

Epilepsy diagnosis can be performed mainly with
the EEG taking into account the patient’s clinical
image. Various techniques act complementary to EEG
to provide a more reliable clinical image such as
magnetoencephalography (MEG), electrocardiography
(ECG), magnetic resonance imaging (MRI), functional
MRI (fMRI), positron emission tomography (PET),
computed tomography (CT), SPECT and others [7].
However, electroencephalography (EEG) remains the
most widely adopted clinical technique for seizure
diagnosis, detection, and anticipation [8]. The clinical
usefulness of both scalp and intracranial EEG has
been proved a very useful clinical tool, thus it
has been established as the main clinical diagnostic
technique [9]. The advantages of EEG are, among
others, its high temporal resolution, non-invasiveness
and low cost, providing valuable neurophysiological
information making it ideal for clinical practice. Lately,
there is a growing need for home monitoring, thus
ECG gains ground because it is a convenient method
being able to be recorded through wearable devices.
However, EEG retains its superiority in relation to ECG
in terms of predictive evidence, localization ability, and
temporal resolution [10].

The accurate monitoring of patients suffering from
absence seizures demands the reliable detection of
all seizures from the recorded EEG and the analysis
in order the clinician to have an accurate clinical
picture of the patient to design the treatment plan.
The visual inspection of the recorded EEG, especially
during long-term monitoring, may be time-consuming
and tedious, limiting treatment’s effectiveness. Thus,
the automatic seizure detection as well as the automatic
analysis of seizure’s temporal/spectral characteristics
are of particular significance mainly for patients with
limited access to an organized EEG laboratory and for
non-specialized doctors.

In order to address these needs, the present study
explores the use of matching pursuit for seizure
detection. This framework enables the extraction of
spatially localized patterns of particular structural
patterns in the composition of the EEG. In this work,
we expand the applicability of matching pursuit to
the accurate detection and characterization of time-
frequency properties of seizures within a machine
learning environment. Related studies are reviewed in
Section 2, whereas the clinical protocol of the study is
presented in Section 3. The methodological framework
and the proposed analysis scheme are presented in

Section 4, with examples illustrated in Section 5.
The discussion in Section 6 discusses advantages and
limitations and concludes our study.

2. Related work
In the related literature, various seizure detection and
anticipation algorithms through EEG recordings have
been proposed using different approaches [8, 11–13].
EEG prediction methods are divided into three main
categories, time domain, frequency domain and non linear
methods [8, 14].

In the time domain analysis, features based on tem-
poral signal behaviour such as signal statistical mea-
sures/moments, Hjorth parameters, signal variability,
autoregressive (AR) coefficients, length density, etc. In
the frequency domain, the EEG spectrum features are
widely used in EEG based seizure recognition algo-
rithms. EEG spectrum is divided into spectral rhythms
δ,θ,α,β,γ1. The nonlinear analysis, which is consid-
ered a very promising approach mainly in the seizure
prediction, considers the EEG as a dynamical sys-
tem extracting features such as entropy measures [11],
fractal dimension, maximal Lyapunov exponent, etc.
Advanced signal processing techniques enable the sig-
nal decomposition on its time-frequency components
utilizing a basis functions approach [15]. Especially, in
complex and multicomponent signals, these methods
have the advantage of eliminating noisy time-frequency
cross terms.

A challenging issue is to use decomposition methods
in order to extract robust, representative features for
seizure discrimination. An efficient signal decomposi-
tion algorithm into time-frequency components (atoms)
called Matching Pursuit (MP) [16]. MP has been used
in EEG analysis [17–19] but there are only few studies
related to seizure detection [20–24]. Franaszczuk et
al. [20], used the MP algorithm in order to provide
the time-frequency decomposition of the EEG signals,
searching for a definite change in ictal time-frequency
pattern and revealing a predominant frequency of
5.3–8.4 Hz in the non-ictal interval. Regularity and MP
features were used along with features selection and
classification applied to the Bonn University dataset
[25] achieving 97.6% accuracy [21].

Apart from the time-frequency representation of
the signals, some researchers used atoms features
information such as Gabor Atom Density (GAD) or
Mean Atom Frequency (MAF) to determine the seizure
onset [22]. In our previous relevant work with MP-
based seizure detection, we extracted and evaluated MP
features (involving atoms features) in terms of their
ability to discriminate non-ictal and ictal intervals in a
subset of the study dataset [23].

The Multivariate Matching Pursuit (MMP) approach
can also be estimated in which time-frequency atoms
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from all multichannel data are extracted [26]. In [24],
Liu et al. use MMP and the trends of Gabor entropic
measures in order to predict an upcoming seizure.

In this study, we use the MP algorithm to extract rep-
resentative and robust features of EEG signal dynam-
ics in order to perform automatic seizure detection.
The extracted features are both features coming from
the relevant literature and features proposed in this
study based on characteristic information. These fea-
tures provide a parametric and reliable representation
of EEG dynamics. Then, machine learning techniques
are employed in order to categorize the MP-derived
patterns into non-ictal and ictal states.

3. Clinical Protocol and Data Acquisition
3.1. Inclusion criteria and ethics
Subjects that participated in this study were patients
diagnosed with absence epilepsy. In order to be eligible
for the study, it was determined that they should
have presented at least one seizure event in the
last month. The study’s protocol has been approved
by the appropriate scientific board of the University
Hospital of Heraklion. All caregivers/patients signed
and provided written informed consent after a detailed
explanation of the study objectives and the followed
clinical protocol.

3.2. Procedure
Patients that met the inclusion criteria as evaluated
by two expert neuropediatricians, were admitted
to the study. Their medical health record was
created including clinical data about demographics,
medical history, family history, medication, epilepsy
classification, etc. An EEG cap with 10/20 electrode
system was placed in the head of the patient, a camera
was placed opposite the patient’s bed and additional
sensors for recording the breath rate and SpO2
were utilized. Video and surface EEG were recorded
simultaneously for each patient during routine long-
term hospital monitoring. The EEG signals were
recorded at 19 scalp loci of the international 10-20
system, with all electrodes referenced to the earlobe. An
electrode placed in the middle of the distance between
Fp1 and Fp2 on the subject’s forehead served as ground.
EEG data were sampled at 256Hz.

3.3. Dataset
This study’s population consisted of 8 patients (4
females, 4 males) diagnosed with active absence
epilepsy. Their age was 5.9±2.8 years at the moment of
the recording. The EEG recordings were independently
evaluated for epileptic seizures and pathological find-
ings by two expert neuropediatricians. All the epileptic

seizures were identified, were marked (temporal onset,
ending) and were classified as absence like generalized
seizures according to the criteria of the International
League Against Epilepsy (ILAE) [27]. The study dataset
included 123 absence seizures in total from the 8
patients. The EEG signals were recorded at 19 scalp
loci of the international 10–20 system (channels Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,
P4, T6, O1, O2), with all electrodes referenced to the
earlobe. Patients demographic data as well as seizures
information and selected clinical data are summarized
in Table 1.

4. Methods
4.1. Matching pursuit algorithm
The matching pursuit algorithm [16] is an iterative
algorithm that provides a mathematical formulation of
the approximation of a signal using a set of functions
(atoms). The redundant set of time-frequency atoms is
called dictionary D. The dictionary can be comprised
of any arbitrary function, however, in this study we
construct the dictionary D from Gabor functions gγ (t).

gγ (t) = K(γ)e−π( t−uσ )2
sin(2πf (t − u))

where K(γ) is a normalization coefficient such that
‖gγ‖=1, and γ=[u, f , σ ] denotes dictionary’s function
parameters, u is the translation in time, f is the
frequency, σ is the Gaussian spread.

We use Gabor basis functions as it has been shown
that they have optimal distribution minimizing the
variability of the time-frequency product [28] and are
considered quite effective in approximating EEG signals
[29].

The algorithm looks for the Gabor function that best
matches to an inner pattern of the original signal x over
a redundant set of atoms selected from the dictionary.
This is done by successive approximations of x with
orthogonal projections on elements of the dictionary,
i.e. the inner product between the Gabor function
and the signal. This inner product is then subtracted
from the signal and the next iteration take place. Let
R0x = x. We suppose that we have computed the nth

order residue Rns for n ≥ 0. We choose an element
gγn ∈ D from the dictionary D which best matches the
signal Rnx (the residual left after subtracting the results
of previous iterations). The residue Rnx can be also
decomposed into: Rnx =

〈
Rnx, gγn

〉
gγn + Rn+1x

gγn = argmaxgγi∈D
∣∣∣∣〈Rnx, gγi〉∣∣∣∣ (1)

where argmaxgγi∈D means the gγi giving the largest

value of the product
〈
Rnx, gγi

〉
. The iterative procedure
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Table 1. Demographics, seizure types and description of the study population

Patient ID # seizures Age Gender Epileptic cerebral area Under
medication

PAT_01 4 5 Male absence seizures yes
PAT_02 7 9 Female absence seizures yes
PAT_03 19 10 Male absence seizures yes
PAT_04 28 7 Male absence seizures yes
PAT_05 19 2 Male absence seizures yes
PAT_06 8 5 Female absence seizures yes
PAT_07 15 2 Female absence seizures yes
PAT_08 23 7 Female absence seizures yes

Total seizures 123

of decomposition stops either when the energy of
the residual signal is below a preset cut-off level
ε or, alternatively, after a predetermined number of
iterations M. After M iterations, a matching pursuit
decomposes a signal x into:

x =
M−1∑
n=0

〈
Rnx, gγn

〉
gγn + Rmx (2)

where Rms is the residual vector after m iterations
and 〈x, g〉 =

∫∞
−∞ x(t)ḡ(t)dt denotes inner product of

functions s and g. This inner product an =
〈
Rnx, gγn

〉
represents also the magnitude of the selected atom.
Because the orthogonality of Rn+1x and to gγn is valid
in each step of the procedure, the form of energy
conservation law becomes:

‖x‖2 =
M∑
n=0

∣∣∣∣〈Rnx, gγn〉∣∣∣∣2 + ‖Rmx‖2 (3)

When the iterative procedure terminates, the
selection of Gabor atoms from the dictionary is
completed.

4.2. MP features extraction
The Matching Pursuit algorithm decomposes the signal
into a number of Gabor atoms in decreasing order that
best describe the signal in terms of its energy variation.
Each atom has specific energy which can be described
by its corresponding magnitude an and specific time-
frequency properties which can be described by its
corresponding frequency fn. In order to provide
specific features for the classification process, and also
investigate which atom’s measures can be more efficient
in discriminating between ictal and non-ictal periods,
the following features were extracted from the analysis.

For each sliding time window, 6 features were
calculated from the extracted MP atoms: the mean

amplitude (MA), weighted mean frequency (WMF),
mean-product frequency (MPF), Gabor Energy (GEn),
Gabor Entropy (GE), normalized Gabor Entropy (NGE).
An overview of the features and their corresponding
type is presented in Table 2.

The first feature was the mean amplitude (MA) value

MA =
1
M

M∑
i=1

ai

where M is the number of atoms selected. We also
introduced two new metrics, the weighted mean
frequency (WMF)

WMF =
∑M
i=1 aifi∑M
i=1 ai

and the mean-product frequency (MPF)

MPF =
1
M

M∑
i=1

aifi

which both describe weighted metrics of frequency on
the selected sliding time window.

In our point of view, the WMF and MPF are
considered to be better metrics in relation to the mean
frequency described in a relevant study [21], because
they take into account not only the values of the
atoms’ frequency but also the contribution of each
atom’s spectral content through its amplitude ai . The
selection of these specific features was founded on
the observation that the frequency and the EEG signal
envelope (amplitude) were increased during seizures.

Three more features suggested by Liu at al. in a
2018 study [24], were calculated for each time window:
Gabor Energy (GEn) as the total energy of the selected
atoms:

GEn =
M∑
i=1

Ei
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Table 2. Matching Pursuit extracted features in each time
window

Feature Type

mean amplitude (MA)
weighted mean frequency (WMF) MP statistics
mean-product frequency (MPF)

Gabor Energy (GEn)
Gabor Entropy (GE) Entropic statistics
normalized Gabor Entropy (NGE)

Gabor Entropy (GE):

GE = −
M∑
i=1

Pn log2 Pn

where Pn is the relative energy of a Gabor atom, and
normalized Gabor Entropy (NGE):

NGE =
GE

log2M + 1

4.3. Feature classification
The training and evaluation of the classification
schemes for recognition between the two investigated
states (non-ictal, ictal states) were performed using
machine learning (ML) techniques. ML techniques
have been used in the area of EEG signal analysis
in a wide range of relevant research areas such as
discrimination between emotional states, enhancement
of brain-computer interfaces, motor imagery, and
epileptic seizure detection [30–33].

In this study, in order to achieve good discrimination
between the two states under investigation (non-
ictal/ictal periods), the features extracted from the MP
analysis were used to train and then evaluate different
classification schemes, leading to the selection of the
best performing classifier for the specific data type.
The classification schemes used are summarized and
presented in Table 3. The Trivial classifier classifies
everything in the most frequent class and is used as
a reference point for the performance of the other
classifiers since it is considered to represent random
classification. In order to assess the performance of
each classification scheme the classification accuracy,
sensitivity and specificity metrics were used, which are
given by the equations

Accuracy =
T P + TN

T P + FP + FN + TN

Sensitivity =
T P

T P + FN
, Specificity =

TN
FP + TN

where TP is the true positive, TN the true negative, FP
is the false positive and FN the false negative cases.

As used in this study, sensitivity is the proportion of
cases actually belonging to non-ictal periods that were
correctly predicted as belonging to non-ictal periods,
while specificity is the proportion of cases predicted
as belonging to ictal periods, that actually belonged to
ictal periods.

The classification schemes (classifier and its parame-
ters) were cross-validated in order to evaluate their per-
formance and select the combination that could better
manage the specific data type. A standard 10-fold cross-
validation method was applied to each classification
scheme for testing the system’s performance.

5. Results

5.1. EEG preprocessing and MP dictionary
construction
The EEG recordings were sampled at a sampling
frequency of fs=256Hz. Artifacts related to the
subject’s activity (body movements, eye blinks, spikes,
head movements, chewing, general discharges) were
suppressed using wavelet Independent Component
Analysis (wICA) [34].

In order to track the temporal EEG dynamics in non-
ictal phase and the transition from non-ictal to ictal
phase, sliding window analysis was followed. Smaller
windows sizes enable a greater temporal dynamics
resolution, while bigger time windows provide a
more reliable estimation of the spectral EEG features,
mainly at the low frequency EEG rhythms (e.g. the
δ rhythm). Relevant seizure detection studies adopt
different window sizes for EEG segmentation typically
range from 1sec to 30sec (e.g. 1sec [35], 2sec [36], 3sec
[37], 23.6sec [38]). Windows of length ∆t=2sec with a
step of 0.5sec were selected for this study’s analysis.
The selection of these parameters based on the one
hand that some of the ictal periods were shorter than
2.5 seconds (a bigger window length would not involve
only ictal signal) and on the other hand it is long
enough window to track the biggest part of δ rhythm
(lower rhythm). It was checked that the increase of
time window does not affect the system performance
significantly.

As the dataset of seizure detection is highly non-
balanced, i.e. data samples from ictal periods are much
fewer than those from non-ictal periods, a balanced
dataset should be ensured for formulating a proper
model. Thus, all samples from ictal and their double
samples from non-ictal periods were selected for the
subsequent analysis.

The parameters used for the construction of MP
dictionary was Ndict=512 samples, σi ranging from 2 to
256 samples with a step of 2 samples, fi ranging from
1 to 30Hz with a step of 0.5Hz and u ranging from
−Ndict/2 to Ndict/2 − 1 with a step of 2 samples leading
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Figure 1. EEG signal of electrode Fp2 (upper graph) and its
corresponding MA temporal evolution. The vertical dashed lines
represent the onset and ending of the seizure.

to a dictionary of 15.360 different atoms. The algorithm
was extracting 50 decomposition atoms in each time
window.

5.2. MP features

The features MA, WMF, MPF, GEn, GE and NGE
were extracted for each sliding temporal window of
the ictal and non-ictal signal. A typical temporal
evolution of the EEG signal and its corresponding
MA timeseries are presented in Fig. 1. These features
were included in the feature matrix which subsequently
fed the classification schemes. In order to assess each
features’ importance and relevance for the investigated
discrimination problem, Fisher discrimination ratio
[39] was used and the features’ ranking is presented
in Fig. 2. One can notice that MA achieves the highest
ranking, thus it is the most relevant feature for the
discrimination problem.

Then, the features set was evaluated in terms of
its discrimination ability between non-ictal and ictal
state. A 10-fold cross-validation technique on sample
basis was used with the trivial classifier and Naïve
Bayes (NVB), K-Nearest Neighbors (KNN) with k=10,
Generalized Linear Model (GLM), Linear Discriminant
Analysis (LDA), Random Forest (RF) with 20 trees,
Artificial Neural Networks (ANN) with 5 neurons
in 1 hidden layer, Support Vector Machine (SVM)
classifiers. The referred classifiers parameters (k=10
Nearest Neighbors, 20 trees and 5 neurons in the hidden
layer) were selected as they provided the best results.
The classification accuracy results, along with their

Table 3. Classification accuracies (10-fold cross validation) for
the selected feature set used in this study

Classifiers Accuracy Sensitivity Specificity
(%) (%) (%)

Trivial Classifier 66.73 − −
KNN 97.07 97.96 95.91
GLM 93.24 91.23 93.29
NVB 90.91 92.55 87.88
LDA 90.91 91.93 85.63
RF 97.20 97.93 93.18
ANN 96.37 96.30 96.93
SVM 97.32 97.39 95.86

Note: NVB: NaïveBayes, KNN: K-Nearest Neighbors, GLM:
Generalized Linear Model, LDA: Linear Discriminant Anal-
ysis, RF: Random Forest, ANN: Artificial Neural Networks,
SVM: Support Vector Machine

corresponding sensitivity and specificity percentages,
are shown in Table 3.

By inspecting Table 3 one can notice that the
classifiers Support Vector Machine and Random
Forest outperform the other classification schemes
with a classification accuracy of 97.32% and 97.20%
respectively.

The distribution of the 2 top-ranked features (MA,
MPF) is presented in Fig. 3 as a classification plot
with the decision boundaries of SVM for the two
features along with samples of a testing fold (blue:
non-ictal, red: ictal). This figure presents the data
separability achieved using this study’s features and the
discrimination efficiency of the proposed methodology.

Figure 2. Features ranking according to the Fisher discrimination
ratio for the discrimination problem (non-ictal, ictal states).
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Figure 3. Distribution visualization of the 2 top-ranked features
MPF and MA of one classification fold distributions of non-ictal
(blue) and ictal period (red).

6. Discussion

In this paper, a method for the detection of absence
seizures from EEG using features of Matching Pursuit
decomposition is presented. MP decomposition in time-
frequency atoms was performed during sliding time
windows, which enables efficient parametric signal’s
time-frequency representation. Based on the absence
seizure ictal behaviour and its specific EEG pattern,
we estimated MP features which are able to efficiently
represent this pattern. Towards this direction, we
estimated 6 representative features of MP and entropic
statistics.

The MP algorithm is a time-frequency decomposition
method that extracts best matching Gabor atoms to
the inner signal patterns. The extracted Gabor atoms
follow the principle of maximal energy, thus their order
represents the importance of the atom as the signal’s
component. This is a fundamental issue for the proper
feature extraction. The usage of the mean metrics (such
as the mean of atom frequencies) as estimated in part
of the relevant literature is not always representative of
the resultant dominant frequency, as there is an ordered
atom contribution which should be incorporated to the
features. This weighted importance is introduced to
our feature extraction analysis formulating weighted
versions of the MP features which is in our view
more representative and closer to real time-frequency
characteristics of the signal. The usage of weighted
frequency metrics represents the resultant frequency
in a consistent way in the same way MP algorithm
operates, i.e. using the weighted coefficients of MP
to strengthen the presence of significant atoms in
opposition to less important ones.

Compared to other popular spectral analysis meth-
ods, MP appears to be a robust method regarding local-
ization ability, with adaptability in signal decomposi-
tion and flexibility in discovering components of sig-
nals with significant fluctuations in time and frequency
domain, such as the brain signals [40]. Besides, MP is a
very efficient method in eliminating false cross-terms
especially in the case of a multicomponent signal as
EEG.

The MP features used in this study relate to
the strength and frequency of Gabor atoms that
compose the EEG signal and provide good separability
between non-ictal and ictal states. Machine learning
techniques used for the classification process led to
a best achieved time-window classification of 97.32%
by SVM classifier, using 10-fold cross-validation. As
we use our own clinical dataset, a direct comparison
with other studies which use different datasets is not
feasible. However, compared with recent literature, our
proposal achieves good state-of-the-art performance.
These results indicate that the MP features proposed
in this work are features that can be used effectively in
seizure detection procedure.
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