
1

DESIGN OF COMPREHENSIVE FRAMEWORK

ON OPTIMIZATION METHODS IN DISTRIBUTED

CLUSTERS

Dr. Kiran Kumar Pulamolu1,*, Dr. D.Venkata Subramanian
2
, Dr Krishnaraj

3

1,3

2

Professor, Sasi Institute of Technology and Engineering

Professor, School of Computer Science, Hindustan Institute of Technology & Science, Chennai

Abstract

Keywords: Distributed Cluster, Resource Fairness, Resource Sharing, Hierarchical Cluster, MapReduce.

Received on 06 July 2018, accepted on 21 August 2018, published on 12 September 2018

Copyright © 2018 Dr. Kiran Kumar Pulamolu et al., licensed to EAI. This is an open access article distributed under the
terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits

unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

3rd International Conference on Green, Intelligent Computing and Communication Systems - ICGICCS 2018, 18.5 -
19.5.2018, Hindusthan College of Engineering and Technology, India

doi: 10.4108/eai.12-9-2018.155745

1. Introduction
Nowadays, the growing demand for the functionalization of

technology has been found in a wide spectrum of modern

technology. In recent years, research is progressing in the

areas of Cloud, and Big data, especially in distributed

clusters. Resource Scheduling and utilization play a

prominent role in getting numerous benefits in a big data

environment. Many of the organizations are equipped with

technological infrastructure through scattered and limited

EAI Endorsed Transactions
on Energy Web and Information Technologies Research Article

MapReduce is a popular, open source programming paradigm to handle big data which is an industry standard large scale
data processing system used by many companies like Yahoo, Google, Face book, etc. The YARN framework uses low
resource fairness algorithms such as FIFO, Capacity, Fair, DRF scheduler, whereas these schedulers are not suitable for
heterogeneous Hadoop clusters. Therefore, an Enhanced Combined Regression Ranking (eCRRYARN) algorithm was
proposed to enhance resource fairness. The proposed algorithm uses linear regression model to estimate the expected
resources to be availed by the tenants. The order ranking is given to the estimated resource and the resources shared as
per the ranking provided. Hence, the Hierarchical Hadoop Cluster Resource Sharing (HHCRS) algorithm has been
adopted for hierarchical distributed cluster aiming to design a cost effective cluster for organization which is spread
across the globe.

*Corresponding author. Email: kiran@sasi.ac.in

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

http://creativecommons.org/licenses/by/3.0/

Kiran Kumar Pulamolu, D. Venkata Subramanian, Krishnaraj

2

servers, storage devices, networking capability and

computer systems. But the processing and storage

capabilities of desktops and servers are too limited to

support big data applications and distributed clusters.

Redundant data in multiple desktops may lead to confusion

and wastage of resources primarily in storage.

Very often, the high-end servers are idle and sometimes the

servers are running under high peak load. A similar kind of

problem does exist in distributed and storage cluster. Many

corporate companies and government agencies are spending

a lot of money to migrate from a non-cloud to a cloud based

environment. The main challenge lies in determining the

impact of investments in the light of infrastructure and

resource usage for high availability and higher performance.

There exists a need to move from proprietary software to

open source technologies. The popular open source

technologies include Linux, Hadoop and MongoDB, etc.

which are used in supporting the migration from non-cloud

to cloud based application and data.

A scalable Linux based distributed cluster is one of the low-

cost methodologies to address these issues and to keep track

of the usage of the resources, applications and Web services.

A distributed hierarchical cluster helps in connecting

different nodes and locations across the globe at multiple

levels. However, some of the major challenges in the

Hierarchical distributed clusters are Resource Fairness,

Tenants’ Truthfulness, Poor Resource Utilization, and Unfair

Scheduling. This research work is carried out to address

these key challenges and to avoid resource contention, and

scarcity through scalable and fair resource sharing

optimization frameworks and algorithms.

2. REVIEW OF LITERATURE

Cheng-Zhong Xu et al. (2015) studied a structure called

CoTuner, to coordinate the configurations of VMs and

resident applications for resource sharing and tuning.

Georgios L. Stavrinides et al. (2017) recommended two

synchronization models to establish communication through

networks and files, required for synchronizing the nodes.

Yanfei Guo et al. (2015) Suggested FT-MRMPI, fault

tolerant MapReduce framework for HPC Clusters. The

experimental results generated by applying the proposed

model on a 256-nodes HPC cluster determined that FT-

MRMPI succeeded in detecting the faults and in reducing

the job completion time by 39%. This is a good base line for

any performance measure but may not be directly applicable

for a big data Hadoop cluster. There are differences in terms

of performance and scalability between an open source and

proprietary architecture. Yanfei Guo et al. (2014) presented

a mechanism Flex slot, to identify the map stragglers

automatically and alter the size of the corresponding slots to

speed up the execution time. This technique change the

memory size of slots of a slave node and resulted in 46%

reduction in the completion time of a job over stock Hadoop

and 22% over Skew Tune techniques.

Dazhao Cheng et al. (2013) proposed an approach Ant, to

search the individual tasks’ optimal configurations running

over multiple nodes automatically. This method achieves

this by dividing the nodes into a number of homogeneous

sub-clusters and applies a self-tuning algorithm on

individual sub-clusters. The experimental results by Dazhao

Cheng et al. (2017) show that their flex slot technique

reduces the job completion time by 46% compared to the

stock Hadoop cluster and by 22% compared to Skew Tune.

Shanjiang Tang et al. (2016) proposed a new fair resource

allocation mechanism, the Long-Term Resource Fairness

(LTRF). LTRF allows one to share the unused resources

among other clients. It ensures that the clients should pay

only for the resources they used. Though there are many

research works carried out in optimal resource utilization in

the Hadoop cluster, there exists a need to further improve

fairness and thereby decrease the job completion time and

improve the performance of CPU and Memory.

2.1 Research Gap

Based on the extensive literature review on the issues,

challenges and opportunities, the research gap is

summarized as below:

• Unpredictable truthfulness in resource sharing

among tenants with non-trivial workloads.

• Lack of efficiency in resource sharing among

tenants in heterogeneous distributed clusters.

• The resources like CPU, Memory and Disk IO are

underutilized and more than one resource were not

shared effectively in the distributed cluster.

• There is a lack guarantee for the reversal of shared

resources in inter tenant and intra tenant clusters.

3. OBJECTIVE

The design and implementation of a cost effective multi-

level distributed cluster, is primarily based on the study and

analysis of various frameworks and schedulers. The most

popular schedulers such as the First in First out (FIFO), Fair,

DRF, LTYARN, and others are considered for the

comparative study and benchmarking. The objective of the

present research is to ensure the performance and fairness

that could be achieved in the Heterogeneous distributed

cluster for all the tenants. The research objective is

summarized as below:

• To incorporate ranking and linear regression with

multi variables to improve performance and

fairness in both intra and inter node clusters.

• To develop a hybrid algorithm to include heuristics

and Weighted Arithmetic Mean (WAM) in Yet

Another Resource Negotiator (YARN) to improve

utilization and performance including resource

fairness.

• To build a Scalable and Comprehensive

Hierarchical Distributed Cluster with the proposed

algorithms for inter and intra node clusters

• To validate the improvement in performance and

fairness through experiments and case studies.

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Design of Comprehensive Framework on Optimization Methods in Distributed Clusters

3

4. MATERIALS AND METHODS

Many recent research studies highlighted the gaps in the

problems of addressing resource management and issues in

cloud based servers. The present research work was framed

basing on the evaluation of the Performance and Fairness of

Distributed clusters by adopting different methodologies like

experimental evaluation, comparative study and load testing.

Multiple environments with existing algorithms have been

simulated in an open source platform with a test bed which

includes inter-tenant and intra-tenant users. In most cases,

low resource utilization was due to the existing design and

resource allocation policies in Distributed Cluster

configurations and pluggable schedulers.

Therefore, the resource utilization and performance of

YARN, the pluggable schedulers should be analyzed and

updated properly. In this study, the proposed algorithms

have been tested in the distributed cluster environment for

validating the behavior and performance with different

workloads and the results were evaluated along with

comparisons of its performance. The regression and ranking

techniques were adopted to predict and rank the expected

resources to be reserved. Depending on the order ranking of

these workloads, resource sharing among tenants is done.

To further enhance the accuracy and precision of resource

fairness, both Heuristics and a popular statistical technique

WAM based resource sharing with fairness was

implemented. In order to collect more performance data, a

Scalable and Hierarchical Distributed cluster with heuristics

is constructed as part of the case study for educational

institutions. A quantitative analysis was done over the

performance metrics to find the correlation between the key

parameters and improvements in CPU and Memory usage

with the proposed algorithms compared to the existing ones

through multiple experiments with varying loads.

4.1 Establishment of YARN Framework
The architecture of YARN is shown in figure 1. The

different daemon processes of YARN are described as

follows, suppose two clients submitted their jobs at the same

time: then these are assigned to the Resource Manager

(RM). The RM, depending upon on the assignments

Figure 1: YARN Framework

negotiates the available resource information from the node

manager and then submitted it to the AM. In turn, each AM

submits a request to containers which allocate the job to the

available resources depending on the NM analysis.

The container retains its vouch by sending continuous

reports to the AM about the progress of the job assigned to

it. The node managers monitor the application manager for

utilization of the resource and execution of job status,

reflecting to the RM about the status of the job, by sending

periodic reports. Similarly, in runtime, the Application

Master uses the interface RPC to request containers from the

resource manager and to request the Node Managers to

launch the scheduling algorithm.

4.2 Dynamic Heterogeneous Priority
Based Flow Shop(DHPFS) Algorithm

The allocation of resources is referred to as scheduling,

which means that the resource (for example, CPU of a

server) is used to perform a particular task (for example,

sorting job), giving a guarantee for the completion of the

task within a specified time. The appropriate scheduling job

is selected by following different kinds of approaches. The

main task is to recognize the optimal solution for the

scheduling job on different processors or machines. It is

critical to note that the number of jobs or processors may

differ from job to job. In this work Dynamic Heterogeneity

Priority based Flow shop scheduling algorithm (DHPFS) has

been proposed with all the key considerations such as

scheduling job’s work location used to perform different

types of jobs.

DHPFS is a special case of scheduling process and client

job operations have to be performed in some strict order.

The DHPFS enables the flow control in a specific sequence

for each job through the set of resources 1,2,….m and other

sets of machines. This process can maintain the process’s

constant flow, with minimum waiting time and minimum

idle time.

4.2.1 DHFSS ALGORITHM

The allocation of resources is referred to as scheduling,

which means that the resource (for example, CPU of a

server) is used to perform a particular task (for example,

sorting job), giving a guarantee for the completion of the

task within a specified time. The appropriate scheduling job

is selected by following different kinds of approaches. The

main task is to recognize the optimal solution for the

scheduling job on different processors or machines. It is

critical to note that the number of jobs or processors may

differ from job to job. In this work Dynamic Heterogeneity

Priority based Flow shop scheduling algorithm (DHPFS) has

been proposed with all the key considerations such as

scheduling job’s work location used to perform different

types of jobs. The flow shop process is as shown in Fig. 2.

DHPFS is a special case of scheduling process and client

job operations have to be performed in some strict order.

The DHPFS enables the flow control in a specific sequence

for each job through the set of resources 1,2,….m and other

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Kiran Kumar Pulamolu, D. Venkata Subramanian, Krishnaraj

4

sets of machines. This process can maintain the process’s

constant flow, with minimum waiting time and minimum

idle time.

Figure 2.Flow Shop Process

This proposed DHPFS is taken into account by

considering the following assumptions and are summarized

as

The particular operation of jobs in any kind of machine

may not be preempted. Similarly, each and every machine

processes on only one job; in turn each and every job is

processed on only one machine.

Set-up time is contained both the time of processing and

self-regulating job position in the job sequence.

The process time regarding the scheduling operation is

defined on the machine as fixed, but in case of no work on

machine it is zero.

Scheduling is the method by which processes or data

flows are given access to system resources (e.g. processor

time, communications bandwidth).The need of a

scheduling algorithm is essentially generated as a

requirement for most modern systems to perform

multitasking (execute more than one process at a time) and

multiplexing (transmit multiple flows simultaneously).

The scheduler is mainly governed by the following

performance metrics concerning the above assumptions:

Throughput – is a metric of efficiency that the total No.

of processes could be completed in the time of execution per

unit.

Processor Utilization or CPU: The scheduler has to keep

the CPU or processor utilization as busy as possible,

specifically in Latency

Response time –The total time taken from the initial

action (submitted user request) to the generation of the first

response.

Turnaround time – The total time needed from

submission to completion of user process. Alternatively, it is

the sum of time periods waiting to get into memory.

The following parameters are consider for minimize the

processing time to avoid the memory less, resource

contention, scarcity of resources, over-provisioning and

resource fragmentation

Table.1 Parameters

Parameters Details

𝑆𝑖𝑗 Starting time of job i on

machine j

𝑅𝑗 Ready time of job j

𝐶’ Optimal time value

𝐶𝑚𝑎𝑥 Maximum time value

𝐶𝑖𝑚 Completion time of job 𝑖 on

machine 𝑚

𝐶𝑖𝑗 Completion time of job 𝑖 on

machine 𝑗
𝑃𝑇𝑖𝑗 Processing time of job 𝑗 on

machine 𝑖
𝑖 Index for machines

𝑗 Index for jobs

𝑚 Number of machines

𝑛 Number of jobs

Minimize:𝐶𝑚𝑎𝑥

Subject to:

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑖𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,
𝐶 𝑖𝑗 = 𝑆𝑖𝑗 + 𝑃𝑇𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗
𝑆𝑖𝑗 ≥ 𝑅𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

𝐶𝑖𝑗 ≥ 𝐶𝑖 , 𝑗 − 1 + 𝑃𝑇𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖,
𝐶𝑖𝑗 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗

In the YARN infrastructure based Hadoop framework use

the DHPFS process to avoid some of issue. The final

schedule depends on their order in all two-machine

problems implanted in the problem statement

Let three finite sets 𝐽, 𝑀, 𝑂 where

𝐽is defined as a set of jobs 1, … , 𝑛,

𝑀is defined as a set of machines 1, … , 𝑚, and

O is defined as a set of operations 1, … , m.

Denote

𝐽𝑖 the𝑖 − 𝑡ℎ 𝑗𝑜𝑏 in the permutation of jobs

𝑝𝑖𝑘 Processing time of the job 𝐽𝑖 ∈ 𝐽 on machine 𝑘.

(∀𝑖 ∈ 𝐽) (∀𝑘 ∈ 𝑀): 𝑣𝑖𝑘 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒) on

machine 𝑘before the start of the 𝑗𝑜𝑏 𝐽
(∀𝑖 ∈ 𝐽) (∀𝑘 ∈ 𝑀): 𝑤𝑖𝑘 = 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (𝑖𝑑𝑙𝑒 𝑡𝑖𝑚𝑒) of

the job 𝐽𝑖after ruining processing on 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑘, while

waiting for machine 𝑘 + 1 to become free

Define the decision variables is as following

∀𝑖, 𝑗 ∈ 𝐽: 𝑥𝑖𝑗 =
1
0

𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑗𝑡 ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑖 .𝑒 𝑗 𝑖=𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

The following for mutation use the permutation DHPFS

scheduling process

∀𝑖
∈ 𝐽: 𝑥𝑖𝑗 = 1

𝑛

𝑗=1
 (2)

∀𝑗 ∈ 𝐽: 𝑥𝑖𝑗 = 1
𝑛

𝑗=1
 (3)

∀𝑘 ∈ 𝑀 − 𝑚 : 𝑤1𝑘

= 0 (4)

∀𝑘 ∈ 𝑀 − 1 : 𝑣1𝑘

= 𝑝𝑖 ,𝑟𝑥1,𝑖

𝑛

𝑖=1

𝑘−1

𝑟=1

 (5)
 ∀𝑖 ∈ 𝐽 − 𝑛 ∀𝑘 ∈ 𝑀 − 𝑚 :𝑣𝑖+1 + 𝑃𝑗𝑘 𝑥𝑖+1,𝑗 +𝑛

𝑗=1

𝑤𝑖+1,𝑘 = 𝑤𝑖𝑘 + 𝑃𝑗 , 𝑘 + 1𝑥𝑖𝑗
𝑛
𝑗=1 + 𝑣𝑗+1,𝑘+1(6)

𝐶𝑚𝑎𝑥 = (𝑣𝑖 ,𝑚 + 𝑝𝑗𝑚 𝑥𝑖𝑗

𝑛

𝑗=1

)

𝑛

𝑖=1

 (7)
The above formulation can help to avoid the memory

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

5

less, resource contention, scarcity of resources, over-

provisioning and resource fragmentation in term of using

Heterogeneity Priority based Flow shop scheduling

algorithm (DHPFS) in YARN infrastructure based Hadoop

framework.

4.3 eCRR-YARN to share resources in
YARN

A novel resource sharing model, enhanced Combined

Regression and Ranking (eCRR) in YARN is implemented

to bring resource fairness in sharing among multiple tenants,

based on the rank assigned to them. The eCRR-YARN

scheduler enables tenants to share multiple resources with

fairness in fully distributed cloud clusters. The main goal of

the implemented system is to share resources among multi

tenants based on the ranking given to workloads by

considering the resources preempted by tenants early. The

Multiple Regression model gives you the expected resource

reserved, based on the resources demanded, resources

allocated, and resources preempted.

With the help of the expected resources reserved, the

Order Rankings algorithm is used to assign ranks to the

workloads submitted. In turn, these rankings were used to

calculate the accurate resource reservation. This model

shares resources with good fairness among tenants. To

predict estimated resources required, a simple linear

equation has been adopted, which is given below:

y = a + b1x1 + b2x2+ ……….bnxn

(4.1)

In the equation 4.1, y represents the estimated resources

reserved. a,b1, b2.. are constants, x1 represents the resources

allocated, x2 represents the resources demanded and x3

represents the resources preempted. By taking the y value of

all the tenants into consideration, ranks will be assigned to

each tenant. Finally, the ranks thus generated are used to

calculate the actual resources to be allocated to each tenant

using the formula.

Rri = Rdi –(R-1)*C

(4.2)

In the equation 4.2, R represents the Rank of the given

job. Rdi represents resource demanded by the tenant and Rri

is the resource reserved for that tenant and C is the constant,

which can be fixed based on the average resource for

tenants.

4.3.1 PSEUDO CODE

Enhanced Combined Regression Ranking algorithm

Ra: Available Resources in Cluster.

Ra= (Ra1 ...Ran) Resources Allocation. Rai denotes

resource allocation for client i.

Rd = (Rd1...Rdn) resources demanded by tenants. Rdi

denotes resources demanded by client i.

if Rdi less than Rai then

Uai <- Rdi #Allocate demanded resources

Upi <- Rai – Rdi #Resources Preempted

Else

Reg <- LinearRegression(Rai,Rdi)

R <- Rank(Reg)

Rri <- Rdi –R*C

Update Client i.

End

Let’s consider that 50 shares are allocated to each tenant

among the four tenants designed as A, B, C and D. For

suppose A demands for 30 shares, immediately the request

will be processed as the demand is less than the allocated

resources. Following that, if B requests for 70, C for 60 and

D for 80 resources, then the number of resources to be

allocated to these three tenants will be calculated using

eCRRYARN algorithm. The order of ranking was given

basing expected demand of the resource requirement, for

example consider the case of B,C and D order ranks were

given as 2, 1 and 3 respectively. Then the actual resources

to be allocated is calculated using Rri = Rdi –(R-1)*C, Where

C is a constant depends on Standard Deviation of resources

allocation to tenants.

A) Rrb = 70 –(2-1)*10

Rrb =40, so 40 resources will be allocated to tenant A

B) Rrb = 60 –(1-1)*10

Rrb =60, so 60 resources will be allocated to tenant B

C) Rrd= 80 –(3-1)*10

Rrb =60, so 60 resources will be allocated to tenant C

D) Rrd= 100 –(4-1)*10

Rrb =60, so 60 resources will be allocated to tenant D

4.4 Heuristics based Resource Sharing
YARN: HRS-YARN

The HRS-YARN scheduler enables the tenants to share

resources with fairness in Multi node cloud clusters. The

primary advantage of the newly implemented system is to

share resources between multi tenants based on the

resources available in the cluster by updating the heuristic

table to efficient fairness. The heuristic table maintains the

information regarding the resources that a tenant lent and

borrowed to and from other tenants. This interest free loan

lending model helps in attracting tenants towards sharing

resources. The WAM is used to calculate the average

resource requirement of all the individual tenants belonging

to a cluster before sharing the resources among them. WAM

is a measure of the fundamental affinity of a set of

quantitative observations with different degrees of

importance for these observations. Each observation is

weighted depending on its importance relative to other

observations. The weighted arithmetic mean is calculated by

dividing the summation of the products of observations and

their weights with the total weight.

The HRS-YARN scheduler enables the tenants to share

resources with fairness in Multi node cloud clusters. The

primary advantage of the newly implemented system is to

share resources between multi tenants based on the

resources available in the cluster by updating the heuristic

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Design of Comprehensive Framework on Optimization Methods in Distributed Clusters

6

table to efficient fairness. The heuristic table maintains the

information regarding the resources that a tenant lent and

borrowed to and from other tenants. This interest free loan

lending model helps in attracting tenants towards sharing

resources. The WAM is used to calculate the average

resource requirement of all the individual tenants belonging

to a cluster before sharing the resources among them. WAM

is a measure of the fundamental affinity of a set of

quantitative observations with different degrees of

importance for these observations. Each observation is

weighted depending on its importance relative to other

observations. The weighted arithmetic mean is calculated by

dividing the summation of the products of observations and

their weights with the total weight.

4.4.1 WEIGHTED ARITHMETIC MEAN:

The weighted arithmetic mean is a measure of

fundamental affinity of a set of quantitative observations

with different importance for these observations. Each

observation is weighted depending on its importance relative

to other observations. The weighted arithmetic mean is

calculated by dividing the summation of the products of

observations and their weights with total weight.

Mathematical Definition:

Formally, the weighted mean of a non-empty set of data

which means:

4.4.2 HRSYARN Pseudo code

Ra: Available Resources in Cluster.

Ra1=(Ra1 ...Ran) Resources Allocation.

#Rai denotes resource allocation for client i.

Rd =(Rd1...Rdn) resources demanded by tenants.

#Rdi denotes resources demanded by client i

if Rdi less than Rai then

Uai <- Rdi #Allocate demanded

resources

Upi <- Rai – Rdi #Resources Preempted & Update

heuristic table

else

W <- ∑ Ri*Rdi /∑ Ri

while : execute pending tasks

if W < Ra && Up >0 then

Uai <- Up+Rdi

if W ≈ Ra && Up >0 then

Uai <- Rdi+Up%50

if W > Ra && Up >0 then

Uai <- Rdi+Up%25

else

Wait until there is a released

resource ri from client I

end

Update heuristic table for client i.

4.4.3 RESOURCE SHARING IN HRSYARN

The above algorithm demonstrates the Pseudo code of

HRSYARN. In this, Ra represents the set of resources

available with the cluster and Rai denotes the resources

allocated to tenant i. Let Rd be the resources demanded by

the tenants at time t whereas, Rdi represents the resources

demanded by Tenant i. The main aim of HRSYARN is to

share resources with fairness among multiple tenants of a

cluster. This technique uses the Weighted Arithmetic Mean

(WAM) to bring out fairness in resource sharing. To

understand the working of the algorithm, let’s consider case

of two Tenants A and B having 50 shares each and at time

t0, if A requires only 20shares whereas B requires 70. Then

B will borrow the unused shares from A. Later on, if A

requires excess resources than its share, in turn it will take

resources back from B. At this moment, unused resources

available with B will be return to A. Under circumstances of

insufficient shares at B, it calculates the number of resources

to be returned to A based on Weighted Arithmetic Mean

(WAM) and UP value (UP: Resources preempted by a

resource or tenant). Weighed arithmetic mean (WAM) is

calculated by dividing the summation of product of each

individual tenant’s weights and resources demanded with

summation of weights of all the tenants. Total resources

demanded by A will be allocated to it if WAM calculated is

less than available resources and UP is greater than zero.

Durable extract of the resources demanded will be assigned

to A if WAM is nearly equal to available resources and UP is

greater than zero. Minimum resources from demanded

resources will be allocated to A if WAM is greater than

available resources and UP is greater than zero. If Zero

resources are available, then the tenant has to wait till some

tenant preempt its resources. Heuristic tale should be

updated with every transition done.

4.5 Hierarchical Hadoop Cluster
Resource Sharing (HHCRS)

The Hierarchical Hadoop Cluster depicted in Figure 2,

data must be managed in such a way that the information

should be accessed from all the master nodes. The meta-data

such as data size, file format, access path and so on, of all

the HDFS files obtained from the name nodes are recorded

and maintained by the global name node. When a file is

newly generated or existing file is modified, the respective

name node sends the updated metadata to its parent name

node. The Global name node stands at the top of the

hierarchy. It consists of metadata; data that holds the details

of the sub name nodes and access logs used to access the

data stored in name nodes. Users can query and obtain the

information based on metadata in the global name node. The

user query is further automatically converted into more

detailed address for performing operations on files, which

includes cluster address, HDFS directory and block number.

The location where the program is being executed is

identified, using the cluster address, paths regarding the data

nodes are located using the HDFS directory, and data are

identified with their block numbers.

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Kiran Kumar Pulamolu, D. Venkata Subramanian, Krishnaraj

https://en.wikipedia.org/wiki/Non-empty_set

7

4.5.1 ED-MEDIA USING COST EFFECTIVE
HIERARCHICAL HADOOP CLUSTER

The hierarchical Hadoop cluster can be found its use to

process big data stored in multiple levels in an organization

shown in Figure 3. The structural design of the hierarchical

methodology is as shown in Figure.4. The architecture

shows a master-slave relationship between global name

node and data nodes which are coined as master node and

slave node. Every intermediate node also acts as name node.

Global name node is the vital node which processes user

requests. It splits the user tasks into sub-tasks and share out

them to the corresponding name nodes. Global node also

takes care about the metadata stored in global name node

which is used to process user queries. The function of global

name node is also includes to manage the metadata of all the

files available in every data node. The data node is installed

on each cluster and is enabled to run sub-jobs allocated by

parent name node. Hierarchical Hadoop cluster provides a

global view of all files stored at different clusters(26).

Fig. 3: Block diagram Hierarchical Hadoop Cluster

Fig. 4: Hierarchical Hadoop Distributed File System

4.5.2 ALGORITHM
1: HHC RESOURCE SHARING PSEUDO CODE

Ca : (ca1; ca2; : : : ; can) Child clusters available

cai : choosen cluster from available clusters to process

Ra: Available Resources in Cluster.

Ra1= (Ra1 ...Ran) Resources Allocation. Rai denotes

resource allocation for client i.

Rd =(Rd1...Rdn) resources demanded by tenants. #Rdi

denotes resources demanded by client i

if Rdi less than Rai then

Uai <- Rdi #Allocate demanded

resources

Upi <- Rai – Rdi #Resources Preempted

& Update heuristic table

else

WAM <- ∑ Ri*Rdi /∑ Ri

while : execute pending tasks

if WAM < Ra && Up >0 then

Uai <- Rdi

if WAM ≈ Ra && Up >0 then

Uai <- Rdi%50

if WAM > Ra && Up >0 then

Uai <- Rdi%25

else

Wait until there is a released resource ri from client I

Update heuristic table for client i.

The maintenance of fairness in resource allocation among

all the tenants in Hierarchical Hadoop cluster stands as one

of the major challenge. To probe the resource fairness, a

novel algorithm named Hierarchical Hadoop cluster

Resource Sharing (HHCRSYARN) is adopted. The steps

involved in this algorithm are as shown in the above

algorithm. Let us consider n number of child clusters in

Hierarchical Hadoop Cluster and then the Global Name

node chooses the child cluster based on the resources and

data availability. In that the total number of resources

available in cluster is Ra. Ra defines the set of individual

resources allocated to each tenant. Rd determines the total

number of resources demanded by all the tenants at a

particular instance of time where Rdi represents the

resources demanded by client i. W describes the set of

weight of workloads of all the tenants and Wi represents the

weight of individual tenant i. When a tenant sends a request

for resources, the demand will be immediately granted if the

demand for resources (Rdi) is less than resources available

(Rai) with it and user resource preempted (Uo) will be

updated. Whenever the tenant demands more resources than

its availability, the request will be granted by taking WAM

into consideration. Weighed arithmetic mean (WAM) is

calculated by dividing the summation of product of each

individual tenants weights and resources demanded with

summation of weights of all the tenants. If WAM is less than

resources available and Up is greater than zero, then the total

resources demanded will be allocated. If WAM is

approximately equals to resources available and Up is

greater than zero, durable extract of the resources demanded

will be assigned to tenant. Suppose WAM is nearly equal to

available resources and UP is greater than zero and then

minimum resources from demanded resources will be

allocated to tenant. Otherwise WAM is greater than

available resources and UP is greater than zero, no resource

available for allocation. Then the tenant needs to wait until

some other tenant preempts its resources. All the transitions

regarding resource allocation and preemption of every

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Design of Comprehensive Framework on Optimization Methods in Distributed Clusters

8

tenant should be updated in heuristic table. An efficient

Hierarchical Hadoop cluster can be designed using HCC

resource sharing algorithm adopted. Hierarchical Hadoop

cluster framework can be employed to empower educational

institutions to alter the way of using Information

Communication Technology (ICT).

5. RESULT AND DISCUSSION
Table 2. Throughput

Number of System PFSS DDEP DHPFS

20 53 78 93

40 58 81 95

60 68 83 96

80 73 88 95

100 78 91 95

Figure 5. Throughput

Figure 5 shows the comparative results for the average

throughput time. According to the contrast analysis of the

experimental results, the performance of DHPFS is high and

it increases the throughput by 20% compared to the

remaining two algorithms.

Table 3. Completion Time

Number of System PFSS DDEP DHPFS

20 10.56 12.67 2.5

40 30.67 50.56 7.5

60 32.89 60.75 10.54

80 50.9 90.87 30.56

100 50.78 92.54 40.67

Figure 6. - Completion Time

Table 4. scalability

Number

of System

PF

SS

DD

EP

DHP

FS

20 12 10 15

40 18 20 25

60 30 24 35

80 35 28 45

100 32 30 50

Figure 7 shows the results for the average Scalability.

. Based on the contrast results of all the three algorithms,

PFSS, DDEP and proposed DHPFS algorithms, the

proposed algorithm shows the promising results in terms of

processing time. It reduces the processing time by 30%

compared with the other two algorithms. In Hadoop YARN,

Dynamic Heterogeneity Priority based Flow shop

scheduling algorithm had succeeded in overcoming the

issues like memory less, resource contention, scarcity of

resources, over-provisioning and resource fragmentation.

Compared to the other algorithms, Permutation Flow Shop

Scheduling and Drivers for Dynamic Essential Path, DHPFS

algorithm is providing promising results in terms of

throughput, processing time and scalability. In Cloud

Environment, DHPFS provides an efficient resource

allocation and it also maximizes the utilization of physical

resources as it deals with supplying the resources on the

basis of user demand. It improves throughput by 20% and

reduces the response time by 30%.Various levels of tests

have been conducted to validate the resource sharing

performance, fairness and job completion time, using the

proposed algorithms and also comparing them with the other

algorithms. To summarize the key findings, a scalable

Hierarchical Distributed Cluster was setup with 30 nodes

using Virtualization. Each node is created with the Intel dual

core processor, 2 GB RAM, 50 GB HDD specification.

These nodes are installed with the Linux/CentOS 6.8

operating system, Java 1.8 and Hadoop 2.7.3 to establish a

hierarchical Distributed Cluster. One node acts as the Global

Name node, which runs the Name Node and Resource

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Kiran Kumar Pulamolu, D. Venkata Subramanian, Krishnaraj

9

Manager Services to communicate with the slave clusters.

Five different Java Based Map Reduce workloads have been

submitted to Seven Tenants to Test the performance of the

Capacity, Fair, LTYARN and HHCRS Algorithms. The

experimental results show that the HHCRS Algorithm has

succeeded in using the resources effectively and sharing the

resources with fairness. The Performance measures for CPU

utilization is shown in Tables 5, 6 and the figures 8, 9

represents the comparison of CPU and Memory utilization

between the existing and the proposed fair scheduling

algorithms.

Table 5: Performance Measure - CPU Utilization
SCHEDUL

ING

ALGORIT

HM

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

Average

Time

CPU

Time

Capacity

Scheduler

2

2

9

7

2

5

7

6

0

1

6

8

5

2

3

4

4

7

0

1

6

8

5

3

3

4

4

7

0

5

7

6

0

1

9

9

1

2 157047

Fair

Scheduler

2

1

5

5

5

4

3

4

3

1

5

4

3

5

3

3

0

5

3

1

5

4

3

5

3

3

0

5

3

4

3

4

3

1

8

4

9

5 145710

LTYARN

Scheduler

2

0

8

3

5

3

6

2

3

1

4

7

1

5

3

2

3

3

3

1

4

7

1

5

3

2

3

3

3

3

6

2

3

1

7

7

7

5 139950

HHCRS

Scheduler

2

0

4

9

8

3

2

8

5

1

4

3

7

8

3

1

9

9

5

1

4

3

7

8

3

1

9

9

5

3

2

8

5

1

7

4

3

8 137250

 Table 6: Performance Measure - Memory Utilization

SCHEDULI

NG

ALGORITH

M

T

1

T

2

T

3

T

4

T

5

T

6

T

7

T

8

Average

Memory

Usage

Capacity

Scheduler

8

5

4

6

8

5

4

6

3

4

1

6

3

4

1

6

3

4

1

6

3

4

1

6

8

5

4

6

3

4

8

3 42782

Fair

Scheduler

8

0

3

3

8

0

3

3

2

9

0

3

2

9

0

3

2

9

0

3

2

9

0

3

8

0

3

3

2

9

7

0 38678

LTYARN

Scheduler

7

1

6

9

7

1

6

9

2

0

3

9

2

0

3

9

2

0

3

9

2

0

3

9

7

1

6

9

2

1

0

6 31766

HHCRS

Scheduler

6

2

2

4

6

2

2

4

1

0

9

4

1

0

9

4

1

0

9

4

1

0

9

4

6

2

2

4

1

1

6

1 24206

Fig 8: Comparison of Scheduling Algorithms – CPU

Utilization

Fig 9: Comparison of Scheduling Algorithms – Memory

Utilization

6. SUMMARY
This research compared the resource fairness for YARN

in a heterogeneous environment for various methods, their

pros and cons. The proposed algorithm HRS-YARN

succeeded in attaining fairness by resource sharing and

utilization of resources effectively. It produced 25% better

results over LTYARN in executing map reduce programs in

terms of the average time and memory usage. In eCRR-

YARN, the resource sharing is based on the loan with

interest free rank based discount share model. The Enhanced

Combined Regression Ranking YARN improves the

efficiency of the Intra Tenant Distributed cluster with

multiple resources sharing with improved fairness. It can

predict the ranking of different workloads based on amount

resource utilization factors like CPU Intensive, Memory

intensive, etc. Based on this ranking the resource sharing is

done among the workloads in the Intra Tenants Distributed

cluster of a client. In order to improve the performance of

this model, HRS-YARN is proposed. HRSYARN uses the

heuristics table to store the user preempted resources and the

weighted arithmetic mean (WAM) were used to find out the

average resource demanded by the tenants at a particular

time interval.

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Design of Comprehensive Framework on Optimization Methods in Distributed Clusters

10

On the basis of heuristic and WAM information,

resources are reserved for the tenants. In this model, 30%

improvement in the performance of the cluster is observed,

compared to the existing models. The experimental results

demonstrate the improved performance of the HHCRS

algorithm over other scheduling algorithms with respect to

CPU and memory utilization. It improves the resource

utilization by 30% and succeeded in acquiring resource

fairness in cloud based clusters. Whenever the fairness

percentage increases in terms of resource sharing the

performance gradually improves. Therefore, this work

confirms that there exists a strong correlation between

performance and resource fairness is accepted. The

experiments also proved that there are very marginal

differences in CPU response and memory utilization in intra

and inter tenants’ resource utilization.

7. FUTURE DIRECTIONS

The HDFS stores data using the n-fold technique. The n

value can be configured by the administrators. In the name

of replication, a large volume of storage is wasted and

therefore, the performance of the storage system decreases

and also the amount of bandwidth used is increased. Another

issue with the distributed Cluster is the name node which is

a single point of failure. Though the Secondary name node

exists in the cluster, this Secondary name node and name

node are configured in the Active-Passive mode. The

distributed cluster may be studied further with commodity

hardware with multiple name nodes in active-active

configurations. Future studies are required to include

Security, Privacy and Confidentiality in the e-Learning

deployed over the Hierarchical distributed Cluster. The e-

learning framework and appropriate data mining tools can

be integrated to further enhance the proposed algorithms.

8. REFERENCES

1. K. Govindarajan, T. S. Somasundaram, V. S. Kumar, et

al., Continuous clustering in big data learning analytics,

in: Technology for Education (T4E), 2013 IEEE Fifth

International Conference on, IEEE, 2013, pp. 61–64.

2. Di Jian and Yanfeng Peng, Research of performance of

distributed platforms based on clustering algorithm.,

JCP 11 (2016), no. 3, 195–200.

3. X. Bu, J. Rao, C.-Z. Xu, Coordinated self-configuration

of virtual machines and appliances using a model-free

learning approach, IEEE transactions on parallel and

distributed systems 24 (4) (2013) 681–690.

4. G. L. Stavrinides, F. R. Duro, H. D. Karatza, J. G. Blas,

J. Carretero, Different aspects of workflow scheduling

in large-scale distributed systems, Simulation

Modelling Practice and Theory 70 (2017) 120–134.

5. Y. Guo, W. Bland, P. Balaji, X. Zhou, Fault tolerant

mapreduce - mpi for hpc clusters, in: Proceedings of the

International Conference for High Performance

Computing, Networking, Storage and Analysis, ACM,

2015, p. 34.

6. Y. Guo, J. Rao, C. Jiang, X. Zhou, Flexslot: Moving

hadoop into the cloud with flexible slot management,

in: High Performance Computing, Networking, Storage

and Analysis, SC14: International Conference for,

IEEE, 2014, pp. 959–969.

7. D. Cheng, J. Rao,Y. Guo, C. Jiang, X. Zhou, Improving

performance of heterogeneous mapreduce clusters with

adaptive task tuning, IEEE Transactions on Parallel and

Distributed Systems 28 (3) (2017) 774–786.

8. S. Tang, B.-S. Lee, B. He, H. Liu, Long-term resource

fairness: Towards economic fairness on pay-as-you-use

computing systems, in: Proceedings of the 28th ACM

international conference on Supercomputing, ACM,

2014, pp. 251–260.

9. J. Lin, F. Liang, X. Lu, L. Zha, Z. Xu, Modeling and

designing fault-tolerance mechanisms for mpi-based

mapreduce data computing framework, in: Big Data

Computing Service and Applications (Big Data

Service), 2015 IEEE First International Conference on,

IEEE, 2015, pp. 176–183.

10. I. A. Moschakis, H. D. Karatza, Multi-criteria

scheduling of bag-of-tasks applications on

heterogeneous interlinked clouds with simulated

annealing, Journal of Systems and Software 101 (2015)

1–14.

11. K.Wang, N. Liu, I. Sadooghi, X. Yang, X. Zhou, T. Li,

M. Lang, X.-H. Sun, I. Raicu, Overcoming hadoop

scaling limitations through distributed task execution,

in: Cluster Computing (CLUSTER), 2015 IEEE

International Conference on, IEEE, 2015, pp.236–245.

12. D. E. Difallah, G. Demartini, P. Cudré-Mauroux,

Scheduling human intelligence tasks in multi-tenant

crowd-powered systems, in: Proceedings of the 25th

International Conference on World Wide Web,

International World Wide Web Conferences Steering

Committee, 2016, pp. 855–865.

13. G. L. Stavrinides, H. D. Karatza, Scheduling real-time

parallel applications in SaaS clouds in the presence of

transient software failures, in: Performance Evaluation

of Computer and Telecommunication Systems

(SPECTS), 2016 International Symposium on, IEEE,

2016, pp. 1–8.

14. Y. Yao, J. Wang, B. Sheng, C. C. Tan, N. Mi, Self-

adjusting slot configurations for homogeneous and

heterogeneous hadoop clusters, IEEE Transactions on

Cloud Computing 5 (2) (2017) 344–357.

15. D. Cheng,Y. Guo, X. Zhou, Self-tuning batching with

dvfs for improving performance and energy efficiency

in servers, in: Modeling, Analysis and Simulation of

Computer and Telecommunication Systems

(MASCOTS), 2013 IEEE 21st International

Symposium on, IEEE, 2013, pp. 40–49.

16. F. Zhou, H. Pham, J. Yue, H. Zou, W. Yu, Sfmapreduce:

An optimized mapreduce framework for small files, in:

Networking, Architecture and Storage (NAS), 2015

IEEE International Conference on, IEEE, 2015, pp. 23–

32.

17. K. Kambatla, A. Pathak, H. Pucha, Towards optimizing

hadoop provisioning in the cloud., HotCloud 9 (2009)

12.

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Kiran Kumar Pulamolu, D. Venkata Subramanian, Krishnaraj

11

18. B. Sharma, T. Wood, C. R. Das, Hybridmr: A

hierarchical mapreduce scheduler for hybrid data

centers, in: Distributed Computing Systems (ICDCS),

2013 IEEE 33
rd

 International Conference on, IEEE,

2013, pp. 102–111.

19. S. Nair, J. Mehta, Clustering with apache hadoop, in:

Proceedings of the International Conference &

Workshop on Emerging Trends in Technology, ACM,

2011, pp. 505– 509.

20. D. V. Subramanian, K. P. Kumar, Fuzzy based modeling

for an effective it security policy management, in: SAI

Computing Conference (SAI), 2016, IEEE, 2016, pp.

173–181.

21. A. H. Ibrahim, H. E.-D. M. Faheem, Y. B. Mahdy, A.-R.

Hedar, Resource allocation algorithm for gpus in a

private cloud, International Journal of Cloud Computing

5 (1-2) (2016) 45–56.

22. M. Al-Ayyoub, M. Daraghmeh, Y. Jararweh, Q.

Althebyan, Towards improving resource management in

cloud systems using a multi-agent framework,

International Journal of Cloud Computing 5 (1-2)

(2016) 112–133.

23. G. L. Stavrinides, H. D. Karatza, Scheduling different

types of applications in a saas cloud, in: Proceedings of

the 6th International Symposium on Business Modeling

and Software Design (BMSD16), 2016, pp. 144–151.

24. Bhavin J Mathiya and Vinodkumar L Desai, Apache

hadoop yarn mapreduce job classifi- cation based on

cpu utilization and performance evaluation on multi-

cluster heterogeneous environment, Proceedings of

International Conference on ICT for Sustainable

Development, Springer, 2016, pp. 35–44.

25. Taesup Moon, Alex Smola, Yi Chang, and Zhaohui

Zheng, Intervalrank: isotonic regression with listwise

and pairwise constraints, Proceedings of the third ACM

international conference on Web search and data

mining, ACM, 2010, pp. 151–160.

EAI Endorsed Transactions on
Energy Web and Information Technologies

 07 2018 - 09 2018 | Volume 5 | Issue 20 | e15

Design of Comprehensive Framework on Optimization Methods in Distributed Clusters

