
Modeling Users’ Behavior from Large Scale
Smartphone Data Collection
Preeti Bhargava1,∗, Ashok Agrawala1

1Department of Computer Science, University of Maryland, College Park, MD, USA

Abstract

A large volume of research in ubiquitous systems has been devoted to using data, that has been sensed
from users’ smartphones, to infer their current high level context and activities. However, mining users’
diverse longitudinal behavioral patterns, which can enable exciting new context-aware applications, has not
received much attention. In this paper, we focus on learning and identifying such behavioral patterns from
large-scale data collected from users’ smartphones. To this end, we develop a unified infrastructure and
implement several novel approaches for building diverse behavioral models of users. Examples of generated
models include classifying users’ semantic places and predicting their availability for accepting calls etc. We
evaluate our work on real-world data of 200 users, from the DeviceAnalyzer dataset, consisting of 365 million
data points and show that our algorithms and approaches can model user behavior with high accuracy and
outperform existing approaches.
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1. Introduction
While discrete observations of an individual’s behavior
can appear almost random, typically there are repet-
itive and easily identifiable patterns or routines in
every person’s life. For many people, a typical weekday
routine consists of leaving home in the morning and
traveling to work, going for lunch in the afternoon, and
returning home in the evening. These daily routines
are often coupled with routines across other temporal
scales, such as weekly (e.g. going hiking or running
on weekends) or monthly (e.g. visiting family during
holidays) patterns.

In today’s world, smartphones are the most ubiqui-
tous devices and have become an integral part of peo-
ple’s everyday lives. People carry them around every-
where and use them as their primary medium for many
day to day activities. These devices can collect a variety
of data about users such as their locations (from GPS),
sensory data (from various sensors), call and sms logs
etc. As a result, they can act as a rich content source for
users’ contextual information. However, a large volume
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of research in mobile and ubiquitous systems has been
devoted to using this collected information for inferring
users’ current high level context such as their environ-
mental context (whether they are indoors or outdoors),
the activities they are engaged in (walking, driving etc.)
and how many people are around them [5, 20, 21]. On
the other hand, mining of users’ diverse longitudinal
behavioral patterns from rich smartphone data, which
can enable exciting new context-aware applications and
services, has not received much attention.

Figure 1 shows our broader long-term vision. As
part of this vision, we plan to collect large-scale data
from users’ smartphones and employ it to infer diverse
frequent patterns that capture different aspects of their
behavior. We plan to explore the utility of each type
of pattern in improving the users’ quality of life by
proactively taking actions on their behalf. As shown,
we envision a client agent application continuously
sensing the user’s temporal multi-dimensional context
and activity information (e.g. location, call logs and app
usage). This information is aggregated over a period
of time in the form of behavioral logs. A context-
aware middleware extracts the user’s context history
(for instance, call or location history) from these logs.
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It utilizes this history to learn and store the users’
behavioral models (behavioral patterns that users exhibit
in similar context or situations over a period of time)
for predicting future behavior. Ultimately, this enables
the middleware to act proactively on the users’ behalf in
anticipation of their future goals and intentions without
explicit requests from them. The system also refines
these models periodically based on users’ feedback.

In this paper, we take a step towards achieving
this vision. We develop an infrastructure for learning
diverse patterns, from large-scale data collected from
users’ smartphones, and utilizing these patterns to help
identify a variety of the users’ behaviors, habits, and
daily life places and activities. A key aspect of our
research is how to mine this massive amount of data,
captured over long durations of time, for inferring
users’ high level behavioral models. In particular, we
try to answer questions such as:

• What are the various places frequently visited
by the user? Which among them is his home,
workplace, recreational or known places etc.?

• Will the user accept an incoming call in his
current situation? Who will be the next person
that he will call?

• When and where does the user usually charge his
device? How is his device battery usage and can
we predict his future device battery level?

• What applications (referred to as ‘apps’) does he
use most frequently in the morning as opposed to
night?

These behavioral models would enable the context-
aware system to predict a user’s behavior and
proactively take actions on his behalf. For instance,
the system can leverage a user’s past communication
behavior in order to predict his availability to accept
an incoming call and proactively reject it if he is
unavailable (say, if he is in a meeting at work). It could
periodically order the user’s contacts based on who
will be the most likely contact that will be called next.
Similarly, it can employ his device charging behavior
to prompt him if he forgets to charge his device. It can
even load his favorite apps ahead of time based on his
app usage history. Ultimately, such a system can save
the user’s time and energy and improve his quality of
life.

Our key contributions in this paper are:

• We design and implement a unified infrastructure
for modeling a diverse set of users’ behaviors from
large-scale data that has been collected from their
smartphones.

• We design and implement novel approaches and
algorithms that employ users’ contextual features
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based	client	
agent	

applications
Rover	 II	- Context-
Aware	Middleware

Predict	 future	intent	and	behavior	
and	take	appropriate	action
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Figure 1. Long term vision for building diverse user behavioral
models, from users’ sensed data, in order to take proactive actions

and state of the art machine learning techniques
for building various behavioral models of users.
Examples of generated models include classifying
users’ semantic places (such as Home, Work etc.)
and mobility states (Stationary or Moving), pre-
dicting their availability for accepting incoming
calls and inferring their device charging behavior.

• We evaluate our work on large-scale real-world
smartphone data of 200 users, obtained primarily
from the DeviceAnalyzer[28] dataset, consisting
of 365 million data points.

• We show that our algorithms and approaches
can model user behavior with high accuracy and
demonstrate improved performance over existing
approaches.

2. Rover II context-aware
middleware
The Rover II context-aware middleware [6, 17] is a
generic middleware, which serves as an integration
platform for mobile and desktop applications. It can
store and retrieve contextual information, as well
as learn and store user behavior models. It consists
of several components including a main Controller
module (which controls the flow of information among
the various components), an Activity Manager (which
defines what activities the system can perform on the
user’s behalf), a Learning Engine (which learns patterns
from user’s behavior) and a Relevant Information
Discovery and Ranking Engine (which determines what
information will be relevant to the user’s current
situation). A complete description of this system and its
architecture is beyond the scope of this paper. Here, we
describe the core component responsible for learning
user behavioral models - the Learning Engine.

Figure 2 shows the pipeline for the Rover II Learning
Engine. The user’s behavioral log is collected from his

2

 EAI
European Alliance
for Innovation

EAI Endorsed Transactions on 
Context-aware Systems and Applications 

05 - 09 2016 | Volume 3 | Issue 10 | e3



User 
behavioral 

logs

Log
Query 

Module

Context 
history

<User1, t1, Location, <latitude, longitude>>
<User1, t2, Call|Number, Number hash>
<User1, t2, Call|Duration, Call duration in 
seconds>
……………… Learning Engine

User behavioral 
models

kNN

Naïve 
Bayes

J48SMO

Random
Forest

HMM

kMeans

Apriori PredictiveApriori

Figure 2. The Learning Engine pipeline of Rover II

smartphone and stored in a relational database in the
form of timestamped <key,value> pairs where each key
is unique and represents the type of contextual data that
is logged and the value represents the value for that
contextual data e.g. location (represented in latitude
and longitude format) or call data such as number
called, duration etc. The data is stored in chronological
order. The Log Query Module extracts the user’s context
history (location trace, sensor log, call history etc.) over
a certain window of time, from these logs, and sends it
to the Learning Engine.

The Learning Engine implements several state of
the art supervised and unsupervised machine learning
techniques including classifiers such as J48 Decision
Tree, k Nearest Neighbors (kNN), Naive Bayes, Random
Forest, and Sequential Minimal Optimization (SMO)
[24] (an algorithm used for training support vector
machines), clustering algorithms such as k Means and
DBSCAN, association rule mining algorithms such
as Apriori and PredictiveApriori as well as Hidden
Markov Models (HMM) that model causal relationships.
In the current version of our system, we employ the
Weka[12] and ELKI [1] libraries for implementing these
techniques.

The engine extracts various contextual features from
the users’ context history and applies these techniques
to them in order to generate user behavior models.
These models are either held in memory for immediate
use or persisted to disk for subsequent usage in
prediction of users’ behavior.

3. Data

The data used in this research comes from two sources:

3.1. DeviceAnalyzer dataset

DeviceAnalyzer [28] is a free smartphone based
Android application that runs continuously in the
background and collects a user’s data from his
smartphone. It was developed to collect a large-scale
research data-set of phone usage. It has collected usage
information from 17,000 Android devices, over the
course of nearly 3 years, and contains 100 billion data
points. It captures a rich and highly detailed time-series

log of approximately 300 different events1 including
sensory information, Wi-Fi and bluetooth scans, call
and sms logs, running processes and applications etc.
This data is stored in the form of timestamped key-
value pairs.

Since not all users in the DeviceAnalyzer dataset
consented to sharing location and sensory information,
we pre-processed the data to include only those users
who have shared all information from their phone. In
order to have enough training and testing instances, we
also set the criteria that only those users who have >
30 days of data should be included. Our final dataset
consists of 200 users and includes over 365 million data
points logged over 100,000 days for all users. We use
about 20% of this data as Validation data for parameter
tuning.

3.2. Field study
Despite the richness of the DeviceAnalyzer dataset,
a disadvantage of it is that it does not have ground
truth labels for semantic places and for mobility states.
To address this, we conducted a field study using
the DeviceAnalyzer app to collect labeled data over
a period of 1 month. This data was collected by 10
members of our lab (including the first author). All the
participants who collected the data also annotated it
carefully to provide ground truth values for place labels
(see Table 4) and mobility states (see Table 2). This
dataset consisted of around 500,000 data points. We
split this dataset into Training and Testing data with a
1:1 ratio. We used the training dataset for building some
of the models and the testing set for their evaluation.

4. Feature engineering and Algorithm Design for
User behavior modeling
4.1. Mobility State Classification
The DeviceAnalyzer app samples the data from the
accelerometer of a device at a frequency of approxi-
mately 0.003 Hz (once per 5 minutes). Moreover, this
data is not logged in its raw format but as aggre-
gate measurements (such as count, variance, average
etc.) computed over all magnitudes of sensor values
captured over a 1-second window. Hence, fine-grained
activity recognition as performed in [5, 20, 21] is not
possible with this dataset.

Instead, we use this data to classify the user’s mobility
state into two classes - Stationary and Moving. We
extract movement related features such as average
and variance of acceleration (see Table 1) to build
this model. We experimented with 3 classifiers - kNN

1A complete description of the logged event types is available at
http://deviceanalyzer.cl.cam.ac.uk/keyValuePairs.htm

3

Modeling Users' Behavior from Large Scale Smartphone Data Collection

 EAI
European Alliance
for Innovation

EAI Endorsed Transactions on 
Context-aware Systems and Applications 

05 - 09 2016 | Volume 3 | Issue 10 | e3



P. Bhargava, A. Agrawala

Feature Description or Representa-
tion

Average
acceleration

Average acceleration of the
device

Variance of acceler-
ation

Variance of acceleration of the
device

Table 1. Movement related features

Label Description or Representa-
tion

Stationary Whether user is stationary
Moving Whether user is moving

Table 2. Mobility state labels

Accuracy
kNN J48 Random Forest
0.81 0.72 0.85

Table 3. Comparison of accuracies of various classifiers on the
training set for Mobility State Classification

(k=3), Random Forest (10 trees) and J48 decision tree
on the training data collected as part of the field
study (see Section 3.2) with 10 fold cross validation.
As shown in Table 3, Random Forest had the best
performance. Hence, we implement it for Mobility State
Classification.

4.2. Timestamp hashing
Since the number of timestamps in our dataset is
huge (as it spans nearly 100,000 days of data for all
users), we perform feature hashing to hash the value
of each timestamp to a timeslot in order to reduce the
data dimensionality. We generate buckets of hashed
time slots based on the day of the week and time
of the day. This also enables us to capture daily and
hourly patterns in behavior which further help in user
behavior modeling.

To this end, we divide a day into 4 hourly slots:

• Morning - hours between 5 am and 10 am

• Noon - hours between 10 am and 5 pm

• Evening - hours between 5 pm and 10 pm

• Night - hours between 10 pm and 5 am

We generated these slots using commonsense knowl-
edge that most people tend to share common daily
patterns - they typically sleep between 10 pm and 5 am,
commute between 8 and 9 am and reach work between
9 and 10 am. In addition, most places have work hours
till 4:30 or 5 pm.

Since there are 2 types of days in a week - weekday
and weekend, and each day has 4 hourly slots, the total
number of hashed timeslots is 8. Each timestamp is first

Label Description or Representation
Home Home location of the user
Work Work location of the user
IndoorRecreation
(InRec)

Place for indoor sports and recre-
ation (e. g. gym)

OutdoorRecreation
(OutRec)

Place for outdoor sports and
recreation (walking, hiking, run-
ning etc.)

Transport Place related to transportation
(e.g. road, bus stop, train station,
parking lot)

IndoorKnown
(InKnown)

Known indoor place (e.g. friend’s
home or a coffee shop)

OutdoorKnown
(OutKnown)

Known outdoor place (e.g. park)

NearHome Place near home location
NearWork Place near work location
Other Any other place

Table 4. Semantic place class labels

converted to a standard date time format which is then
hashed to a timeslot. For instance, a timestamp of 2013-
05-17 14:07:00 will be hashed to ‘WeekDay_Noon’.

4.3. Semantic Place Classification
Semantic Place Classification involves association of
appropriate meaningful semantic labels with a user’s
location2. Knowing the semantics of a location can
enable a context-aware system to provide the user with
information relevant to his current location e.g. work
related notes at work or grocery list when he is at
the grocery store. Moreover, this knowledge can also
help predict other behaviors of the user such as his
availability to attend a call or his intention to charge
his phone.

As mentioned earlier, human behavior usually
follows a regular pattern in practice e.g. people sleep
at home at night, move continuously when in the gym
or running outside, and charge their phones indoors.
We exploit these patterns to label the semantic places
of users. Table 4 shows the 10 semantic place labels
which we use to classify the locations in a user’s location
history. Some of these overlap with those used in the
Nokia Mobile Data Challenge (MDC) dataset [16, 18].

The location data in the DeviceAnalyzer dataset
has been obtained via the Android network provider,
instead of GPS, due to privacy constraints. The network
provider determines user location via cell tower and
Wi-Fi signals. As a result, the obtained location
is coarse-grained and not very accurate. Moreover,

2We use place and location interchangeably throughout the paper.
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Feature Description or Representation
Place visit count Number of unique visits to a

place
Relative place
visit frequency

Number of visits (per day) to a
place

Place stay dura-
tion

Total stay duration at each place

Average place
stay duration

Average stay duration (per visit)
at each place

Place - Time slot
visit frequency

Number of unique time slots for
each visited place

Time slot - place
visit frequency

Place visit count for each time
slot

Time slot - place
time frequency

Place stay time for each time slot

Bluetooth count Average number of people
around at each place

Bluetooth diver-
sity

Change in the people for consec-
utive visits to each place

Wi-Fi count Average number of unique Wi-
Fi APs heard at each place

Wi-Fi RSSI Average Wi-Fi RSSI at each
place

Wi-Fi connectiv-
ity

Wi-Fi connectivity status at each
place

Charging state
frequency

Charging state of the device
at each place - connected (via
ac/usb) or disconnected

Mobility state
frequency

Mobility state of the device
at each place - stationary or
moving

Table 5. Spatial and temporal features used for Semantic Place
Classification

location sampling is duty cycled to conserve power.
Hence, we rely on several additional features to label
a user’s locations. Table 5 shows the 14 spatial and
temporal features that we extract from a user’s context
history and employ for semantic place classification.
These are:

• Place visit count: This is computed as the number
of unique visits to a place. This feature helps in
identifying places such as ‘Home’ which a user
would visit the most.

• Relative place visit frequency: This is the number
of visits to a place per day and is computed as

Number of unique visits to a place
Total number of days in the user’s location history

This feature too helps in identifying places such as
‘Home’ which would be visited almost everyday.

• Place stay duration: This is computed as the total
time spent at a place. This again should be high
for ‘Home’ as most people spend a bulk of their
day at home.

• Average place stay duration: This is the average
stay duration at a place (per visit) and is computed
as

Total stay duration at a place
Number of visits to the place

.

• Place - Time slot visit frequency: This is computed
by counting the unique time slots at which a place
has been visited by the user. This feature helps
in identifying places such as ‘Home’ and ‘Work’
as most people visit their homes at all possible
time slots but usually visit their work place on
weekdays only.

• Time slot - place visit frequency: This is computed
by calculating the count of a user’s unique visits to
a place in each time slot.

• Time slot - place time frequency: This is computed
by calculating the total time spent at a place,
by the user, in each time slot. These temporal
features too help identify ‘Home’ and ‘Work’ as
most people are at home during the night and at
work during the noon time slots.

• Bluetooth count: As suggested by our previous
work in [5], bluetooth count can be utilized to
determine the number of people around. We
compute an average bluetooth count for each
unique place in the user’s location history.

• Bluetooth diversity: To compute this, we deter-
mine the set of bluetooth devices scanned at each
unique visit to a place. For every two consecutive
visits, we compute the ratio of the intersection to
the union of the device sets and average all the
values to generate a final value. The bluetooth
features are useful for identifying places such as
recreational spots which several people may visit
and at different times.

• Wi-Fi count: This is computed by counting the
number of visible Wi-Fi Access Points (APs) heard
at a location for each unique visit and averaging
the values.

• Wi-Fi received signal strength (RSSI): This is com-
puted by recording Wi-Fi RSSI values heard at a
location for each unique visit and averaging them.
These Wi-Fi related features enable distinguish-
ing between indoor and outdoor places.
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• Wi-Fi connectivity status: This is generated as the
count of times the user’s device is connected to
Wi-Fi at a place. This feature helps in identifying
places that are known to a user as his/her device
would connect to the Wi-Fi network at a known
place only and if it has access to it.

• Charging state frequency: This represents the
charging state (ac, usb or disconnected) frequen-
cies of the device at a place. This feature too helps
in distinguishing between indoor and outdoor
environments as ac charging can occur indoors
only.

• Mobility state frequency: This represents the
mobility state (stationary/moving) frequencies of
the user at a place. This feature helps identify
recreational and transportation places where the
user would exhibit more movement.

The Learning Engine of Rover II employs Algorithm
1 for identifying the semantic labels of all the places
visited by a user. The algorithm takes as input the user’s
context history consisting of the 14 spatial and temporal
features described in Table 5. It returns the list of all
locations, as well as their semantic place labels, in the
user’s location history.

As shown, we first hash each timestamp in the
user’s context history to a time slot. We then discretize
each location (expressed in latitude and longitude),
in the user’s location history, into virtual rectangular
bins that are formed throughout the geographical
coordinate space. This helps in reducing redundancy
in the locations. Each bin is created through a location
hashing function which takes as input: (i) latitude
and longitude as 64-bit floats and (ii) a bin size r in
meters. The function leverages the fact that latitude and
longitude are expressed in decimal degrees, with the
fifth decimal place corresponding roughly to 1 meter.
Since this precision was acceptable to us, we truncated
each value to five decimal places. The function produces
the resulting integer key with the longitude and latitude
ending up in the high and low bits, respectively. This
key identifies a virtual bin approximately r meters per
side, although the bin will be elongated north-to-south
for regions further away from the equator due to the
Earth’s curvature. Based on empirical observations, we
set r as 500m in our current implementation.

We then cluster the hashed locations using the
DBSCAN [9] algorithm which identifies clusters in
large spatial datasets by looking at the local density
of database elements. DBSCAN takes two parameters
as input - MinPts which is the minimum number of
points in the vicinity of a point in order for it to be
the cluster center and Eps which is the vicinity radius.
We set MinPts as 100 and Eps as 2400m in our current
implementation. Figure 3 show the location clusters

Figure 3. Location clusters for a randomly chosen user in our
dataset (best viewed in color).

generated for a randomly chosen user in our dataset.
To improve legibility of the figure, so that individual
locations can be discerned, we sampled the number of
data points down. The user’s ‘Home’ cluster (colored in
pink) and the ‘Work’ cluster (colored in blue) are clearly
evident. The locations colored in maroon are outliers or
‘Noise’ as determined by DBSCAN as they do not belong
to a cluster but are other places that are visited by the
user.

We now extract the spatial and temporal features
described earlier, for each hashed location, and use
them for labeling the locations. We first identify the
user’s ‘Home’ location. To achieve this, we exploit the
fact that ‘Home’ is the place where we spend the most
time, which we visit the most and on all days and at
all possible time slots. Once the ‘Home’ is obtained,
we identify his ‘Work’ location. Most people follow a
day time schedule and hence we classify ‘Work’ as the
place which is not ‘Home’, and which is visited most
and where most time is spent during the noon time
slot. We also utilize the fact that ‘Work’ will usually
not be visited on weekends (hence, ratio of time spent
on weekends to weekdays will be < 1) and will not be
visited at all possible time slots.

We then classify all the other locations in the
user’s location history into the 8 remaining classes.
For labeling ‘IndoorRecreation’, ‘OutdoorRecreation’
and ‘Transport’ places, we use features such as the
average number of visible Wi-Fi APs and RSSI, average
number and diversity of bluetooth devices, and average
movement of the user (as observed from his normalized
mobility state). This approach is intuitive because
recreational and transportation places will involve
more movement, will typically be visited by many
people and by different people during different times.
Also, indoor places will have a higher count of APs and
higher average RSSI.
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Algorithm 1: Algorithm for Semantic Place Classification
Input: User’s context history data consisting of the spatial and temporal features described in Table 5
Output: List of locations visited by user and their semantic place labels
foreach Timestamp for which there is a location logged do

Hash each timestamp to a time slot;
Hash each location (in latitude and longitude format) to a discrete virtual rectangular bin of size 500m;

end
Cluster the hashed locations using DBSCAN based on distance;
// Extract the spatial and temporal features

foreach hashed location in user’s location history do
Compute the total stay duration, visit count, time slot - place visit frequency, average stay duration and
relative visit frequency;
Compute the time slot at which the location is visited most and the count of unique time slots at which it is
visited;
Compute the ratio of time spent on weekends to time spent on weekdays for the location;
Compute the average count of visible Wi-Fi APs and the average Wi-Fi RSSI for the location;
Compute the average count and diversity of bluetooth devices for the location;
Compute the normalized mobility state frequencies, charging state frequencies and Wi-Fi connectivity
status for the location;

end
foreach time slot do

Compute the total place stay duration and place visit counts for each visited place, in the user’s location
history, for the time slot;
Compute the location that is visited the most, and the location at which the most time is spent most, during
this time slot;

end
// Label ‘Home’ and ‘Work’

Label ‘Home’ as the location that has the highest stay duration, highest relative visit frequency, highest visit
count and has been visited at all time slots;
Label ‘Work’ as the place that is visited most or where most time is spent during the Noon time slot, which is
not ‘Home’, for which the ratio of weekend to weekday time < 1.0 and which has not been visited on all time
slots;
// Label other places

foreach hashed location in user’s location history (other than ‘Home’ and ‘Work’) do
Label as ‘IndoorRecreation’, ‘OutdoorRecreation’ or ‘Transport’ based on its features such as normalized
mobility state of the user, average count of visible Wi-Fi APs, average Wi-Fi RSSI, average bluetooth count
and diversity ;

end
foreach unlabeled hashed location in user’s location history do

Label as ‘IndoorKnown’ or ‘OutdoorKnown’ based on features such as visit count, # of time slots at which
visited, average count of visible Wi-Fi APs, average Wi-Fi RSSI, and Wi - Fi connectivity status;
if location not labeled as ‘IndoorKnown’ or ‘OutdoorKnown’ then

if location belongs to the same cluster as Home then
Label as ‘NearHome’;

else if location belongs to the same cluster as Work then
Label as ‘NearWork’;

else
Label as ‘Other’;

end
return List of locations visited by user and their semantic place labels;

Locations which do not get classified into these 3
classes are then categorized as ‘IndoorKnown’ and
‘OutdoorKnown’ based on features such as their visit

count, number of unique time slots at which they
are visited, average number of visible Wi-Fi APs and
average Wi-Fi RSSI, and Wi-Fi connectivity status of the
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Accuracy
kNN J48 Naive Bayes
0.78 0.85 0.63

Table 6. Comparison of accuracies of various classifiers on the
training set for Semantic Place Classification

Feature Description or Representation
Hashed time
slot

Time of day and Day of week at
the time of the call

Semantic
Place

Semantic location of the user
(Home/Work/Transport etc.)

Bluetooth
count

Number of people around

Mobility state Whether user is moving or sta-
tionary

Average call
frequency

Average number of calls made
(per hour) during each time slot

Average ring
frequency

Average number of calls received
(per hour) during each time slot

Average
missed call
frequency

Average number of calls missed
(per hour) during each time slot

Average
missed call
rate

% of the calls received that are
missed during each time slot

Average call
duration

Average call duration during a
time slot

Average
call time
difference

Average time difference (in min-
utes) between calls made during
a time slot

Average
ring time
difference

Average time difference (in min-
utes) between calls received dur-
ing a time slot

Average SMS
out frequency

Average number of SMS sent (per
hour) during a time slot

Average SMS
in frequency

Average number of SMS received
(per hour) during a time slot

Table 7. Spatial and temporal features used for call acceptance
prediction

device. This approach is also intuitive as known places
(such as a friend’s home or a coffee shop) will be visited
more often by the user and possibly at different times of
day. Moreover, a user’s device will be connected to Wi-
Fi at a known place that he would have visited before.
Finally, places which do not fall into the ‘Known’ class
are then classified based on the clusters they belong
to. All unlabeled places in the ‘Home’ cluster of a user
are labeled as ‘NearHome’ and all places in the ‘Work’
cluster are labeled as ‘NearWork’. Finally, all remaining
unlabeled places are labeled as ‘Other’.

We experimented with kNN (k=3), J48 decision tree
and Naive Bayes classifiers for classifying the places
into the 8 classes as mentioned above. Table 6 shows
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Figure 4. % of calls missed in different time slots for a randomly
chosen user from our dataset

the accuracies for these 3 classifiers on the training data
collected as part of the field study (see Section 3.2) with
10 fold cross validation. J48 had a superior performance
and faster training time than kNN and Naive Bayes.
Hence we have implemented it for Semantic Place
Classification.

4.4. Call Acceptance Prediction
A user’s call log, as generated via the DeviceAnalyzer
application, consists of timestamped events such as
calls made and received, call duration, properties of
the number called etc. This log can be used to mine a
user’s communication behavior such as his availability
or willingness to communicate (for instance, the user
could be in a meeting at work and unavailable to
accept a call) or the next contact that he would call.
As discussed earlier, building such behavioral models
for a user can enable a context-aware system to predict
and anticipate his behavior and take proactive actions
on his behalf without an explicit request from him. For
instance, if a user is unlikely to accept an incoming
call, the system can take appropriate actions such as
messaging the callee after rejecting the call. In addition,
the system can periodically provide shortcuts on the
device screen for the next called contact.

In this paper, we focus on one of these communica-
tion behavior models - predicting whether a user would
accept an incoming call based on his/her communica-
tion behavior history. To this end, we employ several
spatial and temporal features, device related features,
and as well as features of the contact with whom the
communication is occurring.

Spatial and Temporal features. Table 7 shows the 13
spatial and temporal features we extract from a user’s
context history. We use practical knowledge to select
these features as they define the usual communication
behavior of the user at a place and during a time
slot. Typically, people communicate very little during

8

 EAI
European Alliance
for Innovation

EAI Endorsed Transactions on 
Context-aware Systems and Applications 

05 - 09 2016 | Volume 3 | Issue 10 | e3



the night if they are sleeping at home or during the
afternoon if they are at work. Also, many people return
calls during their evening commute or when they reach
home. Thus, the features that we extract are:

• Hashed time slot (Time of day and day of week) of
the time of call - This feature is important as the
time and day heavily influence a user’s availability
to attend a call. Figure 4 shows the fraction of calls
missed (from all the received calls) in different
time slots for a randomly chosen user from our
dataset (WD = Weekday, WE = Weekend, M=
Morning, N = Noon, E = Evening and Nt = Night).
Clearly, week day morning and noon time slots
have a high rate of missed calls. This is intuitive
as a user could be at work on weekday afternoons
and hence, reluctant to attend calls.

• Semantic Place - This represents the semantic
location of the user at the time of call and is
generated using the Semantic Place Classification
model described in Section 4.3. This feature too is
important for determining if a user would attend
a call. For instance, a user could be at work and
unable to attend calls.

• Bluetooth count - This represents the number of
people around the user at the time of call. For
instance, if the user is in a meeting, he/she might
not be able to attend calls.

• Mobility state - This represents whether the user
is moving or stationary at the time of call. For
instance, if a user is driving, it would be difficult
for him to attend a call.

• Average call frequency - This represents the
average number of calls made by the user (per
hour) during the time slot and is computed as

Total # of calls made during a time slot

Total # of time slot hours (for that slot) in user’s call history

• Average ring frequency - This represents the
average number of calls received by the user (per
hour) during the time slot and is computed as

Total # of calls received during a time slot

Total # of time slot hours (for that slot) in user’s call history

• Average missed call frequency - This represents
the average number of calls missed by the user
(per hour) during the time slot and is computed
as

Total # of calls missed during a time slot

Total # of time slot hours (for that slot) in user’s call history

• Average missed call rate - This represents the % of
calls, received by the user, that are missed during

Feature Description or Representation
Ringer mode Device ringer mode status (nor-

mal/silent/vibrate)
Roaming state Whether the device is on roaming

or not
Service state Whether the device is in service,

out of service, receiving emer-
gency calls only

Battery % Battery level (%) of the device
remaining at that time

App
frequency

Average number of applications
running on the device

Process
frequency

Average number of processes
running on the device

Table 8. Device related features used for call status prediction

a time slot and is computed as

Total # of calls missed
Total # of calls received

during the time slot.

• Average call duration - This represents the
average call duration for the user during a time
slot and is computed as

Total call duration
Total # of calls

during the time slot.

• Average call and ring time difference - These
represent the average time difference (in minutes)
between calls made or calls received by the user
during the time slot.

• Average SMS out frequency - This represents the
average number of SMS sent by the user (per hour)
during the time slot and is computed as

Total # of SMS sent by the user during a time slot

Total # of time slot hours (for that slot) in user’s call history

• Average SMS in frequency - This represents the
average number of SMS received by the user (per
hour) during the time slot and is computed as

Total # of SMS received by the user during a time slot

Total # of time slot hours (for that slot) in user’s call history

Device related features. In addition, the device state at
the time of communication can also determine a user’s
availability. For instance, if a device is on silent mode
then the user may be in a meeting. If the device is on
roaming, the user could be traveling. Similarly, if the
user’s device is running out of battery, then he may want
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Feature Description or Representation
Frequency of com-
munication

Total number of calls or SMS
exchanged with this contact

Normalized
Frequency of
communication

Fraction of the total number of
calls or SMS that are with this
contact

Relative
Frequency of
communication

Average number of calls or SMS
(per day) exchanged with this
contact

Average call dura-
tion

Average call duration for this
contact

Missed call
frequency

Total number of missed calls for
this contact

Normalized
missed call
frequency

Fraction of the total number of
calls missed that are with this
contact

Relative missed
call frequency

Average number of calls missed
(per day) for this contact

Average missed
call rate

% of the calls received, that are
missed, for this contact

Number type Whether number is unknown,
toll free, mobile, fixed line etc.

Number validity Whether number could be
parsed and is local or foreign

Number country
code source

Whether the number is from the
same country, international etc.

Average
communication
time difference

Average time difference (in
hours) between consecutive
communication (such as call or
SMS) with this contact

Table 9. Contact related features used for call prediction

to charge his device before any communication. These
factors too can influence a user’s decision to attend calls.
Table 8 shows the 6 device related features that we
employ. These are:

• Ringer mode - This represents the ringer mode
status (normal/silent/vibrate) of the device at the
time of call.

• Roaming state - This represents whether the
device is on roaming or not at the time of call.

• Service state - This represents the service state
of the device i.e. whether it is in service, out of
service or receiving emergency calls only at the
time of call.

• Battery % - This represents the battery level of the
device remaining at the time of call.

• App frequency - This represents the average
number of apps running on the device at the time
of call.

• Process frequency -This represents the average
number of processes running on the device at the
time of call.

Caller related features. Moreover, who the the caller is
can also influence a user’s decision to attend a call. If the
call is from an important contact, then the user might
attend it irrespective of his current situation. Similarly,
if a user communicates very frequently with a caller,
he/she may be more willing to take the call. On the
other hand, if the caller is unknown, then the user may
decide to not take the call. Hence, we extract several
features for the caller/contact who is calling. Table 9
shows the 12 contact related features we use:

• Frequency of communication - This represents
the strength of communication (in the form of
total number of calls or SMS exchanged) with this
contact.

• Normalized Frequency of communication - This
represents the % of the total communication, of
the user, that is with this contact (computed as
the fraction of the total number of calls or SMS
exchanged that are with this contact).

• Relative Frequency of communication - This
represents the average number of calls or SMS
exchanged per day with this contact and is
computed as

Frequency of communication with the contact

Total number of days in user’s communication history

• Average call duration - This represents the
average call duration for this contact and is
computed as

Total call duration
Total number of calls with this contact

• Missed call frequency - This represents the total
number of missed calls for this contact.

• Normalized missed call frequency - This repre-
sents the % of calls missed, by the user, that are
for this contact and is computed as the fraction of
the total number of calls missed.

• Relative missed call frequency - This represents
the average number of calls missed per day for this
contact and is computed as

Missed call frequency for the contact

Total number of days in user’s communication history

• Average missed call rate - This represents the % of
the calls received from this contact that are missed
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Accuracy
J48 kNN Naive Bayes Random Forest SMO
0.87 0.77 0.67 0.88 0.83

Table 10. Comparison of accuracies of various classifiers on the DeviceAnalyzer validation set for Call Prediction

and is computed as

Total number of calls missed
Total number of calls received

for this contact.

• Number type - This represents the number type
i.e. whether it is unknown, toll free, mobile, fixed
line etc.

• Number validity - This represents the number
validity (whether it could be parsed) and is local
or international.

• Number country code source - This represents the
country code source i.e. whether the number is
from the same country, international etc.

• Average communication time difference - This
represents the average time difference (in hours)
between consecutive communication (such as a
call or SMS) with this contact.

In order to build this model, we extracted these 31
features (13 spatial and temporal, 6 device related and
12 contact related) from the context history of all the
users in the DeviceAnalyzer validation set (see Section
3.1). For each user in the validation set, we labeled
each instance of an incoming call as either of the 2
classes - ‘Call Taken’ if the call is accepted or ‘Call
Missed’ if the call is not accepted by the user. Since
the call log data can be unbalanced for many users
(with more instances for one class than the other), we
applied a resampling filter to introduce a bias towards
a uniform class distribution. This filter produces a
random subsample of a dataset using either sampling
with replacement or without replacement.

We experimented with 5 machine learning tech-
niques for this model - J48 Decision Tree, kNN (k=3),
Naive Bayes classifier, Random Forest (10 trees) and
SMO. These algorithms were run on the validation set
with 10 fold cross validation. Table 10 shows the com-
parison of accuracies for these 5 algorithms. Random
Forest had the best performance on the data and hence,
we have implemented it for Call Acceptance Prediction
model.

4.5. Device Charging behavior modeling
Ferreira [11] et al., analyzed the device charging
behavior (such as charging time periods, usual battery
levels, levels at which charging is initiated, and

Feature Description or Representation
Hashed time
slot

Time of day and Day of week

Semantic Place Semantic Location of the user
(Home/Work/Transport etc.)

Mobility state Whether user is moving or
stationary

Battery Level
status

Whether battery is very low, low
etc.

Charging state Device charging state - con-
nected (via ac/usb) or discon-
nected

Table 11. Device charging behavior related features

preferred mode of charging) of 4035 participants over a
course of 4 weeks. Their study showed that most users
follow a pattern in charging their devices. The daily
average battery level across all users was 67%. The 2
major charging schedules for most users were between
6 and 8 pm in the evening, when the battery level was
at 40%, or between 1 and 2 am in the night when
the battery level was at 30%. Also, users preferred to
charge their phones via ac for longer periods and usb
for shorter periods.

As suggested by this work, we attempted to build
such charging behavior models for all users in
our DeviceAnalyzer dataset. Table 11 shows the 5
features we employ for modeling users’ device charging
behavior. These include:

• Hashed time slot (Time of day and day of week):
This feature is important as the time or day
can influence a user’s inclination to charge their
device. For instance, many users prefer to charge
their devices overnight.

• Semantic Place: This represents the semantic
location of the user and is generated using the
Semantic Place Classification model described
in Section 4.3. This feature is intuitive as most
people charge their devices at ‘Home’, ‘Work’ or
an indoor location.

• Mobility state: This represents whether the user is
moving or stationary. People tend to charge their
devices in their cars and hence, this feature is
important.

• Battery Level: This is one of the most important
features. As suggested by [11], most users avoided
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extremely low battery levels and there is a
significant correlation between the battery level
and initiation of charging. Since the device battery
level is a numeric value, we discretized it into
certain ranges and used the range as a feature. For
instance, a battery level of 0 - 20% maps to a range
of ‘VeryLow’, from 20 - 40 % is ‘Low’, from 40 -
60% is ‘Average’, from 60 - 80% is ‘High’ and from
80 - 100% is ‘VeryHigh’.

• Charging state: Finally, this represents the
device’s charging state - if it is getting charged (via
ac/usb) or is disconnected.

These features were used to generate the device
charging behavior instances for all the users in the
DeviceAnalyzer dataset. To address any imbalance in
the dataset, we applied a resampling filter to introduce
a bias towards a uniform class distribution. We also
filtered out duplicate instances.

To model the charging behavior of users, we
employed association rule mining to mine associations
between the various features - time period, semantic
place, mobility state, battery level and charging status
of the device. A significant benefit of association rules
is that they can determine strong associations between
different attribute values. Thus, they can predict any
attribute, not just the class, which gives them the
freedom to predict combinations of attributes[29]. We
employed two state of the art association rule mining
algorithms - Apriori [2] and PredictiveApriori [26].
Apriori iteratively reduces the minimum support until
it finds the required number of rules with the given
minimum confidence. We set the minimum confidence
level as 0.6 and the number of rules to generate as
5. The minimum support is varied from 1.0 to 0.1.
PredictiveApriori combines confidence and support
into a single measure of predictive accuracy and finds
the best n association rules in order. We set n as 5 in our
experiments. Some of the sample rules generated for the
users in our dataset are:

• If ‘Time slot = Weekday Night’ then ‘Charging
State = charging’.

• If ‘Battery Level = Very Low’ and ‘Semantic Place
= Home’ then ‘Charging State = charging’.

• If ‘Charging Status=charging’ and ‘Time
slot=Weekend Noon’ then ‘Mobility
State=Stationary’.

• If ‘Time slot = Weekend Night’ and ‘Battery
Level=Low’ then ‘Charging State = charging’

Clearly, these rules are intuitive and support the
findings in [11]. As evident, users in our dataset
charge their phones during weekday or weekend nights,
when the battery levels are low and they are at

home. Learning such rules, from a user’s charging
behavior, can enable the design of intelligent prompting
mechanisms to proactively remind users to charge their
devices.

5. Evaluation
5.1. Methodology and Goals
As stated earlier, the Learning Engine of the Rover
II middleware is responsible for building diverse user
behavioral models in order to predict a user’s behavior
and enable the middleware to take proactive actions
on the user’s behalf. Hence, the primary goal of our
evaluation is to determine how accurately the various
algorithms and approaches, that we have implemented
as part of the engine, model users’ behavior. To this end,
we evaluate the approaches that we have implemented
currently (for Mobility State Classification, Semantic
Place Classification and Call Acceptance Prediction) on
the entire dataset of 200 users from the DeviceAnalyzer
data collection as well as the dataset collected from the
field study (see Section 3) with 10 fold cross validation.
We perform an accuracy analysis of these approaches
and report our results.

5.2. Accuracy measures used
Since these models involve binary and multi-label
classification, we define accuracy for them as:

a =
T ∩ P
T ∪ P

where T is the set of ground truth and P is the set of
predicted labels for all instances.

5.3. Results
Table 15 shows the overall accuracy results for all the
approaches that have been implemented as part of the
Learning Engine in Rover II. As evident, they achieve
high accuracy. We now discuss the accuracies of the
individual models that have been implemented.

Semantic Place Classification. Table 12 shows the accu-
racies of our Semantic Place Classification algorithm
for individual place labels. The ‘Home’ location is
labeled correctly for all users. Also, places such as
‘Work’, ‘IndoorKnown and ‘OutdoorKnown’ are classi-
fied with high accuracy. Similarly, location based clus-
tering allows us to label places that are ‘NearHome’
and ‘NearWork’ accurately. While ‘IndoorRecreational’
places are labeled correctly with high accuracy, ‘Out-
doorRecreational’ and ‘Transport’ related places are
classified with reasonable accuracy. A possible reason
for this could be that at both these places, a user
exhibits similar behavior - more movement and being
surrounded by several people at different times. Hence,
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Semantic Place Label

Accuracy
Home Work InRec OutRec Transport InKnown OutKnown NearHome NearWork Other

1.0 0.95 0.93 0.78 0.81 0.94 0.9 0.96 0.95 0.76
Table 12. Individual place accuracies for Semantic Place Classification

Ground Truth
Predicted labels

Stationary Moving
Stationary 0.85 0.15

Moving 0.07 0.93
Table 13. Confusion matrix for Mobility State Classification

Ground Truth
Predicted labels

Call Taken Call Missed
Call Taken 0.91 0.09
Call Missed 0.13 0.87

Table 14. Confusion matrix for Call Acceptance Prediction

Model Accuracy (%)
Semantic Place Classification 89.8
Mobility State Classification 88.02
Call Acceptance Prediction 89.1

Table 15. Accuracy of various algorithms (%)

we observed that the correct labels for some of these
places were interchanged. Overall, our algorithm has an
accuracy of 89.8 %.

Mobility State Classification. Table 13 shows the confu-
sion matrix for Mobility State Classification. Overall,
this approach has an accuracy of 88.02% and can accu-
rately classify the user’s mobility state.

Call Acceptance Prediction. Table 14 shows the confusion
matrix for Call Acceptance Prediction. Our approach
achieves an accuracy of 89.1% and can accurately
determine whether a user would accept an incoming
call.

6. Related Work
Since our work involves building several user behavior
models for semantic place classification, mobility state
classification, call acceptance prediction etc. we have
categorized the related work into different sections. We
differentiate our work from them and identify their
shortcomings. Please note that while most of these
works have focused on building a single isolated user
model, we have developed a unified infrastructure
for building several such models, from large-scale
smartphone data, as part of the generic Rover II context-
aware middleware.

6.1. Semantic Place Classification
Previous research in Semantic Place Classification has
used the MDC dataset [16, 18] for classifying semantic
places into 10 categories specified by the challenge
organizers (Home, Home of a friend, Work, Transport,
Indoor sports, Outdoor sports etc.). Huang et al. [13]
used 54 features and experimented with classifiers
such as kNN, Support Vector Machines (SVM) and
J48 along with an ensemble of the three to achieve a
final accuracy of 65.77% with 10 fold cross validation.
Montoliu et al. [22] employed a multi-coded class based
multiclass evaluation rule that combines classification
results of the binary classifiers such as kNN and SVM.
They achieve an accuracy of 73.26% with 2 fold cross
validation. Zhu et al. [31] compare the performance
of Logistic Regression, SVM, Gradient Boosted Trees
(GBT), and Random Forest to achieve an accuracy of
65.3% with GBT and 10 fold cross validation. Lex et
al. [19] used 32 features and employed Random Forest
as well as SVM. They achieve an accuracy of 85.4%
with RandomForest and 10-fold cross-validation. While
some of the features employed by these works overlap
with ours, a direct comparison with them is not possible
due to difference in the datasets, quality of location
information, and semantic place labels. However, the
overall accuracy of our Semantic Place Classification
algorithm is higher.

More recently, Bao et al. [4] have experimented with
the DeviceAnalyzer dataset and employed features such
as Wi-Fi visibility and connectivity, and cell locations
to identify semantic places such as Home, Work and
Commute as well as the transitions between them.
However, they do not present any evaluation or results.

6.2. Mobility State
While previous work in activity recognition (including
SenseMe [5], CenceMe [21] and Jigsaw [20]) has focused
on fine-grained activity recognition such as Walking,
Running, Driving etc. , it is not possible to do that
with the DeviceAnalyzer dataset because of the limited
accelerometer data available and its sampling rate (see
Section 4.1). Hence, due to this inherent limitation of
the used dataset, our work focuses on determining two
mobility states for the user - Moving and Stationary.

6.3. Call Acceptance Prediction
Husna et al. [14] and Zhang and Dantu [30] have
proposed ‘quantifying’ the presence of users and their
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availability for phone calls. They used 3 basic features
such as time of the day, day of the week and location,
and predicted the user’s availability and likelihood of
accepting phone calls based on a weighted average of
these feature values. They evaluated their approach
on the data of 10 users from the Reality Mining
dataset [7] and appear to have achieved an average
accuracy of around 50%. This makes their approach
highly unsuitable for real world applications. While
our approach shares similar goals with these works, we
use 31 varying contextual features for call acceptance
prediction. In comparison to these works, our approach
has a much higher accuracy (89%) for 200 users.

6.4. Device charging behavior
Existing literature [15, 23, 25] has explored correlations
between device power consumption and a user’s context
(such as location, time and device usage) as well
as device related features (such as CPU utilization,
wireless state, IO and data transfer) in order to perform
context-aware and personalized device battery lifetime
and level prediction. However, majority of this research
is driven by the need for effective energy management
on devices. To the best of our knowledge, no other
work has proposed modeling a user’s charging behavior
to generate patterns and rules in order to design
intelligent prompting or reminder mechanisms.

6.5. User modeling from mobile phone data
The Reality Mining project [7] was one of the first
attempts at mobile phone data collection. This project
collected data from 100 users over the course of 9
months. However, a large amount of data collected
in this study was through self reported surveys.
Eagle and Pentland [8] applied principal component
analysis to users’ location data from this dataset to
identify primary routines or eigenbehaviors (such as
sleeping late on weekends or going out on weekend
nights) for individuals and their social circle. They
also inferred community affiliations by clustering
individuals. Altshuler et al. [3] used the same dataset
for predicting individual traits of users such as their
nationality, gender and social links such as life partners.
Farrahi [10] explored the use of topic modeling for
discovering location driven routines such as ‘going to
work’ or ‘staying home at evening’ and experimented
with this approach on a subset of the Reality Mining
dataset. In contrast, we attempt to build diverse
behavioral models that capture different aspects of
users’ behavior (such as place visitation patterns,
calling patterns and device charging behavior) from
large-scale data collected over several years.

Srinivasan et al. [27] proposed an association rule
mining based algorithm to mine co-occurring context
patterns of users on their devices. A limitation of

their work is that though they determine correlations
between inferred contexts of users such as ‘AtHome’
and ‘ReadComics’, they do not explain how the
inference is performed. Moreover, their approach is
restricted to pattern mining only and cannot predict or
classify user behavior which is often more important
and accurate. On the other hand, we employ several
machine learning techniques including classifiers and
association rules to build user behavioral models.

7. Conclusion and future work
In this paper, we explored learning diverse patterns
from large-scale data collected from users’ smart-
phones. We utilized these patterns to help identify
a variety of the users’ behaviors, habits, and daily
life places and activities. To this end, we developed a
unified infrastructure and implemented several novel
approaches and algorithms that employ various contex-
tual features and state of the art machine learning tech-
niques for building behavioral models of users. Exam-
ples of generated models include classifying users’
semantic places and mobility states, predicting their
availability for accepting calls and modeling their
device charging behavior. We evaluated our work on
large-scale real-world smartphone data of 200 users,
from the DeviceAnalyzer dataset, consisting of 365
million data points. We showed that our algorithms and
approaches can model user behavior with high accuracy
and demonstrate improved performance over existing
work.

We are currently working on building several other
models such as predicting the next called contact for
a user, as well as battery lifetime for his device. In
future, we plan to work on more advanced models
such as predicting users’ sleep cycles, classifying their
personalities in terms of the Big Five personality model,
and inferring their moods based on their smart phone
usage. We also plan to investigate community models
which utilize the power of crowd sourcing and group
behavior. In addition, we are working on analyzing
behavioral sequences which are behaviors that follow
each other (for instance, charging phone after reaching
home, sending an SMS after missing a call etc.) and
modeling them using HMMs. Our ultimate goal is to
enable Rover II to act as an intelligent personal digital
assistant and take proactive actions on the users’ behalf.
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