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Abstract 

INTRODUCTION: Accurate analysis of brain MRI images is vital for diagnosing brain tumor in its nascent stages. 
Automated classification of brain tumor is an important step for accurate diagnosis. 
OBJECTIVES: This paper propose a model named Artificially-integrated Convolutional Neural Networks (AiCNNs) that 
accurately classifies brain MRI scans to 3 classes of brain tumor and negative diagnosis results. 
METHODS: AiCNNs model integrates 5 already trained models including simple convolutional neural networks (one uses 
a simple CNN while the other utilizes data augmentation) and three pre-trained networks whose weights are transferred 
from ImageNet dataset. 
RESULTS: AiCNNs model was trained on 3501 augmented T1-weighted contrast enhanced MRI (CE-MRI) brain images. 
Validation results of 99.49% (loss=0.0303) had been achieved by AiCNNs on a set of 1167 images, which outperform its 
contemporaries which have got results upto 97.81% (loss=0.1794) and 97.79% (loss=0.1787). 
CONCLUSION: AiCNNs has been shown to obtained a test accuracy of 98.89 % on a set of 1167 images. 
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1. Introduction

The brain is the central nervous system of the body, and is 
responsible for all activities originating in, or from the body. 
When abnormal cells start forming within the brain, it leads 
to the condition known as a Brain Tumor. A tumor in this 
organ can be extremely threatening to anyone’s life. Among 
these, there can be of two types either cancerous or non-
cancerous (i.e. Malignant or Benign) [1]. Brain Tumors can 
further be divided into primary and secondary tumors. The 
primary brain tumors start within the brain while secondary 
brain tumors spread to the brain from somewhere else. The 
secondary brain tumors are one of the most complicated 
neurological cancers [2]. The symptoms for brain tumor 
may range from severe headaches and seizures to problems 
with vision and mental changes, depending on different 
parts of the body [3]. Nowadays, diagnosing brain tumors 
just on the basis of the given symptoms has become an 
arduous task. Even with the advent of CT (i.e. computed 

tomography) and MRI (i.e. magnetic resonance imaging) the 
amount of data that has to be analysed for detection, has 
increased. So, many mathematical and image processing 
techniques have been proposed to counter the 
aforementioned problem. These algorithms work mostly on 
T1, T1-weighted, T2, FLAIR MRI scans and CT scans and 
may not be that accurate to detect or classify brain tumors 
[4]. An image of a brain tumor in a T1-weighted CE-MRI 
brain image has been depicted in Figure 1.  

Figure 1. T1 Contrast-Enhanced MRI (CE-MRI) image 
depicting meningioma brain tumor (marked by arrow). 
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The discipline of Machine Learning has been 
proliferating in several domains while getting optimum 
results. These include disciplines such as Economics (for 
crisis detection [5]), Zoology (for animal migration) [6], 
psychology and psychiatry [7-8], Astronomy (for orbit 
transfers) [9], and even for Disaster Management (for robot 
that monitors and prevents disasters) [10]. Some other 
contributions of Machine learning also include handwritten 
character recognition [11], predicting chemical reactions 
[12], and stock price prediction [13]. Apart from this, 
Machine Learning has also been able to obtain significant 
results in domain of medicine. The discipline of Machine 
Learning has seen a rise in fields such as breast cancer, 
diabetes, heart cancer, skin cancer, and even psychological 
disorders [14-23]. There were attempts to create a 
framework for healthcare using Big Data and Machine 
Learning techniques [24]. The need for brain tumor 
classification as mentioned above hence led to many 
advances in mathematics and machine learning techniques 
being employed involving brain tumor area retrieval from 
images [25] and classification of brain tumors [26-28]. 
Hence, many other ANN models and transfer learned CN 
models have been proposed for the discipline of brain tumor 
classification such as [29- 31].  

This research’s contribution has been four-fold which 
have been summarized as follows.  

1. A dataset having T1-weighted contrast-enhanced
MRI (CEI-MRI) images of 3 types (i.e. Glioma,
Meningioma, and Pituitary) of brain tumors
samples which were previously MatLab data files,
has been prepared as a set of image files (.jpg)
while also augmenting some Negative brain tumor
results.

2. A comparative analysis of machine learning
algorithms has been conducted in Table 1. This
analysis tells us that among the commonly used
classifiers, the Random Forest classifier which is an
ensemble of decision trees provides one of the best
accuracies.

3. A brief comparison of 8 deep learning models (of
which some are commonly used) has been done in
Table 2 Section 3. Some trends have been analysed
in the text ensuing the table.

4. AiCNNs model has been trained using 5 pre-
trained models whose weights were loaded. It is a
model that is formed due to integrated level-0 sub-
models that are passed through a level-1 meta-
model which is essentially an Artificial Neural
Network. AiCNNs has been made robust to
overfitting due to one model which uses data
augmentation.

The rest of the paper is organized as follows. In section 2, 
the works related to the AiCNNs model have been studied. 
These are then used for comparison analysis in section 3 
which compares the performance of state-of-the-art 
algorithms and most conventional algorithms after 
extracting global features from the image dataset. Section 4 
delineates the proposed AiCNNs model in detail along with 

the dataset used and augmentations done. Section 5 enlists 
the results that were obtained when the AiCNNs model had 
been trained and these results were compared in a table to 
some common deep learning models. Finally, the research is 
concluded by stating some inferences derived from Table 3 
about the AiCNNs model and outlines a possible future 
scope.  

2. Related Work

The earliest works in MRI image evaluation, processing,
and classification date back to November 1999 [32]. This 
research essentially made it possible for MRI simulators to 
efficiently create 3D brain images. MRI scans had been used 
in medical imaging for a while then, from their advent in 
1971 by Paul Lauterbur [33]. Research like [34] provided a 
direction of machine learning algorithms in the discipline of 
medicine. It briefly discussed the significance of decision 
trees, neural networks, and Naive Bayes classifier and hence 
became a trailblazer in the aforementioned domains. Later in 
2003, Fatemizadeh proposed MGNG (modified neural-gas) 
algorithm for automated landmark extraction. This was a 
neural network-based unsupervised algorithm that split and 
then merged SOMs (Self Organizing Maps) [35] which were 
used for CT-scans. In 2006, Shang used Principal 
Component Analysis (PCA) and neural networks to register 
several computed tomography (CT) and magnetic resonance 
(MR) brain images automatically. This was done using the 
first finding principal directions using both the algorithms 
aforementioned. 

In 2009, revolutionary research [36] shaped the 
application of machine learning in the discipline of Brain 
Tumor. It used pattern classification to differentiate between 
gliomas and metastases while determining the stages of 
gliomas in Brain MRI scans. It used many steps for 
classification such as region-of-interest (ROI) (which is 
essentially the ratio of the area of the intersection to the area 
of the union), feature extraction and feature selection. The 
classification was done using support vector machines in the 
support of 102 images. The results for accuracy were found 
out to be 85 % for binary classification of metastasis and 
gliomas. Here, only 4 images of meningiomas were found. 
But this model performed badly as has been discussed later. 
The research aimed at the classification of meningioma 
tumors was conducted in 2010. It used optimum channel 
amongst RGB color channels for histopathological images 
for optimum texture combinations. The texture features 
were extracted using 4 feature extractors amongst which 2 
were model-based and 2 were statistics-based. These 
features had then been fused together in different 
combinations while excluding the correlated features to 
reduce redundancy and in turn avoiding the model from 
overfitting. Then a Bayesian classifier classified the images 
if they represented meningiomas tumor or not. Finally, a 
model-based Gaussian Markov field and a statistics-based 
run-length matrix texture were used to obtain an accuracy 
of 92.50 % [37]. Benign and Malignant Brain tumors or 
normal and abnormal images had been classified by El-
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Dahshan et al [38]. Although they used just 101 images, 
they had been able to achieve a train and test accuracy of 
99% on this set. Their approach utilized feedback pulse-
coupled neural networks, discrete wavelet transforms, 
principal component analysis, and feed-forward back-
propagation neural network for image segmentation, feature 
extraction, minimizing the dimensions of coefficients of 
wavelets and final classification, respectively. Later, SVM 
based approach for medical diagnosis and automated tumor 
detection was introduced [39]. This approach had been 
developed, keeping in mind that large volumes of MR 
images that couldn’t be inspected by manual intervention. 
An anisotropic filter had been used here as a means of pre-
processing. The connected component pixels and edge 
segmentation had been used together for image 
segmentation tasks. Further, feature extraction was 
conducted using global histogram features while SVR 
algorithm analysed and extracted these features to give ~95 
% accuracy whereas feedforward backpropagation neural 
network (BPNN), gradient descent (GD) and levenberg-
marquardt (LM) got an accuracy of ~93.15 % on average, 
92.21 %, and 94.14 %, respectively. In 2015, Yan Xu et al 
[40] proposed a deep convolutional activation feature 
(CNNs) model for classification and segmentation for 
MICCAI 2014 brain tumor digital pathology challenge. The 
proposed model transferred the features from the ImageNet 
dataset to get 97.5 % classification accuracy and 84 %
segmentation accuracy. Later, Jun Cheng et al [41] 
performed brain tumor classification using ROI (as 
described in [36]) on 3 classes (i.e. meningioma, glioma, 
and pituitary brain tumors). This was performed on the 
dataset that this model is trained on. They initiated their 
work by augmenting the region of the tumor with image 
dilation which was used as ROI instead of the original tumor 
region. They then split the tumor region into concentric 
ring-form sub-regions. Three feature extraction methods had 
been used - intensity histogram, bag-of-words (BoW) and 
gray level co-occurrence matrix which gave them an 
accuracy of 87.54 %, 89.72 %, and 91.28 %. These work 
will hold vital significance to our research as would be seen 
in section 3 and later on when the results would be 
discussed.

Authors proposed deep convolutional neural networks 
with significant dropouts, leaky rectified linear units, and 
small kernels for convolutions for the 2015 Multimodal 
Brain Tumor Segmentation (BraTS) [42]. They aimed at 
distinguishing LGG (Low-Grade Gliomas) against HGG 
(High-Grade Gliomas). In [43], Jocelyn Barker et al. 
introduced a method to overcome inefficiencies in 
computerized analysis of whole slide pathology and mislead 
diagnosis algorithms (happening due to diverse tissue 
regions in whole slide). This has been done using analysing 
regions that were coarse in slide images, then extracting 
localized features of the tiled region of the slide images, and 
then reducing their dimensions, they achieved an accuracy 
of 93.1% on binary classification among gliomas and 
glioblastoma multiforme. Later, Liya Zhao [44] introduced a 
multiscale CNN for the BraTS challenge that was designed 
to combine information from different sizes of the region 

around the ROI. This model had also combined features 
from T1, T1- enhanced, T2 and FLAIR MRI images and it 
achieved an accuracy of about 90 % or 0.9. The research 
done in [45-49] should be referred for a detailed analysis of 
other segmentation-related research which utilized deep 
learning models. Kaur B et al. proposed a Beaming Edge 
SAlient (BE-SAL) approach for the segmentation of images 
[50]. In 2017, R. Anjali and S. Priya [51] proposed a model 
having different stages such as image pre-processing (or 
noise removal), enhancing texture features, feature 
segmentation, feature selection, and classification. They 
utilized a hybrid of CART (Classification and Regression 
Trees) and an ensemble of SVM (Support Vector Machine) 
for classifying if an MRI scan has a tumor or not. This 
hybrid achieved an accuracy of 92.31 %. Later, Ali Ari and 
Davut Hanbay [52] proposed a model having 3 stages. The 
first stage cleaned the data of noise, while, in the second 
stage cranial MRI were classified using extreme learning 
machine local receptive fields (ELM-LRF), as benign and 
malignant. Later, segmentation of the tumors was done. 

3. Methodology

Various Machine learning algorithms have been used for 
Brain tumor classification as had been studied in [53] (that 
used Random Forest Approach) which gave an accuracy of 
79.67 %, [54] (which used Support Vector Classification) 
which resulted in an accuracy of 94 %, and [55] (which used 
Naïve Bayes) that had a detection rate of upto 90.63 %. 
These algorithms were tested on a different dataset which 
consisted of only 50 brain MRI scans. A comparative 
analysis of all the existing machine learning algorithms has 
been done in this section for brain tumor classification for 
the dataset that we used. It has been done for comparing 
accuracies that utilized dataset combined using 2 different 
datasets. The first dataset used here is a combination of three 
types of tumors, namely Glioma, Meningioma, and Pituitary 
[56]. A fourth class depicting negative results has also been 
augmented to the dataset from [57]. Figure 2 represent a 
sample of 5 instances from each class discussed above.  
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Figure 2. Sample of T1 Contrast-Enhanced MRI (CE-
MRI) class images. 

Then Global features from datasets such as Moments, 
Haralick Texture Features and color histograms have been 
extracted from it. A comparative analysis of various 
machine learning algorithms like Logistic Regression, LDA, 
K-nearest neighbours, Classification and Regression Trees
(CART), Random Forest, Gaussian Naive Bayes and
Support Vector Machine (SVM) have been done and results
for the same have been depicted in Table 1. The aim of
doing this had been to determine which algorithm performed
well on the aforementioned dataset.

Table 1. Comparative Analysis of various machine 
learning algorithms 

ALGORITHMS USED
MEAN 

ACCURACY 
ACHIEVED

LOGISTIC REGRESSION 63.56 % ( ± 1.41 %)

LDA 73.84 % ( ± 1.02 %)

K-NEAREST
NEIGHBOURS 61.23 % ( ± 1.80 %)

CLASSIFICATION & 
REGRESSION TREES 78.41 % ( ± 1  %)

RANDOM FOREST 
CLASSIFIER 85.31 % ( ± 0.77 %)

GAUSSIAN NAÏVE BAYES 57.20 % ( ± 1.93 %)

SUPPORT VECTOR 
CLASSIFICATION 48.91 % ( ± 1.66 %)

A further extrapolation of Table 1 has been done in figure 
3 given below. It shows that the Random Forest Classifier 
has achieved maximum accuracy of up to ~86.08%. On the 
other hand, SVC (or Support Vector Classification) got a 
maximum accuracy of 50.57 %, which has just been a little 

over a simple random classifier which may give an accuracy 
of 50 %. Figure 3 represents a comparative analysis of 
algorithms using the Box Plot which depicts the maximum 
and the minimum accuracy that they had achieved. 

Figure 3. Comparative Analysis (using Boxplot) of 
different machine learning algorithms for classification. 

This analysis leads to the conclusion that instead of using 
global features, a better classification can be done using the 
pixel values of MRI scans of the brain. Hence, deep 
learning-based approach utilizing data augmentation and 
simple convolutions had been used to classify tumors. The 
algorithms comprise of CNNs, different transfer learning 
methods like VGG16, VGG19, Xception, VGG19 (with 
ELU). The results for the same are shown in Table 2. 

Table 2. Comparative Analysis of different CNN 
models. 

MODEL 
NAME 

CNN 
ALGORITHMS 

DA 
USED 

TRAIN 
(acctrain) 

VALIDATION 
(accvalidation) 

TEST 
(acctest) 

MODEL 
(1) SIMPLE CNN  97.00 % 94.00 % 92.63 % 

MODEL 
(2) SIMPLE CNN  90.02 % 94.09 % 94.60 % 

MODEL 
(3) VGG16  86.62 % 91.95 % 89.97 % 

MODEL 
(4) VGG19  81.74 % 91.26 % 88.95 % 

MODEL 
(5) XCEPTION  99.03 % 68.55 % 66.32 % 

MODEL 
(6) 

VGG19 (WITH 
ELU)  97.29 % 94.26 % 97.43 % 

MODEL 
(7) VGG16  99.52 % 97.79 % 97.43 % 

MODEL 
(8) VGG19  99.64 % 97.81 % 97.51 % 

This analysis suggests that most of the models that were 
trained had been subjected to overfitting of some kind, 
except those that used data augmentation (that can be 
referred from “DA used” column). But, the models that had 
used data augmentation have given a low accuracy. Hence, 
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an inference can be derived from Table 2 that the models 
with data augmentation suffer from low accuracy while 
avoiding overfitting. Examples of this can be seen in the 
case of simple CNN, VGG16 or VGG19 which obtain a 
training accuracy of 90.02 %, 86.62 %, and 81.74 %, while a 
validation and test accuracy of 94.09 % and 94.60 %, 91.95 
% and 89.97 % and 91.26 % and 88.95 % had been achieved 
for these models respectively. On the other hand, all other 
models have been shown to suffer from overfitting while 
they usually achieve high training accuracy. The best 
example of this can be seen in the case of the Xception 
transfer-learned model which achieves a training accuracy 
of 99.03 %, validation accuracy of 68.55 % and test 
accuracy of 66.32 %. We observe that model (6) has been an 
exception to the rule (acctrain > accvalidation > acctest) among the 
models not using data augmentation. It may be due to the 
exponential linear unit (or elu) activation function 
(described later in eq. (5) and figure 7(e)). A final 
comparison of all these algorithms has been done with the 
AiCNNs (whose framework has been proposed in the next 
section) in Section 5. 

4. Proposed Methodology

4.1 Dataset Description 

The dataset consists of 3064 T1-weighted contrast-enhanced 
MRI (CEI-MRI) images of 3 types (i.e. Glioma, 
Meningioma, and Pituitary) of brain tumor samples. The 
images were in MatLab data file format (.mat) which had to 
be converted to Image File format (.jpg) This had been done 
using the steps mentioned below. 

Step i. The Matlab data files had been read through h5py 
[58] object.

Step ii. That object had been used to get its Image array 
file.  

Step iii. The Image array file had been converted to a 
NumPy [59] array. 

Step iv. Label had been extracted to a Label object from 
cjdata/label.  

Step v. Label object had been used to check the type of 
tumor and save it to Meningioma, Glioma or 
Pituitary folders using SciPy [60] (i.e. 
misc.imsave() function) 

The second dataset consisted of 266 Brain MRI images in 
(.jpg) format. The negative folder contained about 111 
images while the positive contained 155 images [57]. A 
brief summary of images taken for each tumor has been 
described below along with a class distribution in Figure 4. 
A set of 802 images for Meningioma Brain Tumor had been 
extracted from the dataset and placed under the class of 
Meningioma. A set of 1486 images for Glioma Brain Tumor 
has been extracted from the dataset and placed under the 
class of Meningioma. A set of 936 images for Pituitary 
Brain tumors had been extracted and placed under the 

Pituitary class. Finally, a set of 111 images for Negative 
tumors has been extracted from the dataset. 

Figure 4. Initial Class Distribution of Brain Tumor 
Images 

4.2 Data Augmentation 

To overcome imbalances in the datasets of images, an 
augmenter module had been implemented. The number of 
image files in the dataset had been artificially increased by 
using transformations which didn’t change the vectors of 
pixel intensities for specific classes that the images belonged 
to. Each image had been transformed according to the steps 
mentioned below. 

Step i. PIL (or Python Imaging Library) [61] had been 
used to open the files in the class folders and saved 
as PNG files (as JPG format doesn’t support RGBA 
channels while PNG does) 

Step ii. A pipeline object had been defined using 
Augmentor [62] which conducted the following 
augmentations to the images. 

a. Rotation: rotating an image with 0.9 probability with
maximum left rotation as 10° and maximum right
rotation as 15°.

b. Flipping: flipping of image horizontally and
vertically with a probability of 0.5 and 0.5,
respectively.

c. Resize: resizing at a probability of 35% to 512×512.
Step iii. This had been done till the following number of 

images had been obtained. 
a. 1402 images for Meningioma Brain Tumor (after

adding 600 images from augmentor module);
b. 1486 original images for Glioma Tumor;
c. 1536 images for Pituitary Brain Tumor (after adding

600 images from augmentor module); and
d. 1411 images for Negative (after adding 1300 images

from augmentor module).

The class distribution for different classes (as have been 
mentioned in figure 4) after passing the images through 
augmentor pipeline has been depicted in figure 5, given 
below. The total no. of images after data augmentation had 
been 5835 whose class distribution has been 
aforementioned. In addition to artificially increase the size 
of the data set, data augmentation can make the resulting 
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model more invariant to rotation, reflection, translation, and 
small noise in the pixel values. After this, each image has 
been resized to 250×250 pixel which has then been given as 
an input to the input layers Conv2d_16_input, 
Conv2d_24_input, xception_input, vgg16_input and vgg_19 
input of models (1), (2), (5), (7) and (8) from Table 2, 
respectively.  

Figure 5. Uniform Class Distribution of Brain Tumor 
Images after dataset has been pipelined to the 

Augmentor module.  

4.3 Dropouts 

To reduce overfitting of the individual models (1-8), 
regularization technique called dropout had been employed 
at the fully connected layers, after three input layers, as can 
be seen from figure 6. Dropout had been set to 0.25 for most 
of the models, which depicts that the weights of the one-

quarter of the neurons are randomly set to zero while 
remaining give their original inputs multiplied by the 
weights. This ensures that the neurons in convolution 
functions and ANN layers are mostly independent of each 
other, in the same layer in which they are introduce.  

4.4 One hot encoding 

It’s important to mention that encoding of the brain tumor as 
0 for negative, 1 for Meningioma, 2 for Glioma and 3 for 
Pituitary Brain Tumor has been done using one-hot 
encoding. This can be depicted as below:  

[1., 0., 0., 0.] = 0 for Negative; 
[0., 1., 0., 0.] = 1 for Meningioma Brain Tumor; 
[0., 0., 1., 0.] = 2 for Glioma Brain Tumor; and 
[0., 0., 0., 1.] = 3 for Pituitary Brain Tumor 

4.5 Model Architecture 

The final architecture for AiCNNs has been shown in Figure 
8. AiCNNs has utilized models (1), (2), (5), (7), (8) from
Table 2 which are described below along with Figures 6(a-
e). These models are cascaded and concatenated together as
an input to the Artificial Neural Network layer of AiCNNs
The kernel size taken has been 3×3, uniformly with an input
image size of 250×250 and batch size of 32. Figures 6 and 8
have been generated using Matplotlib [63] and Keras [64].

Ansh Mittal, Deepika Kumar 

EAI Endorsed Transactions 
on Pervasive Health and Technology 

10 2018 - 02 2019 | Volume 5 | Issue 17 | e5



7 

 

(a) (b) 
Figure 6(a) The Architecture of model (1) of AiCNNs from Table 2. This is a normal CNN model that doesn’t utilize 
Data Augmentation. (b) The Architecture of model (2) of AiCNNs from Table 2. This is a normal CNN model that 

utilize Data Augmentation. 

Model (1) has been depicted in figure 6(a). This model 
has its first convolutional layer (i.e. Conv2d_16) as an input 
with a kernel size of (3,3), along with tanh(s) (or hyperbolic 
tangent) (as per equation (1)) as an activation function for 
introducing non-linearity. The equation for the hyperbolic 
tangent activation function as used in [65] has been given 
below in equation (1). 

(1) 

where s is considered as the output values of pixels from the 
previous layer of the Convolutional Neural Network for 
individual images. This function creates a S-shaped curve 
(as shown in figure 7(a)) due to its exponential (i.e. es or e-s) 
terms. This is because the function defined above 
asymptotes at -1 and +1 as the value of s increases or 
decreases, respectively. This further helps map negative 
inputs to be strongly negative while zero inputs to be 
mapped near zero. Furthermore, this function is 
differentiable, monotonic, while its derivative is non-
monotonic. Here, this function plays an integral role to 
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classify the images into positive and negative classes of 
brain tumor. 

The layer (discussed earlier i.e. Conv2d_16) gives 16 
feature maps in all. In the second convolutional layer (i.e. 
Conv2d_17), the same kernel size has been used and it gives 
32 feature maps of 125×125 when it's passed through the 
leaky rectified linear unit as an activation function. The 
equations for Leaky Rectified Linear Unit (LReLU) 
activation function [66] has been described by the equation 
(2) given below.

(2) 

where α had been kept at a value of 0.08 for optimality 
purposes. This function is used to augment to the range of 
the ReLU function (discussed for next layer). This function 
is used to counter the dying ReLU problem in which the 
model becomes unfit to be trained on the data due to loss of 
important features in negative pixels. It and its derivative are 
both monotonic in nature.  

Subsequently, the first max-pooling layer (i.e. 
max_poolingd_16) of 2×2 kernel has been utilized to get 32 
feature maps, each of 62×62 pixels. Then, a dropout of 0.25 
(in dropout_20) i.e. 25 % (i.e. 25% values are randomly set 
to zero). Similarly, the third convolutional layer (i.e. 
conv2d_18) gives 64 feature maps with 31×31 pixels each 
and second max-pooling layer (i.e. max_pooling2d_17) of 
2×2 kernel size has been utilized to get 64 feature maps with 
15×15 pixels. The convolutional layer described here 
utilizes a ReLU (i.e. Rectified Linear Unit) activation 
function. The equation for the ReLU activation function has 
been described in equation (3) given below. 

(3) 

As can be seen ReLU, has been used to introduce 
nonlinearity in the form of half rectified (from bottom). 
ReLU gives a zero output for any value of vectors that is 
less than 0, while it behaves as an identity function for any 
vector values that is equal to 0 or greater than 0. It and its 
derivatives both are monotonic function. Despite this fact, 
the fact that all negative values become 0, reduce its 
functionality for the models to train from data. Hence, here 
it has been used in conjunction with other activation 
functions. 

Further, a dropout of 0.25 has been introduced after this 
layer again (in dropout_21). Another convolutional-
maxpool-dropout block (conv2d_19, max_poolingd_18, 
dropout_22, respectively) with the same configuration as the 
previous block has been utilized to obtain 128 feature maps 
of 4×4 pixels each. These are then flattened (in flatten_5) to 
get 2048 values which are passed through a fully connected 
layer of 128 neurons (in dense_9). The last dropout of 0.25 
has been introduced in this model which has then been 
passed through a fully connected or dense layer (dense_10) 
to get the output as per one hot encoding defined earlier 
using softmax function. The equation for softmax activation 

function which has been mathematically described in 
equation (4). 

(4) 

where i = 1, 2…, K and z = (z1, z2…, zK) ∈ ℝk. The main 
reason to use softmax function is because it gives a 
probability for each class in multiclass-classification. This 
probability is calculated using equation described above; 
where value for specific neuron in the last layers is used as 
numerator and the sum of all the values in neurons of the 
last layer is added to get denominator. This provides a 
probability for image to be classified as a class when a 
corresponding neuron (hence, it corresponds to that specific 
class) has the highest value. This function is monotonic and 
differentiable but its derivative is not monotonic. 

Model (2) introduced using figure 6(b) has the same 
layout as that of model (1) except that it utilizes Keras [64] 
API’s ImageDataGenerator which has a shear range, width 
shift range, height shift range, and a zoom range of 0.1 and a 
rotation range of 20°. It horizontally flips the image as well. 
Due to the aforementioned augmentations, test and 
validation images had been rescaled as well. Figure 6 (c – e) 
are the transfer learning models (corresponding to model 
(5), (7) and (8)) that have been utilized in the AiCNNs 
model. They have briefly been described below.  

The model (5) has been depicted in Figure 6(c). Here, the 
xception model [67] has been loaded from keras.application 
package with model pre-trained on the ImageNet dataset 
[68-69]. Now, the weights obtained from Xception 
(xception_input in figure 8) for this dataset (2048 feature 
maps of 8×8) have been flattened (flatten_11) to get 131072 
features which are then passed through a fully connected or 
dense layer (dense_32) of 128 neurons through a dropout of 
0.25 (in dropout_22). This configuration of the dense-
dropout layer has been repeated again (as dense_33 and 
dropout_23, respectively). This model only utilizes rectified 
linear unit (eq. (3)) as its activation function in 2 blocks 
mentioned before. Finally, the output from 64 neurons has 
been passed through the final fully connected layer (i.e. 
dense_34) by a softmax activation function (eq. (4)).  

The model (7) has been depicted in Figure 6(d). Here, the 
VGG16 model has been loaded from keras.application 
package with model pre-trained on the ImageNet dataset. 
The weights obtained from VGG16 (vgg16_input in figure 
8) for this dataset (512 feature maps of 7×7) have been
flattened (flatten_9) to get 25088 features which are then
passed through a fully connected or dense layer (dense_25)
of 128 neurons through a dropout of 0.4 (in dropout_16).
This model only utilizes a rectified linear unit (eq. (3)) as its
activation function in the block mentioned earlier. Finally,
the output from 128 neurons has been passed through the
final fully connected layer (i.e. dense_26) by a softmax
activation function (eq. (4)).
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(c) (d) (e) 
Figure 6(c) The Architecture of model (5) of AiCNNs (i.e. Artificially integrated Convolution Neural Networks) 

from Table 2. This is a transfer-learned Xception model. (d) The Architecture of model (7) of AiCNNs (i.e. 
Artificially integrated Convolution Neural Networks) from Table 2. This is a transfer-learned VGG16 model. (e) 
The Architecture of model (8) of AiCNNs (i.e. Artificially integrated Convolution Neural Networks) from Table 2. 
This is a transfer-learned VGG19 model. None of these models use data augmentation as it tends to increase 

the overfitting which will be discussed later. 

The model (8) has been depicted in Figure 6(e). Here, the 
vgg19 model has been loaded from keras.application 
package with model pre-trained on the ImageNet dataset. 
The weights that are obtained from VGG19 model 
(vgg19_input in figure 8) for this dataset (512 feature maps 
of 7×7) have to be flattened (flatten_11) to get 25088 
features which are then passed through a fully connected or 
dense layer (dense_29) of 256 neurons through a dropout of 
0.25 (in dropout_18). This configuration of the dense-
dropout layer has been repeated again (as dense_30 and 
dropout_19, respectively). This model only utilizes a 
rectified linear unit (eq. (3)) as its activation function in 2 
blocks mentioned before. Finally, the output from 64 
neurons has been passed through the final fully connected 
layer (i.e. dense_31) by a softmax activation function (eq. 
(4)).  

Finally, the model (6) utilized the exponential linear unit 
(ELU) as an activation function in all its dense layers, the 
formula for which has been described in equation (3). 

(5) 

where α had been kept at a value of 1 as per Keras [64] 
documentation of Tensorflow. ELU is very similar to ReLU 
and it slowly smoothens until its output equals -α whereas 
ReLU smoothens sharply. Finally, ELU tends to account for 
negative results and hence can be comparatively better than 
ReLU. Its monotonic and differentiable.  

The graphs for all 5 of the activation functions that have 
been mentioned from eq. (1) – (5) have been given below in 
figure 7(a)-(e), respectively.
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(a) (b) 

(c) (d) 

(e) 

Figure 7(a). A representation of hyperbolic tangent activation function; (b).  Leaky Rectified Linear Unit activation 
function; (c). A representation of Exponential Linear Unit activation function; (d). A representation of Rectified 

Linear Unit activation function; and (e). A representation of Softmax function. 
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Figure 8. The Architecture of AiCNNs which is cascade of 5 classifiers (models (1), (2), (5), (7), (8)) from Table 2. 

Now, the AiCNNs model has been depicted in figure 8 
and has been cascaded and concatenated from models (1), 
(2), (5), (7) and (8) of Table 2. Here, all the 5 models 
discussed above had been loaded using the load_model() 
function of keras.models package. The inputs that had been 
fed to all models remained the same except that of the model 
(2) whose inputs had been scaled by a factor of 255.0 to
normalize the pixel values around 1. The outputs of these
models had then been concatenated together using
concatenate() function of keras.layers.merge package. This
concatenated layer of outputs had been passed through 2
hidden layers, first having 32 hidden layer neurons
(dense_1), and the second having 16 hidden layer neurons
(dense_2). Both these hidden layers used ReLU (eq. (3))
activation layer. Finally, the output layer has 4 output layer
neurons corresponding to the 4 classes discussed earlier.
This model also calculates categorical cross-entropy loss
with AdaDelta optimizer. The complete architecture of the
AiCNNs model has been depicted in Figure 8. AiCNNs
have been inspired by the integrated stacking model [70]

which utilizes a similar cascade of classifiers where ANN 
layer is used as a meta-learner model or level 1 learner (or 
model) while CNNs are used as sub-models or level 0 
learners (or models).  

5. Results & Analysis

Initially, the 5 models (i.e. model (1), model (2), model (5), 
model (7), and model (8) of Table 2) have been trained on 
the same dataset, with only model (2) taking the input as 
scaled values (on 255.0 for proper normalization). These 
were trained on 3501 images, validated on 1167 images and 
tested on 1167 images. The training curve for these models 
has been given below. A detailed comparison of these 
models along with models (3), (4), and (6) has been done in 
Table 3 while their training history has been depicted in 
figure 9 (a – e) and figure 10 (a – e), which respectively 
represent their training history for model accuracy and 
model loss. 
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(a) (a) 

(b) (b) 

(c) (c) 

(d) (d) 

(e) (e) 
Figure 9 (a) – (e). History of Validation (in orange) & 

Training Accuracy (in blue) during the training of models 
(1), (2), (5), (7) and (8), resp. for the classification of 

MRI scans. 

Figure 10 (a) – (e). History of Validation (in orange) & 
Training Loss (in blue) during the training of models 
(1), (2), (5), (7) and (8), resp. for the classification of 

MRI scans. 
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The model had been run on 100 epochs with batch size 
32. This resulted in a training accuracy of 99.20% and
training loss (categorical cross-entropy) of 0.0306. While
the validation and testing accuracy had considerably been
reduced to approximately 99.486 % and 98.886 %
respectively. Also, the validation loss (categorical cross-
entropy) for the model has been noted to be 0.0303 which

depicts that this model doesn’t overfit the dataset that had 
been taken. 

AiCNNs had been trained on a set of 3501 images, 
validated on a set of 1167 images and tested on a set of 1167 
images. The curves for validation and training history has 
been displayed in figure 11 and figure 12. These curves 
represent the history of training of the AiCNNs (not 
including the 5 models that have been trained earlier). 

Figure 11. Validation (in orange) & Training Accuracy (in 
blue) during the training of AiCNNs for the classification 

of MRI scans. 

Figure 12: Validation (in orange) & Training Loss (in 
blue) during the training of AiCNNs for classification of 

MRI scans. 
The confusion matrix for all the models whose training 

history has been mentioned earlier in figure 9 (a – e) and 
figure 10 (a – e), has been given in figure 13 (a – e). We can 
observe that the simple CNN model (1) inaccurately 
classifies 14 instances of Meningioma brain tumor as 
negative, 1 instance of Glioma and 3 instances of Pituitary 
brain tumor as Negative. On the other hand, the model (2) 
which utilizes data augmentation has misclassified only 8 
instances of brain tumors as negative which had been a 
much more desirable result as compared to the earlier 
models. All these wrongly classified instances are known as 
False Negatives (FNs). In real-world scenarios, less false 
negatives are requirement for a medical system, as a system 
detecting FNs may give a negative result to those suffering 
from brain tumor, which can prove fatal. 

Model (5), whose confusion matrix has been plotted 
alongside model (1-2) (7-8), performs the worst out of the 5 
models. This has been subjected to its low accuracy and 
high overfitting of the data to the model. This model also 

has a low validation accuracy and loss as can be seen in 
figure 9(c) and figure 10(c). The value and performance of 
model (7) and (8) in real-life scenario lies in-between model 
(1) and (2) as these classify 9 and 11 MRI (20 in total) scans
as FNs. So, these confusion matrices have been used for
cross-checking the previous test accuracies (acctest) that had
been described in Table 2 and have finally been stated in
Table 3. Figure 14 depicts the confusion matrix
corresponding to AiCNNs (architecture for which has been
defined in figure 8 and whose history of training (with
accuracy and categorical cross-entropy loss) had been
depicted in figure 11 and figure 12). AiCNNs has reduced
the FNs (for brain tumor (all 3 types)) instances to 3 which
has been the best achievable amongst all the models
discussed and worked upon, so far. It also has less
misclassified points, better validation accuracy, and
validation loss compared to models (1), (2), (5), (7) and (8)
(discussed earlier in Table 2) as has been discussed with
reference to Table 3.

(a) (b) 
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(c) (d) 

(e) 
Figure 13 (a – e). Confusion Matrix for 4 classes namely, Negative, Meningioma, Glioma, and Pituitary when 

using Model (1), Model (2), Model (5), Model (7) and Model (8). 

 

Figure 14. Confusion Matrix for 4 classes, namely, Negative, Meningioma, Glioma, and Pituitary when using 
AiCNNs (i.e. Artificially integrated Convolutional Neural Networks) Model. 

A detailed comparison of all the models that have been 
implemented has been done in Table 3, which has been 
given below. Note that AiCNNs has been one of the best 
models among all the models mentioned here. This has been 
due to the fact that 5 models compute the weights to be 
given to the concatenation layer which is a vital part for 

AiCNNs, discussed in section 4. The calculation of features 
from the 5 models (namely model (1), (2), (5), (7), and (8)) 
make AiCNNs more robust. If the model had to be fine-
tuned it may work even better than it currently does. 

Table 3. A holistic comparison of different CNN models for the classification of different types of tumors. These 
algorithms are compared on basis if data augmentation had been used or not, training accuracy (ACCTRAIN), 

training loss (LOSSTRAIN), validation accuracy (ACCVALID), validation loss (LOSSVALID), and test accuracy 
(ACCTEST).

MODEL NAME DA USED ACCTRAIN LOSSTRAIN ACCVALID LOSSVALID ACCTEST

MODEL (1) No 97.00 % 0.0847 94.00 % 0.2547 92.63 %
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MODEL (2) Yes 90.02 % 0.2765 94.09 % 0.1832 94.60 %

MODEL (3) Yes 86.62 % 0.3310 91.95 % 0.2199 89.97 %

MODEL (4) Yes 81.74 % 0.4286 91.26 % 0.2960 88.95 %

MODEL (5) No 99.03 % 0.0329 68.55 % 2.9137 66.32 %

MODEL (6) No 97.29 % 0.1924 94.26 % 0.4437 97.43 %

MODEL (7) No 99.52 % 0.0228 97.79 % 0.1787 97.43 %

MODEL (8) No 99.64 % 0.0239 97.81 % 0.1794 97.51 %

AiCNNs Partially‡ 99.20 % 0.0306 99.49 % 0.0303 98.89 %

‡ It partially uses data augmentation as Model (2) (which also utilizes data augmentation) has been cascaded into it.
An expeditious investigation of Table 3 depicts that 

Model (5) (i.e. Xception model) converges the fastest for 
the dataset described in section 4 but this model provides 
the least validation and test accuracy. It can also be 
observed that only AiCNNs utilizes data augmentation 
partially due to its nature of cascading models, in which 
model (2) (that uses data augmentation) has been used 
with model (1), model (5), model (7) and model (8) 
(which don’t use data augmentation). Model (8) (i.e. 
VGG19 transfer-learned model) has achieved the 
maximum training accuracy (ACCTRAIN). While the 
minimum training loss (LOSSTRAIN) had been observed with 
Model (7) (i.e. VGG16 transfer-learned model). Now, 
AiCNNs have been observed to achieve the best ACCVALID, 
LOSSVALID, and ACCTEST. The four models – namely, model 
(2), model (3), model (4), and AiCNNs are the only 
models that don’t follow the general trend of (ACCTRAIN > 
ACCVALID) and (LOSSVALID > LOSSTRAIN). This depicts that 
these models have been more robust to overfitting when 
being trained on mentioned combined dataset. It’s 
important to note that the introduction of only a single 
model robust to overfitting (i.e. model (2)) has made the 
AiCNNs robust to it as well.  

6. Discussions & Conclusion

The model introduced in this research, AiCNNs
achieved a training accuracy (ACCTRAIN) of 99.20 % and 
training loss (i.e. categorical cross-entropy loss) 
(LOSSTRAIN) of 0.0306 on a set of 3501 images. It had been 
robust to overfitting and achieved a validation accuracy 
(ACCVALID) of 99.49 % and validation loss (i.e. categorical 
cross-entropy loss) (LOSSVALID) of 0.0303 on a set of 1167 
images. This model has been tested on yet another 1167 
images and achieved an accuracy (ACCTEST) of 98.89 % as 
can be seen from figure 14. It used a cascaded ensemble 
of 5 models (i.e. model (1) (a simple CNN), model (2) 
(CNN with data augmentation), model (5) (Xception 
model), model (7) (VGG16 model) and model (8) 
(VGG19 model)) as discussed earlier in section 4 and 
depicted in figure 6 and 8. These all models had been 
trained on the ratio of 3:1:1 for train, validation, a test set 

of images (with 5835 being the total number of images) 
which is similar to AiCNNs as discussed above. It used 4 
types of activation function which have been best 
described by eq. (1 – 4) and figure 7 (a – d). And, it has 
been observed that the introduction of only one data 
augmented model (i.e. model (2)) resulted in the model 
becoming robust to overfitting.  

Although this model achieves the highest testing 
(ACCTEST) and validation accuracy (ACCVALID) and least 
validation loss (LOSSVALID) compared to the models 
mentioned earlier. This has been ascribed due to the fact 
that the 5 models first have to calculate 4 vectors by a 5-
way cascaded process and then these were then used to 
train the hidden layer (ANN layer) weights. 

This work can further be extended through the 
utilization of all the models. Some more areas where this 
work can be extended have been defined below. AiCNNs 
used convolution functions that were made through 
manual trial-and-error method which is not an efficient 
means for defining a good classification model. It’s 
important to mention that genetic algorithms may be 
utilized which can help to design an optimal CNN for 
classification purposes [71-72]. Along with this, 
generation of ANN layers can also be conducted through 
genetic algorithm [73-74] and evolutionary strategies [75] 
such as CMA-ES (Covariance Matrix Adaptation 
Evolution Strategy) [76-77] and PEPG (Parameter-
Exploring Policy Gradients) [78-79], for which a further 
perusal is needed. AiCNNs model can further be extended 
to include more types of brain tumors such as 
Neurofibroma and Osteoma. It can also be extended to 
certain subtypes of the tumors for Meningioma, Glioma, 
and Pituitary such as Convexity meningioma and Skull 
base meningioma, Astrocytoma and Brain stem glioma, 
and Craniopharyngioma and Pituitary adenoma [80], 
respectively. 
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