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Abstract 

The Vehicle Routing Problem consists in finding a routing plan for vehicles of identical capacity to satisfy the demands of 
a set of customers. Time window constraints mean that customers can only be served within a pre-defined time window. 
Researchers have intensively studied this problem because of its wide range of applications in logistics. In this paper, we 
tackle the problem on an economical point of view with a focus on capital expenditure (CAPEX), where the minimization 
of the number of vehicles is more important than the total traveling distance. This customization finds its applications in 
scenarios with limited CAPEX or seasonal/temporary operations. In these cases, the CAPEX should be minimized as much 
as possible to reduce the overall cost of the operation, while satisfying time window constraints. We provide an Ant Colony 
Optimization-based Tabu List (ACOTL). We test the proposed approach on the well-known Solomon’s benchmarks. We 
compare experiments results to Dynamic Programming on small size instances and later to the best-known results in the 
literature on large size instances. ACOTL allows to reduce the number of vehicles used sometimes up to three units, 
compared to the best-known results, especially for instances where customers are geographically in clusters randomly 
distributed with vehicles of low or medium charges. 
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1. Introduction

Every year, many logistic companies for delivery receive 
huge incomes from distribution processes. Distribution 
processes play an important role in supply chains, since 
almost half of the total supply chain cost comes from 
transportation processes [1]. For this reason, the 
management of distribution processes is critical in 
minimizing total supply chain cost. According to Toth and 
Vigo, transportation cost represents between 10 and 20 
percent of goods’ prices on the market, and computerized 
procedures based on optimization techniques permit make 
savings of around 5 to 20 percent on this transportation cost 
[2]. Transportation cost includes capital expenditures 
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(CAPEX), that depends mainly on the cost and the number 
of vehicles, and operational expenditures (OPEX), that 
depends mainly on the total distance traveled by the set of 
vehicles. The determination of the number of vehicles and 
the route for each vehicle is known as the Vehicle Routing 
Problem. 

Vehicle routing problem (VRP) is a common name 
associated to a class of combinatorial problems involving 
sets of customers that should be served by several vehicles 
[3]. The VRP can model various real-life problems, linked 
in supply chain management in the physical delivery of 
goods and services, such as postal deliveries, school bus 
routing, recycling routing and so on [4]. There are several 
variants of this problem. These are formulated based on the 
nature of the transported goods, the quality of service 
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required and the characteristics of the vehicles and the 
customers. 

In real-life scenarios, an important characteristic of 
customers is the time window during which a customer can 
be served. This characteristic extends the classic VRP 
problem to the well-known Vehicle Routing Problem with 
Time Window constraints (VRPTW). In VRPTW, routes 
must contain all the points (customer locations). Each point 
is visited within its time window by a single vehicle. Each 
route is associated to a vehicle and starts and ends at the 
depot. In addition, the total demands of all points on a route 
must be less than or equal to the capacity of the vehicle. 
Figure 1 presents an example of a VRPTW solution 
involving a depot and eight customers (nodes 1 to 8).  

Approaches proposed to solve VRPTW usually try to 
optimize both CAPEX (number of vehicles) and OPEX 
(total traveled distance). But in some scenarios, the 
CAPEX is limited and the reduction of the number of 
vehicles of just one unit can make the set of vehicles 
affordable for the company. Moreover, some distribution 
processes can only be performed during a period or season 
because of the environmental conditions or the availability 
of products. This means reducing the CAPEX can 
drastically reduce the overall cost of the operation. This 
paper focuses on such scenarios, which are usually 
observed during agricultural campaigns, mainly in sub-
Saharan Africa. To tackle this issue, an Ant Colony 
Optimization-based Tabu List approach is proposed, which 
is a combination of two well-known optimization 
approaches. 

The rest of the paper is organized as follows. Section 2 
briefly presents related works on VRPTW. The problem 
formulation is defined in Section 3; followed by the 
presentation of the proposed Ant Colony Optimization-
based Tabu List approach in Section 4. Section 5 presents 

simulation results and the comparison with the best-known 
solutions in the literature, before ending with conclusions 
and future directions.  

2. Related Works

The Vehicle Routing Problem with Time Window 
constraints is classified as a NP-hard combinatorial 
optimization problem [5]. Consequently, approaches based 
on meta-heuristics are habitually used for larger instances 
of the VRPTW.  

Most researchers model VRPTW as a multi-objective 
optimization problem with the aim of minimizing both the 
number of vehicles and the total travelled distance [6]; 
while others consider minimizing the number of vehicles 
as the primary objective like in [7]. In general, a two-phase 
approach is proposed starting by the minimization of the 
number of vehicles and ending by the minimization of the 
total traveled distance with a fixed number of routes.  

Other works proposed new objective functions in 
VRPTW, including the minimization of the total waiting 
time [8]. 

Meta-heuristics are usually developed for solving the 
multi-objective VRPTW since the problem is NP hard. 
They work on a set of candidate solutions which require a 
high computation cost, depending on the size of inputs, to 
achieve high performance in VRPTW. More details are 
available in [9].  

Several population-based approaches have been 
developed to VRPTW, such as Genetic Algorithms [2] and 
Artificial Bee Colony [10]. Ant Colony Optimization has 
been applied to Long-Distance VRP [11] and an Improved 
Ant Colony Optimization for Multi-Depot Vehicle Routing 
Problem is found in [12]. 

Figure 1. Illustration of a VRPTW solution. 

EAI Endorsed Transactions on 
Context-aware Systems and Applications 

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5



Ant Colony-based Tabu List Optimization for minimizing the number of Vehicles in Vehicle Routing Problem with Time Window Constraints 

3 

Authors in [13] proposed an incremental route building 
and an enhanced algorithm to tackle the VRP with soft time 
windows. 

Some researchers tried to provide exact approaches 
such as restricted dynamic programming to solve VRPTW 
[14]. But this approach solves only small VRP instances 
because of the NP-hard property.  

Many local search approaches have also been proposed 
to solve VRPTW, namely Tabu Search [15], Simulated 
Annealing [16], Variable Neighborhood Search (VNS) 
[17], Large Neighborhood Search [18], and Guided Local 
Search [19]. 

3. Problem Formulation

3.1. Notations 

We will use the following list of notations to represent the 
problem formulation.  

Parameters  
N: number of customers {1,…,n} 
K: Number of vehicles {1,…,k} 
Q: capacity of vehicle K 
qi : customer 𝑖𝑖 demand   
dij: cost incurred on arc from node 𝑖𝑖 to 𝑗𝑗 
tij: travel time between node 𝑖𝑖 and 𝑗𝑗 
ei: earliest arrival time at node 𝑖𝑖 
e0 : exit time from depot  
fi:  latest arrival time at node 𝑖𝑖 or 𝑗𝑗 
f0 : maximum route time allowed for vehicle 𝑘𝑘 or return 
route time at depot 
bi : service time at node 𝑖𝑖 
𝑎𝑎𝒊𝒊 ∶ arrival time at node 𝑖𝑖   
wi: waiting time    
rk: total time of route allocated to each vehicle 𝑘𝑘   

Decision Variables 
𝑥𝑥𝑖𝑖𝑖𝑖  = 1 if node 𝑖𝑖 is visited immediately before node 𝑗𝑗.  𝑥𝑥𝑖𝑖𝑖𝑖  
= 0 otherwise. 

𝑦𝑦𝑖𝑖𝑖𝑖= 1 if the node request i is satisfied by the vehicle 𝑘𝑘. 𝑦𝑦𝑖𝑖𝑖𝑖 
= 0 otherwise. 

𝑏𝑏𝑖𝑖𝑖𝑖 =  𝑏𝑏𝑖𝑖   if the vehicle 𝑘𝑘 arrive at node 𝑖𝑖 at time 
𝑎𝑎𝑖𝑖 𝜖𝜖 max{𝑒𝑒𝑖𝑖; 𝑎𝑎𝑖𝑖} for service 𝑏𝑏𝑖𝑖𝑖𝑖 =  0 if arrival time is 𝑎𝑎𝑖𝑖 >
𝑓𝑓𝑖𝑖 

We assume a0 =  0 and b0i = 0,  for all k. 
Let 𝐺𝐺 =  (𝑉𝑉;  𝐸𝐸) an undirected graph where 𝑉𝑉 =

 {𝑣𝑣𝑖𝑖;   𝑖𝑖 = 0, … ,𝑛𝑛}  denoting a depot (𝑣𝑣0) and 𝑛𝑛 customers 
(𝑣𝑣𝑖𝑖 ;   𝑖𝑖 = 1, … ,𝑛𝑛). A non-negative demand 𝑞𝑞𝑖𝑖 and service 
time 𝑠𝑠𝑖𝑖 are associated with 𝑣𝑣𝑖𝑖, with 𝑞𝑞0 =  0 and  𝑠𝑠0 = 0.  E 
is a set of arcs with non-negative weights  𝑑𝑑𝑖𝑖𝑖𝑖   (which often 
represents distance) between 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖 , �𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖� 𝜖𝜖 𝑉𝑉, 𝑖𝑖 < 𝑗𝑗.  

It is often assumed that it is symmetrical and satisfies the 
triangular inequality i.e., 𝑑𝑑𝑖𝑖𝑖𝑖 =  𝑑𝑑𝑖𝑖𝑖𝑖 . 

All customer demands are served by a set of K vehicles. 
At each customer 𝑣𝑣𝑖𝑖 , the starting of service time 𝑏𝑏𝑖𝑖 must be 
in the time window [𝑒𝑒𝑖𝑖;  𝑓𝑓𝑖𝑖], where 𝑒𝑒𝑖𝑖 and 𝑓𝑓𝑖𝑖 are the earliest 
and latest time to serve 𝑣𝑣𝑖𝑖 . If a vehicle arrives at 𝑣𝑣𝑖𝑖 at time 
𝑎𝑎𝑖𝑖 <  𝑒𝑒𝑖𝑖 , a waiting time 𝑤𝑤𝑖𝑖  =  max {0; 𝑒𝑒𝑖𝑖  –  𝑎𝑎𝑖𝑖} is 
observed. Consequently, the starting of service time  𝑏𝑏𝑖𝑖  =
max  {𝑒𝑒𝑖𝑖;  𝑎𝑎𝑖𝑖}. Each vehicle of a capacity Q travels on a 
route connecting a subset of customers starting from   𝑣𝑣0 
and ending within a schedule horizon [𝑒𝑒0;  𝑓𝑓0], 
corresponding to the earliest time of exit from the depot 
and the latest time of return to the depot. 

3.2. Model 

The objective function of the model is: 

𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒     K  

Subject to the following constraints: 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1     𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 0  𝑎𝑎𝑛𝑛𝑑𝑑   𝑘𝑘 𝜖𝜖 {1, … ,𝐾𝐾} (1) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 1     𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 0  𝑎𝑎𝑛𝑛𝑑𝑑   𝑘𝑘 𝜖𝜖 {1, … ,𝐾𝐾} (2) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1,    𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 𝜖𝜖 {0,1, … ,𝑛𝑛} 𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

𝐾𝐾
𝑖𝑖=1 (3) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 = 1,    𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 𝜖𝜖 {0, … ,𝑛𝑛} 𝑛𝑛
𝑖𝑖=1,
𝑖𝑖≠𝑖𝑖

𝐾𝐾
𝑖𝑖=1 (4) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

𝑛𝑛
𝑖𝑖=0 = 𝑛𝑛      𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 𝜖𝜖{1, … , 𝑘𝑘} (5) 

∑ ∑ 𝑞𝑞𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑖𝑖≠𝑖𝑖

𝑛𝑛
𝑖𝑖=0 ≤ 𝑄𝑄    𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘 𝜖𝜖{1, … , 𝑘𝑘} (6) 

𝑎𝑎0 = 𝑏𝑏0 = 𝑤𝑤0 = 0 (7) 

𝑒𝑒𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖 ≤ 𝑓𝑓𝑖𝑖             𝑒𝑒𝑖𝑖 =  𝑎𝑎𝑖𝑖 + 𝑤𝑤𝑖𝑖  (8) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖�𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 + 𝑤𝑤𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑖𝑖� ≤ 𝑎𝑎𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 𝜖𝜖 {1, … ,𝐾𝐾}𝑛𝑛
𝑖𝑖=0
𝑖𝑖≠𝑖𝑖

𝐾𝐾
𝑖𝑖=1  

(9)  

∑ �𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖 + 𝑏𝑏𝑖𝑖�𝑛𝑛 
𝑖𝑖=1 ≤ 𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 0, 𝑘𝑘 𝜖𝜖{1, … , 𝑘𝑘}    (10) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖  𝜖𝜖 {0; 1}    ⍱0 ≤ 𝑖𝑖;  𝑗𝑗 ≤ 𝑛𝑛;  1 ≤ 𝐾𝐾 ≤  𝑘𝑘 (11) 

As defined in [20], constraint (1) ensures that for each 
vehicle starting its tour from the depot. There is exactly one 
outgoing arc from this node. Similarly, the constraint set 
(2) guarantees that for each vehicle k, ending its tour to the
depot (I=0), there is exactly one entering arc into the node.
Both constraints (1) and (2) together guarantee a complete
tour for each vehicle. Constraint (3) ensures that from each
node 𝑖𝑖 only one arc is outgoing for each vehicle. Constraint
(4) makes sure that for each node j, only one arc is
incoming for each vehicle.  Constraints (3) and (4) ensure
that each vehicle visits each node only once.  Constraint (5) 
makes sure that for each vehicle starting its trip from depot, 
n nodes are visited. Constraint (6) guarantees that for each

EAI Endorsed Transactions on 
Context-aware Systems and Applications 

05 2020 - 09 2020 | Volume 7 | Issue 21 | e5



J.L.E.K Fendji, M.V.K. Yakam and M.D. Fendji

4 

vehicle, the total demand of customers assigned to it does 
not exceed its capacity. The constraint (7) sets the arrival, 
waiting and service times at the depot to zero for each 
vehicle. The constraint (8) ensures that the sum of the 
arrival and waiting times at each node 𝑖𝑖 and for each 
vehicle is within the time window (between the earliest 
arrival time at that node and latest arrival time), 𝑖𝑖 =
1,2,3,···,𝑛𝑛. The constraint (9) ensures that the arrival time 
of each vehicle to each node j is not greater than the 
specified arrival time at that node. Constraint (10) ensures 
that the total traveling time of each vehicle is not greater 
than the maximum route time allocated to that vehicle. This 
is done to avoid any uncompleted tour.   

4. Ant Colony Optimization-based Tabu
List (ACOTL)

4.1. Basic Ant Colony Optimization 
algorithm 

Ants can solve complex problems collectively, such as 
finding the shortest path between two points in a rugged 
environment. For this, they communicate with each other 
locally and indirectly, thanks to a volatile hormone called 
pheromone. In fact, during its progression, an ant leaves 
behind a trace of pheromone which increases the 
probability that other ants passing nearby choose the same 
path using the receivers in their antennas [19, 21]. This 
collective problem-solving mechanism is at the origin of 
algorithms based on artificial ants. 

The first ant-based algorithm, called Ant System, was 
proposed by Marco Dorigo in 1992 [22], and its 
performances were initially illustrated on Traveling 
Salesman Problem. Thus, various improvements have been 
made to the initial algorithm, giving rise to different 
variants of Ant System, such as ACS (Ant Colony System) 
and MMAS (MAX - MIN Ant System) [23, 24] which get 
in practice competitive results.  

Many works on ant colony optimization have been 
inspired by MMAS algorithmic scheme. According to 
ACO meta-heuristic, at each cycle of the algorithm, each 
ant builds a solution. These solutions can be improved by 
applying a local search procedure. The pheromone traces 
are then updated. Each trace is "evaporated" by multiplying 
it by a persistence factor ρ between 0 and 1. A certain 
quantity of pheromone proportional to the quality of the 
solution, is then added to the components of the best 
solutions (the best solutions built during the last cycle or 
best solutions built since the start of the execution). 

Among the problems strictly related to the one 
considered in this paper, the first one to which this method 
has been applied is the Traveling Salesman Problem (TSP) 
[25]. Then several other algorithms have been proposed for 
VRP [26] and VRPTW [27]. 

4.2. Ant Colony Optimization-based Tabu 
List 

The proposed approach enhances the basic Ant Colony 
Optimization with an additional feature: the Tabu List. The 
main idea behind the approach is the following: Each time 
an ant m needs to move to the next city, a random search 
function is called to select a new city. Then the total 
traveling time is computed to check whether it is possible 
to move to that city and come back to the depot. 

• If the move is possible then the city is visited, and
the Tabu List is reset.

• Otherwise, it is considered as a prohibited city and
stored in the Tabu List to avoid being selected
once again at the next call by the search function
during the same iteration. After multiple
unsuccessful tries (the time window constraint is
not satisfied), ant 𝑚𝑚 returns to depot (node 0).

The number of tries is defined by the parameter 𝑡𝑡𝑓𝑓𝑦𝑦 
which is reset at the beginning of an iteration and each time 
a selected node can be visited.  

Algorithms 1 to 5 detail the proposed approach. The 
following parameters are used by the different algorithms. 
𝑀𝑀:  the number of ants; 
α:  Pheromone parameter; 
β: Visibility parameter; 
vol: Evaporation Rate of pheromone ϵ] 0,1[; 
Qpher: Pheromone quantity deposed by each ant on track 
after constructing of a solution; 
τau: remaining quantity of pheromone after evaporation at 
the end of each iteration, added to total sum of pheromone 
deposed on track by ants at each iteration; 
deltaτau: total sum of pheromone deposed on track by ants 
at each iteration; 
Heu_F ∶ Heuristic function (1/D); 
velocity: Vehicle velocity; 
𝑇𝑇𝑎𝑎𝑏𝑏𝑇𝑇𝑇𝑇𝑖𝑖𝑠𝑠𝑡𝑡: list of current nodes that do not satisfy time 
window constraints; 
𝑡𝑡𝑓𝑓𝑦𝑦: number of time that function of search is called to 
choose the next node to visit. 
NVset: Matrix containing number of vehicles of a set of 
solution built by m ants at each iteration. 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓𝑤𝑤𝐴𝐴𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥: logical row matrix containing 0 for visited 
nodes and 1 for not visited. 
𝑇𝑇𝑎𝑎𝑓𝑓𝑇𝑇𝑒𝑒𝑡𝑡𝐴𝐴𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥𝑒𝑒𝑠𝑠: indexes of target nodes randomly 
selected. 

4.3. Algorithm Explanation 
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The flowchart of the proposed approach is provided in 
Figure 2. It can be decomposed into five main steps. The 
complete algorithm is provided in Algorithm1. 

Figure 2. Flowchart of the proposed approach 
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Step 1: Initialization (Algorithm 1) 
1. Lines 2 to 6: Parameters values are defined in

section 4.2 with D the matrix distance between
nodes and N the number of customers as presented
in section 3.

• ACO is divided into two main phases, which are
ant’s route construction and the pheromone
update [28].

2. Before route construction (Algorithm 2), at each
iteration, all ants are located at the depot. The set
of demands 𝑞𝑞i of cities is known beforehand. All
cities are set as unvisited.

Step 2: route construction (Algorithm 2) 
3. Lines 6 to 15: At each construction step of the

‘route’, each ant m at node 𝑗𝑗 − 1, applies a
probabilistic rule to the next node to visit. The
choice of moving to a node 𝑗𝑗 depends on two
values: heuristic function Heu_F𝑖𝑖𝑖𝑖  and the level or
the rate of pheromone 𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖  on the arc (i, j)
according to (11).

𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 = (𝜏𝜏𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖)
𝛼𝛼(𝐻𝐻𝐻𝐻𝜏𝜏_𝐹𝐹𝑖𝑖𝑖𝑖)

𝛽𝛽

∑ 𝐽𝐽𝑖𝑖
𝑚𝑚

𝑖𝑖𝑗𝑗 (𝜏𝜏𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖)
𝛼𝛼(𝐻𝐻𝐻𝐻𝜏𝜏_𝐹𝐹𝑖𝑖𝑖𝑖)

𝛽𝛽 (11) 

𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚   is a moving rule called "probabilistic random 
proportional rule". It is the probability that an ant 𝑚𝑚 moves 
from node 𝑖𝑖 to node 𝑗𝑗, which belongs to a set of nodes  𝐽𝐽𝑖𝑖𝑚𝑚 
that are not yet visited by the ant m. 

4. Lines 16 to 19: when a city j is chosen according
to the moving rule, some computations are
performed: the travel time of the ant 𝑚𝑚 from node
𝑖𝑖 to a randomly chosen node 𝑗𝑗 (𝑡𝑡𝑖𝑖𝑖𝑖), the waiting and
services times, and the travel time of the ant m
from node 𝑗𝑗 to the depot 1 (𝑡𝑡𝑖𝑖1).

5. Lines 20 to 28: If the values 𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑖𝑖1 do not
satisfy time window constraints [𝑒𝑒𝑖𝑖;  𝑓𝑓𝑖𝑖] and
[𝑒𝑒0;  𝑓𝑓0], then the movement to j is considered as
unfeasible. The node is therefore inserted in the
Tabu List (short-term memory). The choice to
move to the next node by ant m is repeated up to
𝑡𝑡𝑓𝑓𝑦𝑦 times until time window constraints are
satisfied. In unsuccessful cases, ant m returns to the
depot. Otherwise, the node is appended to the route

Algorithm1: ACOTL for VRPTW 
Input: VRPTW instance 
Output: ShortestNV, ShortestRoute 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

   24 
25 
26 
27 

Begin 
   Parameters initialization (α, β, vol, Qpher , MaxIt, m, n, 

       τau,  Heu_F, velocity, iter) 
   bestNV MaxIt, 1 :=0, addition:= n-1,  
   Rset[1, m][1, n+addition]:=0, BestRoute[MaxIt,1]:=0, 
   CityIndex :=[1, n], a[1, n] :=0 
    while MaxIt >  iter do 

  Rset =RouteConstruction(VRPTW instance, m, velocity, CityIndex, a) 
 NVset= NumberVehicle(Rset, m) 
if iter == 1 then 
  [minNV, index] : =  min ( NVset ) 
 BestNV[iter]:= minNV 

     BestRoute [iter]:= Rset [index, : ] 
else 
  [minNV’, index’] :=  min ( NVset ) 

    BestNV[iter]:= min(bestNV[iter-1], minNV’) 
    BestRoute [iter]:= Rset [index’, : ] 
if  BestNV iter >=  minNV’ then 
  ShortestRoute:=   Rset [index’, :] 
   ShortestNV: =  minNV’ 
else 

  ShortestRoute :=  BestRoute [iter - 1, : ] 
  ShortestNV: = BestNV[iter-1]  

 updatePheromone ( Rset ,  NVset , Qpher  , vol, τau) 
 iter := iter +  1 

   return ShortestNV, ShortestRoute 
End 
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and the arrival and waiting time (𝑎𝑎𝑖𝑖 and 𝑤𝑤𝑖𝑖)  at 
node 𝑗𝑗 are computed for the next iteration (Lines 
29 to 32). 

Step 3: vehicle capacity constraints (Algorithm 3) 
6. Algorithm 3 takes as input the set of demands 𝑞𝑞i of

cities; a route constructed by each ant at each step 
of the construction, containing visited nodes; 
indexes of nodes CityIndex; binary matrix 
AllowIndex containing 1 for unvisited nodes.  

7. Lines 3 to 5: If ant m is at the depot, vehicle load is
set to the maximum value, all cities receive logical
number 1, excepted starting node.

8. Lines 6 to 12: Else, if the need of a node is less than
or equal to current vehicle load then this node is
served, and vehicle load is decreased consequently. 

z 
Algorithm 2: RouteConstruction 

Input: VRPTW instance, m, velocity, CityIndex, a   
Output: Rset: set of m route constructed by each ant 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Begin 
 Rset [1:m,1]:=1 
 for i = 1: m do 

 qset [1,n] := [ q1, qn ]   
 AllowIndex[1:n]=1,  AllowIndex[1]:=0 
 for j: =  2: n +  addition do 

  route :=  Rset [i][1,j-1] 
 AllowIndex:=CapacityConstraint(qset , route, CityIndex, AllowIndex) 
 Try:=5, TabuList :=[], stop:=0 
 while Stop==0 && Try>0 do 

  AllowIndex [TabuList] :=0  
  Allow:=CityIndex[AllowIndex] 
  for k := 1:length(Allow) do 
      p[k]:=  (τau[route[end], Allow[k]])α( Heu_F[route[end], Allow[k]])β  
 Psum := sum (p) 

  TargetIndexes :=find (cumsum (Psum )>=rand) 
 Target := Allow[TargetIndexes[1]]  
 t[route[end],Target]:=a[route[end]]+(d[route[end],target])/velocity 
 t[Target,1]=t[route[end],Target]+b[Target]+w[Target] +(d[target,1])/velocity 

  if t route end , Target <=  f[Target] &&  t Target, 0 <= f[0] then 
   Stop:=1 

 else 
 TabuList:=[index, Target] 

      Try:= Try- 1 
   if Stop==0 then 
        Rset i [j] :=1 
   else 

 Rset i [j] := Target 
   a[Target]:= a[route[end]]+b[Target]+w[Target]+(d(route[end],target))/velocity 
  w[Target]  :=  w[Target] - t[route[end], Target] 
 if  w[Target] < 0 then 

 w[Target]:=0 
  return  Rset  
End 
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Algorithm 3 : CapacityConstraints 
Input: qset, route, CityIndex, AllowIndex 
Output: AllowIndex: city indexes to explore 

1 
2 
3 
4 
5 
6 
7   
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Begin 
 load:=Q 

   if route[end] ==1 
  load:=Q 

      AllowIndex := ismember (CityIndex, find(qset ! = 0)) 
   else 

 if load >= q[route[end]] then 
  load := load-  q[route[end]] 
 qset [route[end]] := 0 
  AllowIndex:= ismember (CityIndex, find(qset ! = 0))   
  if load == q[route[end]] then 

   AllowIndex [1: n] :=0, AllowIndex[1]:=1 
 else 

  AllowIndex [1: n] :=0, AllowIndex [1]:=1 
 q[route[end]] := q[route[end]] - load 

    return AllowIndex 
End 

Algorithm 4: NumberVehicle 
Input:  Rset : set of m route, m: number of ants 
Output: NVset : set of number vehicle of m route 

1 
2 
3 
4 
5 
6 
7   
8 
9 

10 
11   

Begin 
 NVset 1, m : = 0, count: =1 

   for i = 1: length ( Rset ) do 
  for j =  1: length ( Rset [i]) 

 if  Rset i [j] :=1 then 
  count := count +1 

 else 
 count := count - 1 

 NVr := count 
    NVset [i]:=  NVr  
 End 

Algorithm 5: updatePheromone 
Input:  Rset ,  NVset , Qpher , vol, τau 
Output: τau 

1 
2 
3 
4 
5 

6 
7   
8 
9 

Begin 
 deltaτau 1, n 1, n = 0 

  for i =  1: m then 
 for j =  1: n - 1 then 

 deltaτau[ Rset i [j], Rset i [j + 1]]:=  deltaτau[ Rset i [j],  Rset i [j + 1]]+ Qpher

 NV set [i]

  deltaτau[ Rset i [n], Rset i [1]]:= deltaτau[ Rset i [n], Rset i [1]] + Qpher

 NV set [i]

   τau = (1 -  vol) τau + deltaτau 
   return τau 
End 
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In case the new vehicle load equals zero, the 
vehicle returns to the depot. 

9. Lines 13 to 15: if the need of a node is higher than
current vehicle load, this node is partially served,
and the vehicle returns to the depot.

This phase is repeated 𝑀𝑀 × 𝑛𝑛 times with the condition 
that each ant m is a solution, each solution encompasses k 
tours, each tour starts and ends at the depot, and each node 
must be visited only once with respect to time window 
constraints. 

Step 4: minimal vehicle number (Algorithm 1 and 
4) 

10. Lines 7 to 9 (Algorithm 1): for each iteration, when
all the ants have built their solutions, for each
solution, the number of vehicle is determined using
Algorithm 4, and the result is saved in NVset.

11. Lines 10 to 23 (Algorithm 1): At the first iteration,
minimal value NV is determined and saved in
BestNV. At the following iterations, minimal NV
value of current solutions is compared to BestNV.
In case NV is smaller than BestNV, the latter is
updated consequently.

Step 5: pheromone update (Algorithm 1 and 5) 
12. Line 24 (Algorithm 1): at each iteration, after each

solution has been constructed and minimal NV
value has been found, each ant 𝑚𝑚 deposes a
quantity pheromone on its path depending on
delta𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚 that is computed using Algorithm 5. 

If the edge (𝑖𝑖, 𝑗𝑗) is included in the route of the ant 𝑚𝑚, 
the quantity of pheromone deposited on this path is 
Q𝑝𝑝ℎ𝑒𝑒𝑒𝑒

 𝑁𝑁𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠(𝑚𝑚)
 . Else it is equal to zero as presented in (12) 

delta𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚(𝑡𝑡) = �
Q𝑝𝑝ℎ𝑒𝑒𝑒𝑒

 𝑁𝑁𝑁𝑁𝑠𝑠𝑒𝑒𝑠𝑠(𝑚𝑚)
    𝑖𝑖𝑓𝑓 (𝑖𝑖, 𝑗𝑗)𝜖𝜖   𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠𝑚𝑚 (𝑡𝑡)

0  𝑖𝑖𝑓𝑓 (𝑖𝑖, 𝑗𝑗)ɇ  𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠𝑚𝑚(𝑡𝑡)
  (12)  

with 𝑅𝑅𝑠𝑠𝐻𝐻𝑠𝑠𝑚𝑚 (𝑡𝑡) the solution built by the ant 𝑚𝑚 at the 
iteration 𝑡𝑡,  𝑁𝑁𝑉𝑉𝑠𝑠𝐻𝐻𝑠𝑠(𝑚𝑚) the number of vehicles of the 
solution built by the ant 𝑚𝑚. 

Line 7 (Algorithm 5): At the end of each iteration of the 
algorithm, quantity pheromones deposited at the previous 
iteration by the ants evaporate depending on   𝑣𝑣𝑓𝑓𝐴𝐴 ∗
τau (𝑡𝑡). 

13. At the next iteration 𝑡𝑡+1, the quantity of
pheromones on the route of each ant after
evaporation is given by (13).

𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖(𝑡𝑡 + 1)  =  (1 −  𝑣𝑣𝑓𝑓𝐴𝐴) τau + deltaτau𝑖𝑖𝑖𝑖     (13) 

     With    𝑑𝑑𝑒𝑒𝐴𝐴𝑡𝑡𝑎𝑎𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖 = ∑ 𝑑𝑑𝑒𝑒𝐴𝐴𝑡𝑡𝑎𝑎𝜏𝜏𝑎𝑎𝑇𝑇𝑖𝑖𝑖𝑖𝑚𝑚(𝑡𝑡)𝑀𝑀
𝑚𝑚=1            (14) 

To neglect all the bad solutions obtained, and thus avoid 
convergence towards local optimum, the concept of 

evaporation of the pheromone tracks is simulated through 
a parameter 𝑣𝑣𝑓𝑓𝐴𝐴 called the evaporation rate (0 <𝑣𝑣𝑓𝑓𝐴𝐴<1). 

5. Simulation results

5.1. Parameters and Datasets 

The algorithm has been implemented in MATLAB 2018 
and tested on the well-known Solomon benchmark 
composed of six datasets (C1, C2, R1, R2, RC1, RC2) [29]. 
Each dataset contains 08 to 12 instances of 100 customers 
with their respective locations and demands. Customers are 
grouped into clusters in C1 and C2, while they are 
randomly distributed geographically in R1 and R2. RC1 
and RC2 are combination of both previous distributions. 
The results of ACOTP algorithm are compared with that of 
DP and that of best-known results from the literature. 

Table 1 presents the important information of the 
datasets used in this study, and Table 2 shows the 
parameter settings. 

5.2. Results and discussions 

Comparison of results are performed in two phases. We 
first compare the performance of ACOTL with DP on small 
datasets. Secondly, we compare the results of ACOTL to 
best-known results. 

Comparison of performance ACOTL vs DP 
In this phase the performance of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on instances of 
size 15 is compared with the one of 𝐷𝐷𝑃𝑃 on the same 
reduced instances. 𝐷𝐷𝑃𝑃 is run once while 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 is run 
twenty times per instance.  

Table 3 shows results of 𝐷𝐷𝑃𝑃 and 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on datasets  
𝐴𝐴1,𝐴𝐴2,𝑅𝑅2,𝑅𝑅𝐴𝐴1, and 𝑅𝑅𝐴𝐴2. Both algorithms provide the same 
number of vehicles except on 𝑅𝑅201 instance where 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 
provide the smallest number of vehicles. This result shows 
the efficiency of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 and proves that 𝐷𝐷𝑃𝑃 cannot 
optimally solve some problems. In fact, it has been proven 
that 𝐷𝐷𝑃𝑃 cannot optimally solve the longest path problem. 
In fact, in this paper, we assume that determining the 
longest path of each vehicle can reduce the number of 
vehicles. This justifies the fact that 𝐷𝐷𝑃𝑃 cannot always solve 
the problem to the optimality. 

Comparison of performance ACOTL vs Best-
known results 
In this phase the performance of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on instances of 
size 100 is compared with of best-known results [30].  
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 is run independently 30 times on each instance of 
datasets. 

Table 4 presents performances of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 compared to 
best-known results on the dataset 𝐴𝐴1. The results show that 
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 provides the same number of vehicles compared to 
the best-known results on some instances (𝐴𝐴102, 𝐴𝐴107, 𝐴𝐴109). 
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For the rest of instances, there is a difference of one 
vehicle.  

On dataset 𝐴𝐴2, ACOTL provide a number of vehicles 
equals to the best-know result just for the instance 𝐴𝐴208. 

Apart from that instance ACOTL provides a greater 

number of vehicles than the best-known results on 𝐴𝐴2, as 
presented in Table 5.  

Table 6 compares the results of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 on the dataset 
𝑅𝑅2 to best-known results. 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 presents the same 
number of vehicles to the best-known results on most the 

Table 1. Datasets 

Variable 𝐴𝐴1 𝐴𝐴2 𝑅𝑅1 𝑅𝑅2 𝑅𝑅𝐴𝐴1 𝑅𝑅𝐴𝐴2 

Number of customers (n) 100 100 100 100 100 100 
Vehicle capacity (Load_max) 200 700 200 1000 200 1000 

Table 2. Parameter settings 

Parameters 𝐴𝐴𝐴𝐴𝐴𝐴15 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 𝐷𝐷𝑃𝑃 
Number of execution (R) 10 10 1 
Number of customers (N) 15 101 15 
Vehicle capacity (Load_max) 50 [200 700 1000] 50 
Iteration maximal (MaxIt) 500 250 - 
Number of ants (M) 100 100 - 
Visibility parameter (β) 1 1 - 
Pheromone parameter (α) 1 1 - 
Evaporation Rate of pheromone (vol) 0.5 0.5 - 
velocity 45 45 45 

Table 3. Comparison between ACOTL and DP 

Data sets 𝐴𝐴1 𝐴𝐴2 𝑅𝑅201 𝑅𝑅202 𝑠𝑠𝑡𝑡 211  𝑅𝑅𝐴𝐴1 𝑅𝑅𝐴𝐴2 
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 5 5 4 4 6 6 
𝐷𝐷𝑃𝑃 5 5 5 4 6 6 

Table 4. Performance of ACOTL and Best-known results on dataset 𝐴𝐴1 

Instances 𝐴𝐴101 𝐴𝐴102 𝐴𝐴103 𝐴𝐴104 𝐴𝐴105 𝐴𝐴106 𝐴𝐴107 𝐴𝐴108 𝐴𝐴109 

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 11 10 11 11 11 11 10 11 10 
Best-known results 10 10 10 10 10 10 10 10 10 
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instances. However, on other instances, 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 provides a 

Table 5. Performance of ACOTL and Best-known results on dataset 𝐴𝐴2 

Instances 𝐴𝐴201 𝐴𝐴202 𝐴𝐴203 𝐴𝐴204 𝐴𝐴205 𝐴𝐴206 𝐴𝐴207 𝐴𝐴208 

𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 4 4 5 4 4 4 4 3 
Best-known results 3 3 3 3 3 3 3 3 

Table 6. Performance of ACOTL and Best-known results on dataset 𝑅𝑅2 

Instances 𝑅𝑅201 𝑅𝑅202 𝑅𝑅203 𝑅𝑅204 𝑅𝑅205 𝑅𝑅206 𝑅𝑅207 𝑅𝑅208 𝑅𝑅209 𝑅𝑅210 𝑅𝑅211 
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 5 5 4 3 3 3 3 2 3 3 2 

Best-known results 4 3 3 2 3 3 2 2 3 3 2 

Table 7. Performance of ACOTL and Best-known results on dataset 𝑅𝑅𝐴𝐴1 

Instances 𝑅𝑅𝐴𝐴101 𝑅𝑅𝐴𝐴102 𝑅𝑅𝐴𝐴103 𝑅𝑅𝐴𝐴104 𝑅𝑅𝐴𝐴105 𝑅𝑅𝐴𝐴106 𝑅𝑅𝐴𝐴107 𝑅𝑅𝐴𝐴108 
𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 11 10 10 9 11 9 9 9 

Best-known results 14 12 11 10 13 11 11 10 

Table 8. Performance of 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 and best-known results on dataset 𝑅𝑅𝐴𝐴2 

Instances 𝑅𝑅𝐴𝐴201 𝑅𝑅𝐴𝐴202 𝑅𝑅𝐴𝐴203 𝑅𝑅𝐴𝐴204 𝑅𝑅𝐴𝐴205 𝑅𝑅𝐴𝐴206 𝑅𝑅𝐴𝐴207 𝑅𝑅𝐴𝐴208 

𝐴𝐴𝐴𝐴𝐴𝐴101 5 4 4 3 5 3 3 2 
Best-known results 4 3 3 3 4 3 3 3 

Figure 3. Performance of ACOTL over Best-known results in terms of number of vehicles. 
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greater number of vehicles. 
From Table 7 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 outperforms previous best-know 

results on all the instances from datasets 𝑅𝑅𝐴𝐴1. In fact, 
ACOTL can reduce the number of vehicles by decreasing 
by up to three unit, the best-known result. 

Finally, Table 8 compares the results from 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 to 
best-known results on instance 𝑅𝑅𝐴𝐴2. ACOTL provides the 
same number of vehicles as the best-known on three 
instances and improve the known result of the instance 
𝑅𝑅𝐴𝐴208. However, its number of vehicles is greater on half 
the sample. Figure 3 recapitulates the best results of 
ACOTL. From this figure, the proposed approach is 
suitable for scenarios with customers geographically 
located in clusters randomly distributed and vehicle with 
low or medium charges.  

6. Conclusion

This paper has tackled the Vehicle Routing Problem with 
Time Window constraints from an economical point of 
view in which the CAPEX (in terms of number of vehicles) 
should be minimized. We proposed a new meta-heuristic 
called Ant Colony Optimization-based Tabu List to 
minimize this number of vehicles. Experimental results 
showed that the proposed approach can reduce by up to 
three the number of vehicles in some instances of the 
Solomon Benchmark, especially in RC1 dataset. In 
general, ACOTL performs well in scenarios with 
customers geographically located in clusters randomly 
distributed, especially with vehicles bearing low or 
medium charges.  

However, the approach still needs an improvement for 
some instances in C and R datasets. A possible 
enhancement can be the introduction of some operators in 
the combination of ACO and the Tabu List, to extend the 
number of cities an ant can visit. For instance, a swap 
operator can be used to replace a city in the current solution 
by one or several cities in the Tabu List. But this approach 
will require a customization of the inner features of the 
ACO approach. 
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