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Abstract 

In different applications like recommender frameworks and market examination, regular patterns play a significant role in 

useful mining data. Mining regular patterns from sliding windows over streaming information has become a complex task. 

In this examination, the sliding window is utilized to build the framework and FP tree applied to mine the dataset's 

valuable data. The sliding window has the arrangement of patterns put away in the Matrix, which contains the transaction 

in the sliding information and then applied to the FP tree. In this paper, the Frequent Pattern Retrieval strategy is planned 

by utilizing an FP tree approach and a sliding window model to extract noteworthy examples from data streams. The 

proposed technique accomplished less runtime with low memory use for the Breast disease dataset and different datasets to 

run the least utility edge contrasted with different existing procedures. 
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1. Introduction

In data mining, Hidden data retrieved from databases used 

by research, predominantly frequent itemset mining has 

been necessary in different fields like traffic, medical, 

networks, and association rules in mobile computing [1]. 

The data streams are often subjected to frequent 

probability distribution changes, which is defined as one 

of the main characteristics [2]. Therefore, the process of 

identifying the patterns in those data streams leads to a 

high-challenging task due to the presence of a vast 

amount of data that are scanned often with high memory 

consumption [3]. Frequent Pattern Mining (FPM) 

provides useful information, and studies have been carried 

out, such as mining high utility patterns [4], [5], [6]. 

Window techniques such as sliding windows, landmark 

window, and damped windows are proposed in FPM to 

capture essential information in the data streams  [7], [8]. 

Various existing techniques process the chunk data items, 

and several strategies are used to balance the class 

distribution of the latest chunk [9]. Besides, multiple 

scans of the entire database are available in these 

approaches with static databases, where incoming data are 

processed and provided the real-time response by existing 

algorithms in data streams [10]. Mining low frequent high 

utility patterns are more important in analyzing the “top-

end” brand. In business areas, the “top-end” brand price is 

more and has a lower number of sales [11], [12], [13]. 

Trees are flexible to allow willful vertical and horizontal 

expansion [14], spur the structure of data into the 

hierarchy. 

 Giving probability to each detected point to show 

circumstances helps us make the perfect decision instead 

of ignoring uncertainty [15]. Data uncertainty is caused by 

numerous factors such as data staleness, sampling errors, 

network latency, and measurement precision limitations 

[16], [17]. Furthermore, frequent data mining is the initial 

stage for Associative rule mining automatic 

summarization and concept drift [18]. The deficiencies of 

long consumption time, large redundancy probability, and 
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large Root-Mean-Square Error of Approximation 

(RMSEA) are highly available in the results of data 

mining applications [19]. Many techniques, such as Multi-

Core Algorithm for Frequent Itemsets [20], [21], Outlier 

detection algorithms for monitoring distance over data 

streams [22], were developed. However, frequent mining 

for uncertain data based on the extended support threshold 

needs more improvement. These methods are using some 

filtering constraints to find Frequent Patterns (FP) [35], 

[36], [37], [38]. Although this is a challenging task to find 

the use pattern, and different patterns carry different 

importance [23], [24], [25], [26]. In this research, a 

scheme is proposed based on the FP tree to extract 

significant information from the dataset. Sliding window 

data are stored in the Matrix, and the Matrix is given as 

input to the FP tree, which increases the system's 

performance. The experimental analysis shows the 

proposed FP Retrieval has a best performance than the 

existing method. 

The pattern's organization is a literature survey of 

recent research in pattern mining in the second section, 

the proposed method explanation in the third section, 

experimental analysis in the fourth section and finally in 

the fifth section conclusion and future work are discussed. 

2. Literature Survey

Wang. Q and X Wang [26] developed Parallel Mining 

Collaborative frequent itemsets in Multiple Data stream 

(PMCMD-Stream). Two algorithms are developed to 

generate and analyze the potential frequent itemsets from 

the streams of data. In this technique, they implemented 

the sliding window method on bit-sequence, which is a 

single-pass technique. This method increases the 

efficiency of parallel mining of frequent collaborative 

itemsets for the multiple data streams and uses low 

memory. The experimental result of the PMCMD method 

shows that this technique would use low memory and 

higher performance than the PFP and H-stream methods. 

This method also has the flexibility and best efficiency. In 

the distributed environment, a collaborative technique 

doesn’t handle more scales of data streams.  

Yun, U., Kim, D., Yoon, E., and Fujita, H [27] 

developed a data mining technique, namely, Mining 

significance, based on the High Average Utility Pattern 

Mining (HAUPM) to find the useful information from 

data streams. This method contains the damped window 

technique to increase the efficiency in extracting potential 

patterns from the data's stream environments. 

Furthermore, the HAUPM provides the data structure and 

pruning technique to increase the mining technique's 

efficiency. In the developed method, the user obtained the 

potential patterns needed to identify the symptoms related 

to the diseases. The experimental result shows that the 

HAUPM technique has the best performance than the 

existing scalability and memory usage method and 

runtime. The classification or clustering techniques can be 

applied to increase the reliability of the pattern 

information. 

U. Yun et al. [28] developed the Sliding window

technique based on High Average Utility Patterns as an 

SHAU (Sliding window based on High Average Utility) -

Tree algorithm to analyze the recent high average utility 

pattern in the data streams. The sliding window technique 

is used to divide the stream data into many patch data and 

kept only the latest batch in its window. In the global 

SHAU-Tree, batch-lists of nodes are employed to handle 

every batch. This technique mines the latest and potential 

patterns in the stream of data. An approach is made to 

increase the algorithm's performance by minimizing the 

over-estimated average utilities that are maintained in the 

proposed data structure. Multiple batches are used to 

maintain the recent streaming data by using SHAU-Tree. 

The experiments are conducted on four real-world 

datasets such as chess, retail, chain-store, and mushroom 

to validate the sliding window technique's effectiveness. 

This technique's primary challenge is to maintain the 

memory usage with minimum sizes, but the stream data 

sizes are usually very large. Therefore, the developed 

method requires more space for data storage. 

H. Li et al. [29] established an efficient algorithm for

mining the uncertain data streams in the sliding window 

of Probabilistic Frequent Itemset Tree (PFIT). In the 

sliding window, data structure was applied to maintain all 

the PFI. A depth-first approach was proposed to develop 

from bottom-up the PFIT and maintain dynamically. To 

minimize the time complexity in PFIT over Stream 

(PFIToS). According to the heuristic rule, then another 

algorithm called PFIMoS+ is developed to improve the 

PFIMoS efficiency when the minimum support is low or 

dense data. If the relative minimum support was low, then 

these two algorithms exhibit poor performance. 

Zhi-Hong Deng [31] proposed DiffNodeset for frequent 

mining itemset from the data. An efficient algorithm 

called dFIN is implemented to find the frequent itemsets 

by hybrid search strategy with a set-enumeration tree to 

achieve high efficiency. The advantage of DiffNodeset is 

that its memory requirement is too low when compared to 

the Nodeset. The DiffNodeset is suitable for frequent 

mining due to its lowest memory requirement. The 

extensive experiments are carried out on five datasets, 

namely T40I10D100K, pumps, chess, kosarak, and 

mushroom datasets in terms of memory and runtime 

usage. The validated result shows that the dFIN is 

significantly faster with different mining supports than the 

existing algorithms. The DiffNodeset gives a poor 

performance in parallel or distributed architecture.  

3. Proposed Methodology

Data streaming is common in many applications, and to 

handle the streaming data, we required data mining 

techniques. Frequent mining is the technique that 

measures the pattern that frequently occurs in the dataset. 

In this research, itemsets present in the dataset are applied 
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in the sliding window technique. The sliding window 

values are stored in the Matrix, and the matrix values are 

applied to the FP tree. The architecture of the proposed 

Matrix FP Tree (MFPT) in the pattern mining method is 

shown in Figure 1. 

Figure 1. The architecture of the proposed MFPT 
method in pattern mining 

3.1. Matrix Construction based on Sliding 
Window 

Let a set of items is denoted as I={i1,i2,…im}. Suppose a 

stream of transactions is denoted as DS, received in the 

sequential order [27]. I am superset of each transaction T. 

Transaction T in DS presumed to have itemsets X if  X ⊆ 

T, which is also a subset of I. Unique number for every 

transaction named Tid. Sliding window W over data stream 

has the latest transactions of the stream [30], [32] with the 

window size |W|. Adding new transactions on the left side 

of the window and removing the old transactions from the 

window's right side so that the window slides on stream 

data. To improve the performance, adding and removing 

transactions conducted on a batch (pane) of transactions. 

So the most recent of the input stream transactions are 

available in the n panes of the window. The first 

transaction id (Tid) of each pane as pane id (Pid) of that 

pane and the first Pid of the window as window id Wid. 

An itemset X is considered to be frequent in W if 

Freq(X) ≥ n × |P| × s, where Freq(X), n, |P| and s are 

frequency of X in W, number of panes, pane size, and 

support threshold, respectively. The parameters of the 

mining algorithm are the number of panes in each window 

and the pane size. And these two parameters are fixed. 

The problem is finding all FP that present in pane-based 

transactional window W where the user-specified the 

supports. Results are continuously updated when the 

window is processed. The set of frequent itemsets is 

stored and updated using an ordered prefix tree. That 

prefix tree node contains a single item and represents an 

item set constructed by considering that item of a path 

node from the root to the node. A small amount of 

memory is required for prefix sharing of an itemset. All 

items in each path and the level are arranged based on the 

canonical order. Due to the rapid rate and unbounded 

stream of transactions, maintaining a frequent itemset 

belonging to each movement's activate window is 

acceptable. 

Matrix Construction: In this method, we use a matrix to 

store an uncertain data stream's information. The matrix 

size is (|SW|+1)*m (row (|SW|+1) stands for the support 

of each, column m is the maximal size of items). The 

support of each item is added to matrix A by scanning the 

transaction. In turn, the probability of item {ik} appearing 

in Td is written as Ad,k; otherwise, Ad,k is written as 0 if 

item {ik} does not appear in Td. After finishing the current 

frequent itemset mining process, the sliding window 

switches to new transactions every time. After 

constructing the Matrix, each item's support is calculated. 

These items whose support is less than the predefined 

minSup are not considered in the next “extension” 

process, and these frequent 1-itemsets are added into FI_L 

(frequent itemset library). For example, matrix 

construction as follows: the minSup is set to 0.7, and the 

sliding window size is 5. Transactions t1, t2, t3, t4, and t5 

are scanned, and items are written successively to matrix 

A, and then the support of each item is calculated. After 

calculation, 1-itemset{d} is infrequent due to 

sup({d})=0.5<0.7, and it is discarded to reduce the 

“extension” process. Then, frequent 1-itemsets of 

{a},{b}.{c},{e} and {f} are saved into FI_L. 

3.2. Construction of FP-Tree 

The most important technique, called the FP-Tree 

algorithm, is developed by the researcher Han, proposed 

in [33], [35]. This method provides the compact of 

frequent information in the dataset. The FP-tree is 

explained as follows. 

Consider the item set as I={i1,i2,…im} transaction as TN 

in database DB and Tran⊆ 1 describes every transaction 

Tran in an item stem. A set of items is present in the 

pattern X, which it describes as X⊆1 The Eq. (1) shows 

the minimum support threshold as σ is less than or equal 

to X, which supports FP that appears in the TN 

transactions. 

(Supp{X}/TN) ≥ σ (1) 

Where σ is a user threshold. 

A root in the FP-tree is assigned as null, and leaves of 

the root are described as references set with the prefix. 

Every node consists of two major fields in sub-trees: item 

name and counts [34]. The item name mentions which 

one to represent, and the numbers of transactions are 

recorded by count, which represents the path to reach this 

node. 
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FP-tree constructed as follows: 

Scan DB once, and then each item support is identified. 

According to Eq. (1), if there is a presence of frequent 

items, then store it in a list called F. To form the F-List, 

arrange F in non-support ascending order. 

For the FP tree, the root is created as T, and the values 

are represented as null. Based on F-List, frequent items 

are selected and sorted for every Tran in the DB. 

Let consider, [p|P] is the ordered list of Tran, where 

most frequent items are defined as p and the remaining 

values in the transaction as P. The next step is to call the 

function as   insert_tree([p|P], T). 

The definition for the function insert_tree([p|P], T) is 

described as Suppose a child node as N is already present 

in the T, then the item name of p is equal to the number of 

item name of N and finally increment the N by one. If the 

item name is not the same, then a new node N is created, 

and their parent link is set to T. Suppose the values are 

presents in p, then the function called insert_tree(P, N) 

will proceed. 

Suppose there are TN transactions [x1,x2,…,xTN] in 

the database. In that case, each transaction has the value 

of n explanatory variable Ve,1≤ e ≤ n, and one Ve as 

response variable is used to indicate whether accidents 

have occurred or not. According to Fuzzy C-means as the 

FCM clustering algorithm, the discrete variables are 

converted from the continuous variables. The FP tree is 

constructed based on TN transactions with n explanatory 

variables. 

In the example, QFPs are available, PQ describes every 

pattern, and one branch in the tree is illustrated as 1 ≤ q ≤ 

Q. Numerous nodes as n present in every branch, where

every node as node l is labeled by fl,p as count, and il,p as

the item name. The item name il depicts the variable

name,p, and its state of discrete is related to branch and

node, where the total number of records to reach the final

node from the previous branch are described by count fl,p.

In the FP, l=1,2,..n where the node order is represented as

l and two values are considered by the pattern status

indicator p. If p=0, then the node is illustrated as a shared

node by more than one FP; otherwise, it is defined as an

exclusive node, i.e., p=q. In the FP, there are k exclusive

nodes available and marked as p1 and p2.

Once the FP tree construction is over, then exclusive 

nodes and shared nodes are identified. Later we provide a 

score to exclusive nodes to differentiate these exclusive 

nodes and FPs from one another. 

Algorithm – 1 Frequent Pattern Retrieval Algorithm 

Input: Matrix of window itemset, threshold 

frequency fth min pattern length m, max pattern 

length n. 

Output: FP present in the dataset. 

for each sequence of itemset a in matrix M do 

    if length(a) ≥ m and length(a) ≤ n then 

       fa ← frequency of a 

      if fa ≥ fth then 

for each sequence b that overlap with a do 

   if length(b)= length(a) then 

      fb ← frequency of b 

     d ← union(a,b) 

     fd ← frequency of d 

     if is_terminal_node(a)=true then 

         patterns.add(a) 

     else if fd ≥ fth then 

         patterns.add(d) 

     else if fa>10×fb then 

        patterns.add(a) 

     end if 

  end if 

end for 

        end if 

    end if 

end for 

The FPretrieval algorithm is explained above. The 

Matrix is given as input to the FP tree method, and output 

is obtained as the FP[33]. For all the value of the itemset 

in the matrix M, pattern frequent is measured. If the 

length of the value of itemset a is higher than the 

minimum pattern m and lower than maximum pattern 

length n, then the frequency of an itemset is denoted as fa. 

When the itemset's frequency is higher than the threshold 

frequency, the frequency of the itemset b is measured, and 

identify the overlapping element between itemset a and b. 

If the frequency of the overlapped element value is higher 

than the threshold, it is stored in the variable d. If the 

itemset's frequency is ten times higher than the frequency 

of b, then it is stored in a. This process continues until the 

streaming is stopped for the method. In two variables such 

as a and b, the value of FP and overlapped FP is stored.  

4. Experimental Analysis

In this section, the validation of the proposed method is 

analyzed compared with existing techniques on various 

UCI datasets. Initially, the experimental setup and dataset 

descriptions are briefly explained. The parameters, such 

as runtime evaluation and memory usage, are used to 

validate the proposed algorithm. 

4.1. Experimental Setup 

FP Retrieval algorithm has been evaluated and 

compared with different algorithms. The experimental 

setup has been done using a PC with a 2.2 GHz i7 

processor with 16GB RAM and Python 3.6 Jupyter Lab 

Environment. The proposed FPR algorithm is compared 

with existing techniques, namely Incremental Two-Phase 

Average utilities (ITPAU), Incremental Mining of High 

Average-Utility Itemsets (IMHAUI), Utility Pattern 

Growth* (UP-growth*), and MPM. The ITPAU algorithm 

is an incremental algorithm of HAUPM, where the FUP 

algorithm and Apriori-like approach is employed to 
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minimize the total number of data scans. The UP-

Growth* is developed by modifying the original version 

of the UP-growth algorithm, where the DGN strategy is 

only used in this approach. During the candidate 

generation, only two scans are required by DGN 

employed in the first version of the UP-Growth algorithm. 

Also, the IMHAUI is used that is also an incremental 

HAUPM algorithm to handle the data in stream 

environments. 

4.2. Dataset Description 

The six real datasets are used for experiments, taken from 

the UCI Machine Learning Repository, and these datasets 

can be downloaded from the link: 

https://archive.ics.uci.edu/ml/index.html. For instance, 

breast cancer data is presented in the Brest Cancer 

Wisconsin dataset, where the information about heart 

disease is obtained in the Heart Cleveland dataset. The list 

of datasets collected and their statistics given in Table 1. 

Table 1. Database Description (N.T: Number of 
Transactions, N.I: Number of Items, T.W: 

Transaction Width) 

Pre-processing should be carried out to render these 

datasets with non-binary object information because the 

dataset originally has binary item information with FPM 

datasets. The attribute values are assigned to Accidents, 

Connect, Liver disorders, Hepatitis, and Breast cancer. 

The anonymous traffic accident data are available in the 

Accident datasets, where online connection data are 

presented in Connect. 

A different perspective of evaluation has been done to 

verify the proposed methodology's effectiveness with 

different databases. Parameters such as runtime and 

memory usage have been calculated for different utility 

threshold parameters and have been compared with 

existing algorithms to analyze results. 

4.3. Runtime Evaluation 

First, we look at the runtime execution of the algorithm 

for various datasets in Figure 2. to Figure 7. This 

demonstrates the algorithm's execution time under 

fluctuated minimum support values. In figures, minimum 

support on the x-axis and execution time (in seconds) on 

the y-axis. Here, minimum support is the percentage of 

the total number of transactions of the given dataset. By 

combining those percentages and the total number of data 

set transactions, we will obtain relative minimum support 

values. We applied for fixed minimum support as 0.1 in 

all experiments. Through these outcomes, we can observe 

that algorithms' runtime will increase continuously and 

not be considered because algorithms require more 

runtime to produce a huge number of patterns and process 

them at the lowest minimum support. 

In contrast to the others, ITPAU requires more 

execution time to produce and test strategy and must keep 

all information to mine patterns without considering 

transaction time. 

UP-Growth* also requires higher execution time 

contrasted with the proposed technique since its HUPM 

based pattern mining procedure creates countless patterns, 

even though it includes a damped window technique to 

consider only recent data in its mining process. IMHAUI 

also has poor runtime compared to the proposed strategy 

since it does not count transaction arrival time. 

Thus, we can confirm that the proposed strategy has the 

most noteworthy runtime exhibitions at all minimum 

support threshold settings by utilizing both the damped 

window technique and the HAUPM strategy.  

Figure 2. Breast_Cancer_Wisconsin Runtime 
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Figure 3. Liver_Disorders Runtime 

Figure 4. Heart_Cleveland Runtime 

Figure 5. Hepatitis Runtime 

Figure 6. Accidents Runtime 

Figure 7. Connect Runtime 

From the runtime results that appeared in Figures 2 to 7, 

we can see that FPR and MPM's contracts don't appear to 

be enormous. Note that Heart_Cleveland, 

Liver_Disorders, Breast_Cancer_Wisconsin, and 

Hepatitis are quite low in terms of transaction numbers. 

All the contrasting algorithms thus exhibit the best 

runtime performance. However, as the number of 

transactions in the dataset increases, the edge progresses 

toward lowering, the differences between them become 

increasingly noteworthy. 

4.4. Memory Usage 

The same experimental settings were considered during 

the memory usage tests as those of the runtime execution 

tests. Here Figures 8 to 13 show the memory usage of 

several techniques. The x-axis indicates the minimum 

support threshold, and the y-axis denotes the memory 

space (in MegaBytes) utilized by algorithms. The memory 

utilization of these algorithms is worst as the minimum 

support threshold decreases correspondingly as a part of 
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runtime test results in Figure 2 to Figure 7. Specifically, 

UP-Growth* utilizes more memory because of the High 

Utility Pattern Mining approach in producing candidate 

patterns. UP-Growth*, IMHAUI, and ITPAU require 

more memory contrasted with FPR in Figure 8 to Figure 

13. They have to maintain all candidate patterns and

retain the valid patterns to decrease the memory scans

based on the FUP idea. Consequently, throughout the

perception of memory usage tests' investigational effects,

we found that FPR has the best memory utilization for

preparing results.

The rejection of the execution assessment's effects on the

Heart Cleveland dataset for the ITPAU technique from

Figure 10 is that the strategy requires too extreme

memory and runtime because it cannot work ordinarily.

Particularly, algorithm execution in pattern mining relies

on the process of candidate pattern mining. As Figure 9,

IMHAUI and ITPAU mine similar patterns in number for

each situation because they apply average factors in their

process. Though, the candidates in the number generated

by them are not the same as one another. Remember that

in tree-based approaches, Apriori-based methodologies

eliminate more candidates than those. Besides, ITPAU

produces more candidate patterns for the Heart_Cleveland

dataset.

Figure 8. Breast_Cancer_Wisconsin Memory Usage 

Figure 9. Liver_Disorders Memory Usage 

Figure 10. Heart_Cleveland Memory Usage 

Figure 11. Hepatitis Memory Usage 
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Figure 12. Accidents Memory Usage 

Figure 13. Connect Memory Usage 

For large datasets, MPM demonstrates the less memory 

utilization appeared in Figure 12 to Figure 13. For the 

Accidents dataset, MPM uses stable memory space, 

paying little respect to the minimum support settings. In 

contrast, the space utilization of UP-Growth∗ is step by 

step greater than before. Particularly, its space utilization 

is strictly high when the minimum support is brought 

from 0.09 to 0.08. For the Connect dataset, results are in a 

comparable situation. The memory utilization of FPR is 

increasing when the minimum threshold increases from 

0.05 to 0.06 for the rationale that the quantities of the 

retrieved results are bigger for the Connect dataset. The 

proposed technique ensures the steadiest memory 

utilization among the other techniques by considering all 

these issues. 

5. Conclusion

This paper proposed the FPR method by utilizing a sliding 

window and the FP Tree approach to retrieve patterns 

successfully from the data stream. To improve the 

efficiency of FPR, the pattern mining process 

incorporated devised structures and a novel pruning 

strategy. Users can acquire the most important patterns 

that are valuable in disclosing disease with a retrieved set 

of symptoms from data through our method. Our 

technique compared with other utility pattern algorithms 

on several UCI datasets. We demonstrated that our 

technique has much better execution contrasted with 

others regarding runtime and memory use. Besides, we 

introduced our strategy's convenience by investigating 

critical examples mined from the coronary illness dataset. 

Besides, we introduced our strategy's convenience 

through the mining Heart Cleveland dataset for significant 

patterns mined. 

5.1. Future Work 

We can use other mining methods in conjunction with 

pattern mining draws near to extract patterns with prime 

quality. It is possible to find more reliable patterns by 

making use of clustering and classification techniques. In 

this manner, we are scheduled to carry out such 

examinations in our imminent works. 
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