
1

Ant Colony-based Tabu List Optimization for
Minimizing the Number of Vehicles in Vehicle Routing
Problem with Time Window Constraints
J.L.E.K Fendji1,*, M.V.K. Yakam1, M.D. Fendji2

1Computer Engineering, University Institute of Technology, The University of Ngaoundere – Cameroon
2Faculty of Engineering and Technology, University of Buea, Cameroon

Abstract

The Vehicle Routing Problem consists in finding a routing plan for vehicles of identical capacity to satisfy the demands of
a set of customers. Time window constraints mean that customers can only be served within a pre-defined time window.
Researchers have intensively studied this problem because of its wide range of applications in logistics. In this paper, we
tackle the problem on an economical point of view with a focus on capital expenditure (CAPEX), where the minimization
of the number of vehicles is more important than the total traveling distance. This customization finds its applications in
scenarios with limited CAPEX or seasonal/temporary operations. In these cases, the CAPEX should be minimized as much
as possible to reduce the overall cost of the operation, while satisfying time window constraints. We provide an Ant Colony
Optimization-based Tabu List (ACOTL). We test the proposed approach on the well-known Solomon’s benchmarks. We
compare experiments results to Dynamic Programming on small size instances and later to the best-known results in the
literature on large size instances. ACOTL allows to reduce the number of vehicles used sometimes up to three units,
compared to the best-known results, especially for instances where customers are geographically in clusters randomly
distributed with vehicles of low or medium charges.

Keywords: Vehicle Routing Problem with Time Window, Ant Colony-based Tabu List, number of vehicles, CAPEX minimisation.

Received on 06 August 2020, accepted on 30 August 2020, published on 31 August 2020

Copyright © 2020 J.L.E.K Fendji et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution license, which permits unlimited use, distribution and reproduction in any medium so long as the original work
is properly cited.

doi: 10.4108/eai.12-5-2020.166041

1. Introduction

Every year, many logistic companies for delivery receive
huge incomes from distribution processes. Distribution
processes play an important role in supply chains, since
almost half of the total supply chain cost comes from
transportation processes [1]. For this reason, the
management of distribution processes is critical in
minimizing total supply chain cost. According to Toth and
Vigo, transportation cost represents between 10 and 20
percent of goods’ prices on the market, and computerized
procedures based on optimization techniques permit make
savings of around 5 to 20 percent on this transportation cost
[2]. Transportation cost includes capital expenditures

*Corresponding author. Email:lfendji@gmail.com

(CAPEX), that depends mainly on the cost and the number
of vehicles, and operational expenditures (OPEX), that
depends mainly on the total distance traveled by the set of
vehicles. The determination of the number of vehicles and
the route for each vehicle is known as the Vehicle Routing
Problem.

Vehicle routing problem (VRP) is a common name
associated to a class of combinatorial problems involving
sets of customers that should be served by several vehicles
[3]. The VRP can model various real-life problems, linked
in supply chain management in the physical delivery of
goods and services, such as postal deliveries, school bus
routing, recycling routing and so on [4]. There are several
variants of this problem. These are formulated based on the
nature of the transported goods, the quality of service

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

mailto:https://creativecommons.org/licenses/by/4.0/
mailto:https://creativecommons.org/licenses/by/4.0/

J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

2

required and the characteristics of the vehicles and the
customers.

In real-life scenarios, an important characteristic of
customers is the time window during which a customer can
be served. This characteristic extends the classic VRP
problem to the well-known Vehicle Routing Problem with
Time Window constraints (VRPTW). In VRPTW, routes
must contain all the points (customer locations). Each point
is visited within its time window by a single vehicle. Each
route is associated to a vehicle and starts and ends at the
depot. In addition, the total demands of all points on a route
must be less than or equal to the capacity of the vehicle.
Figure 1 presents an example of a VRPTW solution
involving a depot and eight customers (nodes 1 to 8).

Approaches proposed to solve VRPTW usually try to
optimize both CAPEX (number of vehicles) and OPEX
(total traveled distance). But in some scenarios, the
CAPEX is limited and the reduction of the number of
vehicles of just one unit can make the set of vehicles
affordable for the company. Moreover, some distribution
processes can only be performed during a period or season
because of the environmental conditions or the availability
of products. This means reducing the CAPEX can
drastically reduce the overall cost of the operation. This
paper focuses on such scenarios, which are usually
observed during agricultural campaigns, mainly in sub-
Saharan Africa. To tackle this issue, an Ant Colony
Optimization-based Tabu List approach is proposed, which
is a combination of two well-known optimization
approaches.

The rest of the paper is organized as follows. Section 2
briefly presents related works on VRPTW. The problem
formulation is defined in Section 3; followed by the
presentation of the proposed Ant Colony Optimization-
based Tabu List approach in Section 4. Section 5 presents

simulation results and the comparison with the best-known
solutions in the literature, before ending with conclusions
and future directions.

2. Related Works

The Vehicle Routing Problem with Time Window
constraints is classified as a NP-hard combinatorial
optimization problem [5]. Consequently, approaches based
on meta-heuristics are habitually used for larger instances
of the VRPTW.

Most researchers model VRPTW as a multi-objective
optimization problem with the aim of minimizing both the
number of vehicles and the total travelled distance [6];
while others consider minimizing the number of vehicles
as the primary objective like in [7]. In general, a two-phase
approach is proposed starting by the minimization of the
number of vehicles and ending by the minimization of the
total traveled distance with a fixed number of routes.

Other works proposed new objective functions in
VRPTW, including the minimization of the total waiting
time [8].

Meta-heuristics are usually developed for solving the
multi-objective VRPTW since the problem is NP hard.
They work on a set of candidate solutions which require a
high computation cost, depending on the size of inputs, to
achieve high performance in VRPTW. More details are
available in [9].

Several population-based approaches have been
developed to VRPTW, such as Genetic Algorithms [2] and
Artificial Bee Colony [10]. Ant Colony Optimization has
been applied to Long-Distance VRP [11] and an Improved
Ant Colony Optimization for Multi-Depot Vehicle Routing
Problem is found in [12].

Figure 1. Illustration of a VRPTW solution.

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints

3

Authors in [13] proposed an incremental route building
and an enhanced algorithm to tackle the VRP with soft time
windows.

Some researchers tried to provide exact approaches
such as restricted dynamic programming to solve VRPTW
[14]. But this approach solves only small VRP instances
because of the NP-hard property.

Many local search approaches have also been proposed
to solve VRPTW, namely Tabu Search [15], Simulated
Annealing [16], Variable Neighborhood Search (VNS)
[17], Large Neighborhood Search [18], and Guided Local
Search [19].

3. Problem Formulation

3.1. Notations

We will use the following list of notations to represent the
problem formulation.

Parameters
N: number of customers {1,…,n}
K: Number of vehicles {1,…,k}
Q: capacity of vehicle K
qi : customer 𝑖𝑖 demand
dij: cost incurred on arc from node 𝑖𝑖 to 𝑗𝑗
tij: travel time between node 𝑖𝑖 and 𝑗𝑗
ei: earliest arrival time at node 𝑖𝑖
e0 : exit time from depot
fi: latest arrival time at node 𝑖𝑖 or 𝑗𝑗
f0 : maximum route time allowed for vehicle 𝑘𝑘 or return
route time at depot
bi : service time at node 𝑖𝑖
𝑎𝑎𝒊𝒊 ∶ arrival time at node 𝑖𝑖
wi: waiting time
rk: total time of route allocated to each vehicle 𝑘𝑘

Decision Variables
𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if node 𝑖𝑖 is visited immediately before node 𝑗𝑗. 𝑥𝑥𝑖𝑖𝑖𝑖
= 0 otherwise.

𝑦𝑦𝑖𝑖𝑖𝑖= 1 if the node request i is satisfied by the vehicle 𝑘𝑘. 𝑦𝑦𝑖𝑖𝑖𝑖
= 0 otherwise.

𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑖𝑖 if the vehicle 𝑘𝑘 arrive at node 𝑖𝑖 at time
𝑎𝑎𝑖𝑖 𝜖𝜖 max{𝑒𝑒𝑖𝑖; 𝑎𝑎𝑖𝑖} for service 𝑏𝑏𝑖𝑖𝑖𝑖 = 0 if arrival time is 𝑎𝑎𝑖𝑖 >
𝑓𝑓𝑖𝑖

We assume a0 = 0 and b0i = 0, for all k.
Let 𝐺𝐺 = (𝑉𝑉; 𝐸𝐸) an undirected graph where 𝑉𝑉 =

 {𝑣𝑣𝑖𝑖; 𝑖𝑖 = 0, … ,𝑛𝑛} denoting a depot (𝑣𝑣0) and 𝑛𝑛 customers
(𝑣𝑣𝑖𝑖 ; 𝑖𝑖 = 1, … ,𝑛𝑛). A non-negative demand 𝑞𝑞𝑖𝑖 and service
time 𝑠𝑠𝑖𝑖 are associated with 𝑣𝑣𝑖𝑖, with 𝑞𝑞0 = 0 and 𝑠𝑠0 = 0. E
is a set of arcs with non-negative weights 𝑑𝑑𝑖𝑖𝑖𝑖 (which often
represents distance) between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 , �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖� 𝜖𝜖 𝑉𝑉, 𝑖𝑖 < 𝑗𝑗.

It is often assumed that it is symmetrical and satisfies the
triangular inequality i.e., 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖 .

All customer demands are served by a set of K vehicles.
At each customer 𝑣𝑣𝑖𝑖 , the starting of service time 𝑏𝑏𝑖𝑖 must be
in the time window [𝑒𝑒𝑖𝑖; 𝑓𝑓𝑖𝑖], where 𝑒𝑒𝑖𝑖 and 𝑓𝑓𝑖𝑖 are the earliest
and latest time to serve 𝑣𝑣𝑖𝑖 . If a vehicle arrives at 𝑣𝑣𝑖𝑖 at time
𝑎𝑎𝑖𝑖 < 𝑒𝑒𝑖𝑖 , a waiting time 𝑤𝑤𝑖𝑖 = max {0; 𝑒𝑒𝑖𝑖 – 𝑎𝑎𝑖𝑖} is
observed. Consequently, the starting of service time 𝑏𝑏𝑖𝑖 =
max {𝑒𝑒𝑖𝑖; 𝑎𝑎𝑖𝑖}. Each vehicle of a capacity Q travels on a
route connecting a subset of customers starting from 𝑣𝑣0
and ending within a schedule horizon [𝑒𝑒0; 𝑓𝑓0],
corresponding to the earliest time of exit from the depot
and the latest time of return to the depot.

3.2. Model

The objective function of the model is:

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 K

Subject to the following constraints:

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑘𝑘 𝜖𝜖 {1, … ,𝐾𝐾} (1)

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝑘𝑘 𝜖𝜖 {1, … ,𝐾𝐾} (2)

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 𝜖𝜖 {0,1, … ,𝑛𝑛} 𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

𝐾𝐾
𝑖𝑖=1 (3)

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 𝜖𝜖 {0, … ,𝑛𝑛} 𝑛𝑛
𝑖𝑖=1,
𝑖𝑖≠𝑖𝑖

𝐾𝐾
𝑖𝑖=1 (4)

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

𝑛𝑛
𝑖𝑖=0 = 𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 𝜖𝜖{1, … , 𝑘𝑘} (5)

∑ ∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

𝑛𝑛
𝑖𝑖=0 ≤ 𝑄𝑄 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 𝜖𝜖{1, … , 𝑘𝑘} (6)

𝑎𝑎0 = 𝑏𝑏0 = 𝑤𝑤0 = 0 (7)

𝑒𝑒𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑤𝑤𝑖𝑖 (8)

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖�𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑤𝑤𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖� ≤ 𝑎𝑎𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 𝜖𝜖 {1, … ,𝐾𝐾}𝑛𝑛
𝑖𝑖=0
𝑖𝑖≠𝑖𝑖

𝐾𝐾
𝑖𝑖=1

(9)

∑ �𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖 + 𝑏𝑏𝑖𝑖�𝑛𝑛
𝑖𝑖=1 ≤ 𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 0, 𝑘𝑘 𝜖𝜖{1, … , 𝑘𝑘} (10)

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 𝜖𝜖 {0; 1} ⍱0 ≤ 𝑖𝑖; 𝑗𝑗 ≤ 𝑛𝑛; 1 ≤ 𝐾𝐾 ≤ 𝑘𝑘 (11)

As defined in [20], constraint (1) ensures that for each
vehicle starting its tour from the depot. There is exactly one
outgoing arc from this node. Similarly, the constraint set
(2) guarantees that for each vehicle k, ending its tour to the
depot (I=0), there is exactly one entering arc into the node.
Both constraints (1) and (2) together guarantee a complete
tour for each vehicle. Constraint (3) ensures that from each
node 𝑖𝑖 only one arc is outgoing for each vehicle. Constraint
(4) makes sure that for each node j, only one arc is
incoming for each vehicle. Constraints (3) and (4) ensure
that each vehicle visits each node only once. Constraint (5)
makes sure that for each vehicle starting its trip from depot,
n nodes are visited. Constraint (6) guarantees that for each

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

4

vehicle, the total demand of customers assigned to it does
not exceed its capacity. The constraint (7) sets the arrival,
waiting and service times at the depot to zero for each
vehicle. The constraint (8) ensures that the sum of the
arrival and waiting times at each node 𝑖𝑖 and for each
vehicle is within the time window (between the earliest
arrival time at that node and latest arrival time), 𝑖𝑖 =
1,2,3,···,𝑛𝑛. The constraint (9) ensures that the arrival time
of each vehicle to each node j is not greater than the
specified arrival time at that node. Constraint (10) ensures
that the total traveling time of each vehicle is not greater
than the maximum route time allocated to that vehicle. This
is done to avoid any uncompleted tour.

4. Ant Colony Optimization-based Tabu
List (ACOTL)

4.1. Basic Ant Colony Optimization
algorithm

Ants can solve complex problems collectively, such as
finding the shortest path between two points in a rugged
environment. For this, they communicate with each other
locally and indirectly, thanks to a volatile hormone called
pheromone. In fact, during its progression, an ant leaves
behind a trace of pheromone which increases the
probability that other ants passing nearby choose the same
path using the receivers in their antennas [19, 21]. This
collective problem-solving mechanism is at the origin of
algorithms based on artificial ants.

The first ant-based algorithm, called Ant System, was
proposed by Marco Dorigo in 1992 [22], and its
performances were initially illustrated on Traveling
Salesman Problem. Thus, various improvements have been
made to the initial algorithm, giving rise to different
variants of Ant System, such as ACS (Ant Colony System)
and MMAS (MAX - MIN Ant System) [23, 24] which get
in practice competitive results.

Many works on ant colony optimization have been
inspired by MMAS algorithmic scheme. According to
ACO meta-heuristic, at each cycle of the algorithm, each
ant builds a solution. These solutions can be improved by
applying a local search procedure. The pheromone traces
are then updated. Each trace is "evaporated" by multiplying
it by a persistence factor ρ between 0 and 1. A certain
quantity of pheromone proportional to the quality of the
solution, is then added to the components of the best
solutions (the best solutions built during the last cycle or
best solutions built since the start of the execution).

Among the problems strictly related to the one
considered in this paper, the first one to which this method
has been applied is the Traveling Salesman Problem (TSP)
[25]. Then several other algorithms have been proposed for
VRP [26] and VRPTW [27].

4.2. Ant Colony Optimization-based Tabu
List

The proposed approach enhances the basic Ant Colony
Optimization with an additional feature: the Tabu List. The
main idea behind the approach is the following: Each time
an ant m needs to move to the next city, a random search
function is called to select a new city. Then the total
traveling time is computed to check whether it is possible
to move to that city and come back to the depot.

• If the move is possible then the city is visited, and
the Tabu List is reset.

• Otherwise, it is considered as a prohibited city and
stored in the Tabu List to avoid being selected
once again at the next call by the search function
during the same iteration. After multiple
unsuccessful tries (the time window constraint is
not satisfied), ant 𝑚𝑚 returns to depot (node 0).

The number of tries is defined by the parameter 𝑡𝑡𝑓𝑓𝑦𝑦
which is reset at the beginning of an iteration and each time
a selected node can be visited.

Algorithms 1 to 5 detail the proposed approach. The
following parameters are used by the different algorithms.
𝑀𝑀: the number of ants;
α: Pheromone parameter;
β: Visibility parameter;
vol: Evaporation Rate of pheromone ϵ] 0,1[;
Qpher: Pheromone quantity deposed by each ant on track
after constructing of a solution;
τau: remaining quantity of pheromone after evaporation at
the end of each iteration, added to total sum of pheromone
deposed on track by ants at each iteration;
deltaτau: total sum of pheromone deposed on track by ants
at each iteration;
Heu_F ∶ Heuristic function (1/D);
velocity: Vehicle velocity;
𝑇𝑇𝑎𝑎𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑠𝑠𝑡𝑡: list of current nodes that do not satisfy time
window constraints;
𝑡𝑡𝑓𝑓𝑦𝑦: number of time that function of search is called to
choose the next node to visit.
NVset: Matrix containing number of vehicles of a set of
solution built by m ants at each iteration.
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑤𝑤𝐴𝐴𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥: logical row matrix containing 0 for visited
nodes and 1 for not visited.
𝑇𝑇𝑎𝑎𝑓𝑓𝑇𝑇𝑒𝑒𝑡𝑡𝐴𝐴𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥𝑒𝑒𝑠𝑠: indexes of target nodes randomly
selected.

4.3. Algorithm Explanation

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints

5

The flowchart of the proposed approach is provided in
Figure 2. It can be decomposed into five main steps. The
complete algorithm is provided in Algorithm1.

Figure 2. Flowchart of the proposed approach

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

6

Step 1: Initialization (Algorithm 1)
1. Lines 2 to 6: Parameters values are defined in

section 4.2 with D the matrix distance between
nodes and N the number of customers as presented
in section 3.

• ACO is divided into two main phases, which are
ant’s route construction and the pheromone
update [28].

2. Before route construction (Algorithm 2), at each
iteration, all ants are located at the depot. The set
of demands 𝑞𝑞i of cities is known beforehand. All
cities are set as unvisited.

Step 2: route construction (Algorithm 2)
3. Lines 6 to 15: At each construction step of the

‘route’, each ant m at node 𝑗𝑗 − 1, applies a
probabilistic rule to the next node to visit. The
choice of moving to a node 𝑗𝑗 depends on two
values: heuristic function Heu_F𝑖𝑖𝑖𝑖 and the level or
the rate of pheromone 𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖 on the arc (i, j)
according to (11).

𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 = (𝜏𝜏𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖)
𝛼𝛼(𝐻𝐻𝐻𝐻𝜏𝜏_𝐹𝐹𝑖𝑖𝑖𝑖)

𝛽𝛽

∑ 𝐽𝐽𝑖𝑖
𝑚𝑚

𝑖𝑖𝑗𝑗 (𝜏𝜏𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖)
𝛼𝛼(𝐻𝐻𝐻𝐻𝜏𝜏_𝐹𝐹𝑖𝑖𝑖𝑖)

𝛽𝛽 (11)

𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 is a moving rule called "probabilistic random
proportional rule". It is the probability that an ant 𝑚𝑚 moves
from node 𝑖𝑖 to node 𝑗𝑗, which belongs to a set of nodes 𝐽𝐽𝑖𝑖𝑚𝑚
that are not yet visited by the ant m.

4. Lines 16 to 19: when a city j is chosen according
to the moving rule, some computations are
performed: the travel time of the ant 𝑚𝑚 from node
𝑖𝑖 to a randomly chosen node 𝑗𝑗 (𝑡𝑡𝑖𝑖𝑖𝑖), the waiting and
services times, and the travel time of the ant m
from node 𝑗𝑗 to the depot 1 (𝑡𝑡𝑖𝑖1).

5. Lines 20 to 28: If the values 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖1 do not
satisfy time window constraints [𝑒𝑒𝑖𝑖; 𝑓𝑓𝑖𝑖] and
[𝑒𝑒0; 𝑓𝑓0], then the movement to j is considered as
unfeasible. The node is therefore inserted in the
Tabu List (short-term memory). The choice to
move to the next node by ant m is repeated up to
𝑡𝑡𝑓𝑓𝑦𝑦 times until time window constraints are
satisfied. In unsuccessful cases, ant m returns to the
depot. Otherwise, the node is appended to the route

Algorithm1: ACOTL for VRPTW
Input: VRPTW instance
Output: ShortestNV, ShortestRoute

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 24
25
26
27

Begin
 Parameters initialization (α, β, vol, Qpher , MaxIt, m, n,

 τau, Heu_F, velocity, iter)
 bestNV MaxIt, 1 :=0, addition:= n-1,
 Rset[1, m][1, n+addition]:=0, BestRoute[MaxIt,1]:=0,
 CityIndex :=[1, n], a[1, n] :=0
 while MaxIt > iter do

 Rset =RouteConstruction(VRPTW instance, m, velocity, CityIndex, a)
 NVset= NumberVehicle(Rset, m)
if iter == 1 then
 [minNV, index] : = min (NVset)
 BestNV[iter]:= minNV

 BestRoute [iter]:= Rset [index, :]
else
 [minNV’, index’] := min (NVset)

 BestNV[iter]:= min(bestNV[iter-1], minNV’)
 BestRoute [iter]:= Rset [index’, :]
if BestNV iter >= minNV’ then
 ShortestRoute:= Rset [index’, :]
 ShortestNV: = minNV’
else

 ShortestRoute := BestRoute [iter - 1, :]
 ShortestNV: = BestNV[iter-1]

 updatePheromone (Rset , NVset , Qpher , vol, τau)
 iter := iter + 1

 return ShortestNV, ShortestRoute
End

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints

7

and the arrival and waiting time (𝑎𝑎𝑖𝑖 and 𝑤𝑤𝑖𝑖) at
node 𝑗𝑗 are computed for the next iteration (Lines
29 to 32).

Step 3: vehicle capacity constraints (Algorithm 3)
6. Algorithm 3 takes as input the set of demands 𝑞𝑞i of

cities; a route constructed by each ant at each step
of the construction, containing visited nodes;
indexes of nodes CityIndex; binary matrix
AllowIndex containing 1 for unvisited nodes.

7. Lines 3 to 5: If ant m is at the depot, vehicle load is
set to the maximum value, all cities receive logical
number 1, excepted starting node.

8. Lines 6 to 12: Else, if the need of a node is less than
or equal to current vehicle load then this node is
served, and vehicle load is decreased consequently.

z
Algorithm 2: RouteConstruction

Input: VRPTW instance, m, velocity, CityIndex, a
Output: Rset: set of m route constructed by each ant

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Begin
 Rset [1:m,1]:=1
 for i = 1: m do

 qset [1,n] := [q1, qn]
 AllowIndex[1:n]=1, AllowIndex[1]:=0
 for j: = 2: n + addition do

 route := Rset [i][1,j-1]
 AllowIndex:=CapacityConstraint(qset , route, CityIndex, AllowIndex)
 Try:=5, TabuList :=[], stop:=0
 while Stop==0 && Try>0 do

 AllowIndex [TabuList] :=0
 Allow:=CityIndex[AllowIndex]
 for k := 1:length(Allow) do
 p[k]:= (τau[route[end], Allow[k]])α(Heu_F[route[end], Allow[k]])β
 Psum := sum (p)

 TargetIndexes :=find (cumsum (Psum)>=rand)
 Target := Allow[TargetIndexes[1]]
 t[route[end],Target]:=a[route[end]]+(d[route[end],target])/velocity
 t[Target,1]=t[route[end],Target]+b[Target]+w[Target] +(d[target,1])/velocity

 if t route end , Target <= f[Target] && t Target, 0 <= f[0] then
 Stop:=1

 else
 TabuList:=[index, Target]

 Try:= Try- 1
 if Stop==0 then
 Rset i [j] :=1
 else

 Rset i [j] := Target
 a[Target]:= a[route[end]]+b[Target]+w[Target]+(d(route[end],target))/velocity
 w[Target] := w[Target] - t[route[end], Target]
 if w[Target] < 0 then

 w[Target]:=0
 return Rset
End

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

8

Algorithm 3 : CapacityConstraints
Input: qset, route, CityIndex, AllowIndex
Output: AllowIndex: city indexes to explore

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Begin
 load:=Q

 if route[end] ==1
 load:=Q

 AllowIndex := ismember (CityIndex, find(qset ! = 0))
 else

 if load >= q[route[end]] then
 load := load- q[route[end]]
 qset [route[end]] := 0
 AllowIndex:= ismember (CityIndex, find(qset ! = 0))
 if load == q[route[end]] then

 AllowIndex [1: n] :=0, AllowIndex[1]:=1
 else

 AllowIndex [1: n] :=0, AllowIndex [1]:=1
 q[route[end]] := q[route[end]] - load

 return AllowIndex
End

Algorithm 4: NumberVehicle
Input: Rset : set of m route, m: number of ants
Output: NVset : set of number vehicle of m route

1
2
3
4
5
6
7
8
9

10
11

Begin
 NVset 1, m : = 0, count: =1

 for i = 1: length (Rset) do
 for j = 1: length (Rset [i])

 if Rset i [j] :=1 then
 count := count +1

 else
 count := count - 1

 NVr := count
 NVset [i]:= NVr
 End

Algorithm 5: updatePheromone
Input: Rset , NVset , Qpher , vol, τau
Output: τau

1
2
3
4
5

6
7
8
9

Begin
 deltaτau 1, n 1, n = 0

 for i = 1: m then
 for j = 1: n - 1 then

 deltaτau[Rset i [j], Rset i [j + 1]]:= deltaτau[Rset i [j], Rset i [j + 1]]+ Qpher

 NV set [i]

 deltaτau[Rset i [n], Rset i [1]]:= deltaτau[Rset i [n], Rset i [1]] + Qpher

 NV set [i]

 τau = (1 - vol) τau + deltaτau
 return τau
End

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints

9

In case the new vehicle load equals zero, the
vehicle returns to the depot.

9. Lines 13 to 15: if the need of a node is higher than
current vehicle load, this node is partially served,
and the vehicle returns to the depot.

This phase is repeated 𝑀𝑀 × 𝑛𝑛 times with the condition
that each ant m is a solution, each solution encompasses k
tours, each tour starts and ends at the depot, and each node
must be visited only once with respect to time window
constraints.

Step 4: minimal vehicle number (Algorithm 1 and
4)

10. Lines 7 to 9 (Algorithm 1): for each iteration, when
all the ants have built their solutions, for each
solution, the number of vehicle is determined using
Algorithm 4, and the result is saved in NVset.

11. Lines 10 to 23 (Algorithm 1): At the first iteration,
minimal value NV is determined and saved in
BestNV. At the following iterations, minimal NV
value of current solutions is compared to BestNV.
In case NV is smaller than BestNV, the latter is
updated consequently.

Step 5: pheromone update (Algorithm 1 and 5)
12. Line 24 (Algorithm 1): at each iteration, after each

solution has been constructed and minimal NV
value has been found, each ant 𝑚𝑚 deposes a
quantity pheromone on its path depending on
delta𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚 that is computed using Algorithm 5.

If the edge (𝑖𝑖, 𝑗𝑗) is included in the route of the ant 𝑚𝑚,
the quantity of pheromone deposited on this path is
Q𝑝𝑝ℎ𝑒𝑒𝑒𝑒

 𝑁𝑁𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠(𝑚𝑚)
 . Else it is equal to zero as presented in (12)

delta𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚(𝑡𝑡) = �
Q𝑝𝑝ℎ𝑒𝑒𝑒𝑒

 𝑁𝑁𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠(𝑚𝑚)
 𝑖𝑖𝑓𝑓 (𝑖𝑖, 𝑗𝑗)𝜖𝜖 𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠𝑚𝑚 (𝑡𝑡)

0 𝑖𝑖𝑓𝑓 (𝑖𝑖, 𝑗𝑗)ɇ 𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠𝑚𝑚(𝑡𝑡)
 (12)

with 𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠𝑚𝑚 (𝑡𝑡) the solution built by the ant 𝑚𝑚 at the
iteration 𝑡𝑡, 𝑁𝑁𝑉𝑉𝑠𝑠𝐻𝐻𝑠𝑠(𝑚𝑚) the number of vehicles of the
solution built by the ant 𝑚𝑚.

Line 7 (Algorithm 5): At the end of each iteration of the
algorithm, quantity pheromones deposited at the previous
iteration by the ants evaporate depending on 𝑣𝑣𝑓𝑓𝐴𝐴 ∗
τau (𝑡𝑡).

13. At the next iteration 𝑡𝑡+1, the quantity of
pheromones on the route of each ant after
evaporation is given by (13).

𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = (1 − 𝑣𝑣𝑓𝑓𝐴𝐴) τau + deltaτau𝑖𝑖𝑖𝑖 (13)

 With 𝑑𝑑𝑒𝑒𝐴𝐴𝑡𝑡𝑎𝑎𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑑𝑑𝑒𝑒𝐴𝐴𝑡𝑡𝑎𝑎𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚(𝑡𝑡)𝑀𝑀
𝑚𝑚=1 (14)

To neglect all the bad solutions obtained, and thus avoid
convergence towards local optimum, the concept of

evaporation of the pheromone tracks is simulated through
a parameter 𝑣𝑣𝑓𝑓𝐴𝐴 called the evaporation rate (0 <𝑣𝑣𝑓𝑓𝐴𝐴<1).

5. Simulation results

5.1. Parameters and Datasets

The algorithm has been implemented in MATLAB 2018
and tested on the well-known Solomon benchmark
composed of six datasets (C1, C2, R1, R2, RC1, RC2) [29].
Each dataset contains 08 to 12 instances of 100 customers
with their respective locations and demands. Customers are
grouped into clusters in C1 and C2, while they are
randomly distributed geographically in R1 and R2. RC1
and RC2 are combination of both previous distributions.
The results of ACOTP algorithm are compared with that of
DP and that of best-known results from the literature.

Table 1 presents the important information of the
datasets used in this study, and Table 2 shows the
parameter settings.

5.2. Results and discussions

Comparison of results are performed in two phases. We
first compare the performance of ACOTL with DP on small
datasets. Secondly, we compare the results of ACOTL to
best-known results.

Comparison of performance ACOTL vs DP
In this phase the performance of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on instances of
size 15 is compared with the one of 𝐷𝐷𝑃𝑃 on the same
reduced instances. 𝐷𝐷𝑃𝑃 is run once while 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 is run
twenty times per instance.

Table 3 shows results of 𝐷𝐷𝑃𝑃 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on datasets
𝐴𝐴1,𝐴𝐴2,𝑅𝑅2,𝑅𝑅𝐴𝐴1, and 𝑅𝑅𝐴𝐴2. Both algorithms provide the same
number of vehicles except on 𝑅𝑅201 instance where 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇
provide the smallest number of vehicles. This result shows
the efficiency of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 and proves that 𝐷𝐷𝑃𝑃 cannot
optimally solve some problems. In fact, it has been proven
that 𝐷𝐷𝑃𝑃 cannot optimally solve the longest path problem.
In fact, in this paper, we assume that determining the
longest path of each vehicle can reduce the number of
vehicles. This justifies the fact that 𝐷𝐷𝑃𝑃 cannot always solve
the problem to the optimality.

Comparison of performance ACOTL vs Best-
known results
In this phase the performance of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on instances of
size 100 is compared with of best-known results [30].
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 is run independently 30 times on each instance of
datasets.

Table 4 presents performances of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 compared to
best-known results on the dataset 𝐴𝐴1. The results show that
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 provides the same number of vehicles compared to
the best-known results on some instances (𝐴𝐴102, 𝐴𝐴107, 𝐴𝐴109).

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

10

For the rest of instances, there is a difference of one
vehicle.

On dataset 𝐴𝐴2, ACOTL provide a number of vehicles
equals to the best-know result just for the instance 𝐴𝐴208.

Apart from that instance ACOTL provides a greater

number of vehicles than the best-known results on 𝐴𝐴2, as
presented in Table 5.

Table 6 compares the results of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on the dataset
𝑅𝑅2 to best-known results. 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 presents the same
number of vehicles to the best-known results on most the

Table 1. Datasets

Variable 𝐴𝐴1 𝐴𝐴2 𝑅𝑅1 𝑅𝑅2 𝑅𝑅𝐴𝐴1 𝑅𝑅𝐴𝐴2

Number of customers (n) 100 100 100 100 100 100
Vehicle capacity (Load_max) 200 700 200 1000 200 1000

Table 2. Parameter settings

Parameters 𝐴𝐴𝐴𝐴𝐴𝐴15 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐷𝐷𝑃𝑃
Number of execution (R) 10 10 1
Number of customers (N) 15 101 15
Vehicle capacity (Load_max) 50 [200 700 1000] 50
Iteration maximal (MaxIt) 500 250 -
Number of ants (M) 100 100 -
Visibility parameter (β) 1 1 -
Pheromone parameter (α) 1 1 -
Evaporation Rate of pheromone (vol) 0.5 0.5 -
velocity 45 45 45

Table 3. Comparison between ACOTL and DP

Data sets 𝐴𝐴1 𝐴𝐴2 𝑅𝑅201 𝑅𝑅202 𝑠𝑠𝑡𝑡 211 𝑅𝑅𝐴𝐴1 𝑅𝑅𝐴𝐴2
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 5 5 4 4 6 6
𝐷𝐷𝑃𝑃 5 5 5 4 6 6

Table 4. Performance of ACOTL and Best-known results on dataset 𝐴𝐴1

Instances 𝐴𝐴101 𝐴𝐴102 𝐴𝐴103 𝐴𝐴104 𝐴𝐴105 𝐴𝐴106 𝐴𝐴107 𝐴𝐴108 𝐴𝐴109

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 11 10 11 11 11 11 10 11 10
Best-known results 10 10 10 10 10 10 10 10 10

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints

11

instances. However, on other instances, 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 provides a

Table 5. Performance of ACOTL and Best-known results on dataset 𝐴𝐴2

Instances 𝐴𝐴201 𝐴𝐴202 𝐴𝐴203 𝐴𝐴204 𝐴𝐴205 𝐴𝐴206 𝐴𝐴207 𝐴𝐴208

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 4 4 5 4 4 4 4 3
Best-known results 3 3 3 3 3 3 3 3

Table 6. Performance of ACOTL and Best-known results on dataset 𝑅𝑅2

Instances 𝑅𝑅201 𝑅𝑅202 𝑅𝑅203 𝑅𝑅204 𝑅𝑅205 𝑅𝑅206 𝑅𝑅207 𝑅𝑅208 𝑅𝑅209 𝑅𝑅210 𝑅𝑅211
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 5 5 4 3 3 3 3 2 3 3 2

Best-known results 4 3 3 2 3 3 2 2 3 3 2

Table 7. Performance of ACOTL and Best-known results on dataset 𝑅𝑅𝐴𝐴1

Instances 𝑅𝑅𝐴𝐴101 𝑅𝑅𝐴𝐴102 𝑅𝑅𝐴𝐴103 𝑅𝑅𝐴𝐴104 𝑅𝑅𝐴𝐴105 𝑅𝑅𝐴𝐴106 𝑅𝑅𝐴𝐴107 𝑅𝑅𝐴𝐴108
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 11 10 10 9 11 9 9 9

Best-known results 14 12 11 10 13 11 11 10

Table 8. Performance of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 and best-known results on dataset 𝑅𝑅𝐴𝐴2

Instances 𝑅𝑅𝐴𝐴201 𝑅𝑅𝐴𝐴202 𝑅𝑅𝐴𝐴203 𝑅𝑅𝐴𝐴204 𝑅𝑅𝐴𝐴205 𝑅𝑅𝐴𝐴206 𝑅𝑅𝐴𝐴207 𝑅𝑅𝐴𝐴208

𝐴𝐴𝐴𝐴𝐴𝐴101 5 4 4 3 5 3 3 2
Best-known results 4 3 3 3 4 3 3 3

Figure 3. Performance of ACOTL over Best-known results in terms of number of vehicles.

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

12

greater number of vehicles.
From Table 7 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 outperforms previous best-know

results on all the instances from datasets 𝑅𝑅𝐴𝐴1. In fact,
ACOTL can reduce the number of vehicles by decreasing
by up to three unit, the best-known result.

Finally, Table 8 compares the results from 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 to
best-known results on instance 𝑅𝑅𝐴𝐴2. ACOTL provides the
same number of vehicles as the best-known on three
instances and improve the known result of the instance
𝑅𝑅𝐴𝐴208. However, its number of vehicles is greater on half
the sample. Figure 3 recapitulates the best results of
ACOTL. From this figure, the proposed approach is
suitable for scenarios with customers geographically
located in clusters randomly distributed and vehicle with
low or medium charges.

6. Conclusion

This paper has tackled the Vehicle Routing Problem with
Time Window constraints from an economical point of
view in which the CAPEX (in terms of number of vehicles)
should be minimized. We proposed a new meta-heuristic
called Ant Colony Optimization-based Tabu List to
minimize this number of vehicles. Experimental results
showed that the proposed approach can reduce by up to
three the number of vehicles in some instances of the
Solomon Benchmark, especially in RC1 dataset. In
general, ACOTL performs well in scenarios with
customers geographically located in clusters randomly
distributed, especially with vehicles bearing low or
medium charges.

However, the approach still needs an improvement for
some instances in C and R datasets. A possible
enhancement can be the introduction of some operators in
the combination of ACO and the Tabu List, to extend the
number of cities an ant can visit. For instance, a swap
operator can be used to replace a city in the current solution
by one or several cities in the Tabu List. But this approach
will require a customization of the inner features of the
ACO approach.

References
[1] Rodrigue J-P (2016) The geography of transport

systems. Taylor & Francis

[2] Toth P, Vigo D (2002) The vehicle routing problem.
SIAM

[3] Ghezavati VR, Hooshyar S, Tavakkoli-Moghaddam R
(2017) A Benders’ decomposition algorithm for
optimizing distribution of perishable products
considering postharvest biological behavior in agri-
food supply chain: a case study of tomato. Cent Eur J
Oper Res 25:29–54

[4] Laporte G (1992) The vehicle routing problem: An
overview of exact and approximate algorithms. Eur J
Oper Res 59:345–358

[5] Ho SC, Haugland D (2004) A tabu search heuristic for
the vehicle routing problem with time windows and
split deliveries. Comput Oper Res 31:1947–1964

[6] Bräysy O (2003) A reactive variable neighborhood
search for the vehicle-routing problem with time
windows. Inf J Comput 15:347–368

[7] Lenstra JK, Kan AR (1981) Complexity of vehicle
routing and scheduling problems. Networks 11:221–
227

[8] Ghoseiri K, Ghannadpour SF (2010) Multi-objective
vehicle routing problem with time windows using goal
programming and genetic algorithm. Appl Soft
Comput 10:1096–1107

[9] Jozefowiez N, Semet F, Talbi E-G (2008) Multi-
objective vehicle routing problems. Eur J Oper Res
189:293–309

[10] Xu S-H, Liu J-P, Zhang F-H, Wang L, Sun L-J (2015)
A combination of genetic algorithm and particle
swarm optimization for vehicle routing problem with
time windows. Sensors 15:21033–21053

[11] Alzaqebah M, Abdullah S, Jawarneh S (2016)
Modified artificial bee colony for the vehicle routing
problems with time windows. SpringerPlus 5:1298

[12] Sicilia JA, Oliveros M-J, Larrode E, Royo B (2015)
Solving a long-distance routing problem using ant
colony optimization.

[13] Yalian T (2016) An improved ant colony optimization
for multi-depot vehicle routing problem. Int J Eng
Technol 8:385–388

[14] Kok AL, Meyer CM, Kopfer H, Schutten JMJ (2009)
Dynamic programming algorithm for the vehicle
routing problem with time windows and EC social
legislation. Transp. Sci.

[15] Potvin J-Y, Kervahut T, Garcia B-L, Rousseau J-M
(1996) The vehicle routing problem with time
windows part I: tabu search. Inf J Comput 8:158–164

[16] Van Breedam A (1995) Improvement heuristics for the
vehicle routing problem based on simulated annealing.
Eur J Oper Res 86:480–490

[17] Hansen P, Mladenović N, Pérez JAM (2010) Variable
neighbourhood search: methods and applications. Ann
Oper Res 175:367–407

[18] Shaw P (1998) Using constraint programming and
local search methods to solve vehicle routing
problems. In: Int. Conf. Princ. Pract. Constraint
Program. Springer, pp 417–431

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints

13

[19] Kilby P, Prosser P, Shaw P (1999) Guided local search
for the vehicle routing problem with time windows. In:
Meta-Heuristics. Springer, pp 473–486

[20] Kumar SN, Panneerselvam R (2012) A Survey on the
Vehicle Routing Problem and Its Variants.
https://doi.org/10.4236/iim.2012.43010

[21] Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990)
The self-organizing exploratory pattern of the
argentine ant. J Insect Behav 3:159–168

[22] Dorigo M (1992) Optimization, learning and natural
algorithms. PhD Thesis Politec. Milano

[23] Dorigo M, Maniezzo V, Colorni A (1996) Ant system:
optimization by a colony of cooperating agents. IEEE
Trans Syst Man Cybern Part B Cybern 26:29–41

[24] Stützle T, Hoos HH (2000) MAX–MIN ant system.
Future Gener Comput Syst 16:889–914

[25] Dorigo M, Gambardella LM (1997) A cooperative
learning approach to the traveling salesman problem.
IEEE Trans Evol Comput 1:53–66

[26] Bullnheimer B, Hartl RF, Strauss C (1999) An
improved ant System algorithm for thevehicle Routing
Problem. Ann Oper Res 89:319–328

[27] Toklu NE, Gambardella LM, Montemanni R (2014) A
multiple ant colony system for a vehicle routing
problem with time windows and uncertain travel
times. J. Traffic Logist. Eng. 2:

[28] Reed M, Yiannakou A, Evering R (2014) An ant
colony algorithm for the multi-compartment vehicle
routing problem. Appl Soft Comput 15:169–176

[29] Solomon MM (1987) Algorithms for the vehicle
routing and scheduling problems with time window
constraints. Oper Res 35:254–265

[30] 100 customers. /projectweb/top/vrptw/solomon-
benchmark/100-customers/. Accessed 24 Jul 2020

EAI Endorsed Transactions on
Context-aware Systems and Applications

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5

