Dimensionality Reduction for Handwritten Digit Recognition

Ankita Das¹, Tuhin Kundu^{1,*}, Chandran Saravanan²

¹Computer Science and Engineering, Jalpaiguri Government Engineering College, Jalpaiguri, India ²Computer Science and Engineering, National Institute of Technology, Durgapur, India

Abstract

Human perception of dimensions is usually limited to two or three degrees. Any further increase in the number of dimensions usually leads to the difficulty in visual imagination for any person. Hence, machine learning researchers often commonly have to overcome the curse of dimensionality in high dimensional feature sets with dimensionality reduction techniques. In this proposed model, two handwritten digit datasets are used: CVL Single Digit and MNIST, and two popular feature descriptors, Histogram of Oriented Gradients (HOG) and Gabor filters, are used to generate the feature sets. Investigations are carried out on linear and nonlinear transformations of the feature sets using multiple dimensionality reduction techniques such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Isomap. The lower dimension vectors obtained, are then used to classify the numeric digits using Support Vector Machine (SVM). A conclusion arrived is that using HOG as the feature descriptor and PCA as the dimensionality reduction technique resulted in the experimental model achieving the highest accuracy of 99.29% on the MNIST dataset with the time efficiency comparable to that of a convolutional neural network (CNN). Further, it is concluded that even though the LDA model with HOG as the feature descriptor achieved a lesser accuracy of 98.34%, but it was able to capture maximum information in just 9 components in its lower dimensional subspace with 75% reduction in time efficiency of that of the PCA-HOG model and the CNN model.

Received on 03 November 2018; accepted on 15 November 2018; published on 07 December 2018

Keywords: Dimensionality Reduction, Feature Descriptors, HOG, Gabor, PCA, LDA, Isomap, SVM, Classification Copyright © 2018 Ankita Das *et al.*, licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.12-2-2019.156590

1. Introduction

Befitting the recent development in optical character recognition and pattern recognition technologies, the use of automated systems for the recognition of characters present in physical documents and their scanned versions is increasing in our daily life. But the same technology is inefficient for recognizing handwritten characters and classifying them correctly to store them in digital format, due to the diverse appearances of the handwritten digits due to the vast number of calligraphic styles. Hence, for an effective system to digitally recognize handwritten numbers, a set of effective features is generated reflecting the intrinsic characteristics of the different digits and formulate methods of clinically discriminating the digits from one another boosting the distinguishability between them [9].

As the dimensionality of the data increases, the information required for effective analysis grows in an exponential manner. For dynamic optimisation problems, Bellman [3] referred to this problem as the "curse of dimensionality". Greater number of dimensions brings with it a lot of disadvantages such as overfitting, lesser interpretability and increase in training time. Popular approaches have been formulated to preserve the higher dimensional information onto a projection with lower dimensionality retaining as much data as possible [10]. The representation of the projection with lower dimensionality ideally includes the intrinsic characteristics of the data, hence, showcases the intrinsic dimensionality of the data or feature set. Dimensionality reduction techniques usually follow this common principle to

^{*}Corresponding author. Email: tuhinkundu@outlook.com

mitigate the "curse of dimensionality" and other undesired factors present in data with higher dimensionality. Hence, it facilitates various analytical functions such as compression, visualization and classification to be performed of the reduced dimensionality on a more clinical and efficient basis. Traditionally, linear techniques were used to reduce the dimensionality of data, but were later found inconsistent with non-linear and more complex data [8].

The rest of the paper is organised as follows. Section II briefs about the various concepts developed in this proposed model. Section III deals with the various steps in the proposed methodology of our model. Section IV depicts the results while Section V contains the conclusion.

2. Literature Review

Some previous works in the domain of handwritten digit recognition are as follows: LeCun et al. [24] proposed a standard handwritten digit dataset and used a linear classifier. Hamamoto et al. [4] proposed a model to extract features using Gabor wavelets from digit imagery and used Euclidean distance classification. A network with convolutional operations was proposed by Poultney et al. [2] with the extraction of sparse features using an unsupervised learning method. Pyramid Histogram of Oriented Gradients (PHOG) was adopted by Maji et al. [6] with the Support Vector Machine (SVM) being used for classification. A multilayer perceptron (MLP) neural network was adopted by Cruz et al. [7] and Ciresan et al. proposed a 35 layer convolutional network [5].

2.1. Feature descriptors

Histogram of Oriented Gradients. Histogram of Oriented Gradients (HOG) is a feature descriptor proposed by Dalal et al. [23], initially for the problem of pedestrian detection and has been used by researchers for various problems in the domain of computer vision. The HOG descriptor calculates the image gradients and stores the direction and magnitude of the gradients (calculated by Equations 1 and 2 respectively) in a number of bins represented by equally divided orientation angles within the range $[0, \pi)$.

$$\theta(x,y) = tan^{-1} \frac{G_y(x,y)}{G_x(x,y)}$$
(1)

$$m(x,y) = \sqrt{(G_x(x,y))^2 + (G_y(x,y))^2}$$
(2)

where $G_x(x, y)$ and $G_y(x, y)$ are gradient components of each pixel (x, y) in horizontal and vertical direction respectively. **Gabor filters.** Gabor filters [22] have been widely used by researchers for problems relating to face recognition and texture analysis, due to the fact that Gabor filters successfully extract orientation dependent frequency features from every possible pixel of an image. Therefore, it is possible to extract edge-like features for the use of character classification. Equation 3 denotes the two dimensional Gabor filter [4].

$$f(x, y, \theta_k, \lambda, \sigma_x, \sigma_y) = exp\left[-\frac{1}{2}\left\{\frac{R_1^2}{\sigma_x^2} + \frac{R_2^2}{\sigma_y^2}\right\}\right]$$
$$\cdot exp\left\{i\frac{2\pi R_1}{\lambda}\right\}$$
(3)

where $R_1 = x \cos \theta_k + y \sin \theta_k$, $R_2 = -x \sin \theta_k + y \cos \theta_k$, with λ , θ_k , σ_x and σ_y being the wavelength, orientation of wave, standard deviations of the Gaussian envelope along the *x* and *y* axis respectively.

2.2. Dimensionality reduction

Principal Component Analysis. Principal Component Analysis (PCA) [21] [20] is a linear dimensionality reduction technique that works by embedding higher dimensionality data into a lower dimensionality subspace. PCA manages to do so by transforming data dimensions to retain principal components accounting for most of the variation in the original higher dimensional data. Let $x_1, x_2..., x_n$ be the original dataset in *D* dimensional space, while the objective is to represent the dataset in a smaller subspace *W* with W < D [19]. Let y_i be defined in Equation 4 with i = 1, ..., n be a linear combination of variables.

$$y_i = A^T (x - m_x) \tag{4}$$

where $A = [\alpha_1 | ... | \alpha_n]$ is a matrix with columns having eigenvectors of \sum , the covariance of the original higher dimensional data and m_x denoting the mean of original data.

Linear Discriminant Analysis. Linear Discriminant Analysis (LDA) [17] [15] is a dimensionality reduction technique which looks to the best possible way to discriminate between classes in the underlying subspace rather than discriminating based on data [16]. Formally, it produces the largest mean differences between the desired outcome classes using independent features relative to the data described. Its objective is to formulate a projection A such that it maximizes the ratio of S_b and S_w (Fisher's criterion) which are between-class and within-class scatter respectively [18] as in Equation 5:

$$\arg\max_{A} \frac{|AS_{b}A^{T}|}{|AS_{w}A^{T}|}$$
(5)

Isomap. Isomap [12] is a dimensionality reduction technique that preserves the curvilinear (geodesic) distances between data points in a manifold. Geodesic distances are calculated over data points $x_1, x_2, ..., x_n$ using a neighbourhood graph *G* where every data point is connected with its *k* neighbouring points x_{ij} with j = 1, 2, ..., k in the dataset. Dijkstra or Floyd's shortest path algorithm is used to calculate geodesic distances between any two points, which is used to calculate a geodesic distance matrix *M*. Classical scaling is then applied to the matrix *M*, which then represents lower dimensional points y_i for datapoints x_i in the lower dimensional subspace *Y* [8].

2.3. Support Vector Machine

Support Vector Machine (SVM) [14] is a algorithm useful for discovering minute patterns in complex unseen data and discriminates between various classes to provide supervised learning classification. For training examples $x_1, x_2, ..., x_l$ and class labels $y_1, y_2, ..., y_l$, the objective is to minimize over α_k as in Equation 6 [13]:

$$J = \frac{1}{2} \sum_{h} \sum_{k} y_{h} y_{k} \alpha_{h} \alpha_{k} (x_{h} \cdot x_{k} + \lambda \delta_{hk}) - \sum_{k} \alpha_{k}$$

where $0 \le \alpha_{k} \le C$ and $\sum_{k} a_{k} y_{k} = 0$ (6)

There are *n* dimensional feature vectors with summations over all training patterns x_k . y_k encodes class labels in the form of binary values, $x_h.x_k$ denotes scalar product, Kronecker symbol is δ_{hk} , and λ and C are postitve constants(soft margin parameters).

Hence, the resulting decision D function generated from an input feature vector x is given in Equation 7.

$$D(x) = w \cdot x + b$$
where $w = \sum_{k} \alpha_k y_k x_k$ and $b = \langle y_k - w \cdot x_k \rangle$ (7)

Weight vector w being the linear combination of patterns gained from training and the training patterns with non-zero weights culminate as support vectors.

3. Proposed Methodology

Following figure 1 depicts a flowchart of the proposed model.

3.1. Databases

MNIST. MNIST [1] [24] consists of 60000 training and 10000 testing samples of handwritten digits which have been size normalized and centred in a 28×28 pixel image, and is a widely recognized standardised handwritten digit database. All images are used in the experiments.

Figure 1. Flowchart depicting our proposed model

CVL Single Digit. CVL Single Digit (CVL SD) database is a part of ICDAR2013 [11] handwritten digit and digit string recognition competition. 7000 single digit images are used as training samples and 21780 digit images are used as testing samples of size 28 × 28 pixels in the experiments.

3.2. Feature extraction

Two feature descriptors namely, HOG and Gabor filters are used to generate the feature sets from the images in the MNIST and CVL SD datasets, on which various dimensionality reduction techniques are applied. All input images were grayscale in nature.

For HOG descriptors, images are resized to 24×24 , 32×32 and 40×40 pixel images and cell size considered as 8×8 . Block size is 2×2 along with a 50% overlap. The gradient direction and gradient magnitude are quantized over 9 bins of equal angles which are unsigned in nature over [0, 180) degrees. HOG visualization over sample MNIST image showcased in following figure 2.

Figure 2. (a) MNIST sample image (b) MNIST sample image with superimposition of HOG direction gradient after resizing to 40×40 pixels

For Gabor filters, 8 different orientations and 5 different scales are selected to generate 40 Gabor filters constituting the Gabor filter bank. Each pixel for every image, hence generates 40 values after passing through the Gabor filter bank.

The feature dimensions of each image generated by the HOG and Gabor filter descriptors shown in the following table I.

The Gabor filter bank produces 40 values for each pixel, hence the dimensionality of the feature vector is very large. Hence, downsampling is used to sample

Feature Descriptor	Image size	Downsampling factor	Initial number of features
HOG	24x24 32x32 40x40	No downsampling	144 324 576
Gabor	28x28	14	160
filters	28x28	7	640

Table 1. Initial number of features generated by the feature descriptors in our experiments

select values from the feature vector produced. No downsampling is required for feature vectors generated by the HOG descriptor.

3.3. Dimensionality reduction

Dimensionality reduction techniques such as PCA, LDA, and Isomap are applied to the feature sets that are generated using the feature descriptos, HOG, and Gabor filters. Whitening transormation is applied to the feature set matrix while finding out the principal components of the datapoints in PCA. PCA's crux here is to discriminate according to the variation in the feature sets (datapoints) while LDA discriminates on the basis of the variation in the classes present within the feature sets. PCA is unsupervised, while LDA is supervised in nature as PCA considers the global structure of the data while LDA tends to maximize separation using class information. For dimensionality reduction using Isomap, the geodesic distance matrix is calculated. In this experiment, only 10000 MNIST samples and 7000 CVL SD samples are considered. The reason for using lesser number of samples for Isomap is that the generation of geodesic distance matrix is a memory inefficient and computationally expensive operation for which we are unable to use the entire dataset in our constrained hardware configuration environment. For PCA and LDA, entire training and testing sets are used for our experiments and are same for both the linear dimensionality reduction techniques used in this experiment.

The reduced feature set is generated by the dimentionality reduction techniques and the reduced features primarily comprise the principal components formulated from the input feature sets. The reduced feature sets are then fed into the SVM classifier for classification of the 10 digit classes present within the feature sets.

3.4. Classification using SVM

The dimensionally reduced feature sets are used as an input to the SVM classifier with RBF kernel in these experiments. The reduced feature sets of PCA and LDA

contain separate training and testing feature sets to be used as they are for the SVM classifier while Isomap contains a single feature set, which is used for k-fold cross validation method using the SVM classifier. k is set as 5 for our k-fold cross validation experiments for the Isomap reduced feature sets where every fold is used as a testing set once, while the other 4 folds are considered to be training sets. All 5 accuracy are averaged to calculate the cross validation accuracy of the SVM classifier on the Isomap reduced feature set.

4. Results & Discussion

All dimensionality reduction and classification experiments are conducted on Intel[®] Xeon[®] CPU @2.30GHz with 13 GB memory with acceleration provided by NVIDIA[®] Tesla[®] K80 GPU with 12 GB memory as provided by the Google Colaboratory research project. All feature set generation experiments are conducted on a personal computer with Intel[®] CoreTM i5 CPU @1.60GHz with 7.7 GB memory. The availability of such hardware configurations were fundamental for the experiments with the large number of images present in the datasets.

The results are obtained after the classification process by the SVM classifier for all the models. Results for feature sets generated by HOG and dimensionality reduction performed using PCA or LDA are shown in Tables 2,3, whereas results for feature sets generated by Gabor filters are showcased in Tables 4,5. Tables 6,7 and Tables 8,9 showcase Isomap reduced feature set classification results for HOG and Gabor filter descriptors respectively.

 Table 2. Accuracy results for feature sets generated using HOG with PCA dimensionality reduction with classification using SVM with RBF kernel

		-	
Dataset	Image size	Reduced	Accuracy%
Dataset	(in pixels)	Features	Accuracy 70
	24x24	46	98.74
MNIST	32x32	89	99.29
	40x40	151	99.12
	24x24	50	83.79
CVL SVD	32x32	97	85.14
	40x40	160	85.32

It is observed that that PCA captures maximum information in its components, about 95% of all the information available in the feature space, thus achieves the best classification accuracy amongst all the 3 dimensionality reduction techniques. Highest accuracy is obtained for the 32×32 resized dataset of MNIST where 99.29% of the images in the testing set are classified correctly, whereas other resized image datasets have a classification accuracy that

Table 3. Accuracy results for feature sets generated using HOG with LDA dimensionality reduction with classification using SVM with RBF kernel

Dataset	Image size	Reduced	Accuracy%	
Dataset	(in pixels)	Features	Accuracy%	
	24x24	9	97.79	
MNIST	32x32	9	98.29	
	40x40	9	98.34	
	24x24	9	82.63	
CVL SVD	32x32	9	84.2	
	40x40	9	84.17	

Table 4. Accuracy results for feature sets generated using Gaborfilter with PCA dimensionality reduction with classification usingSVM with RBF kernel

Dataset	Downsampling factor	Reduced features	Accuracy%
MNIST	14	75	96.76
IVIINIS I	7	176	98.96
CVL SD	14	64	81.56
CVLOD	7	164	84.72

Table 5. Accuracy results for feature sets generated using Gaborfilter with LDA dimensionality reduction with classification usingSVM with RBF kernel

Dataset	Downsampling factor	Reduced features	Accuracy%
MNIST	14	9	90.9
WIN131	7	9	97.71
CVL SD	14	9	78.21
CVL 3D	7	9	83.81

Table 6. Accuracy results for model using HOG descriptor with Isomap for dimensionality reduction on MNIST dataset with images of size 28×28

Image size (in pixel)	Reduced features	Accuracy%
24x24	46	95.95
32x32	89	97.95
40x40	151	97.85

Table 7. Accuracy results for model using HOG descriptor with Isomap for dimensionality reduction on CVL SVD dataset with images of size 28×28

Image size (in pixel)	Reduced features	Accuracy%
24x24	50	93.36
32x32	97	96.14
40x40	160	96.57

Table 8. Accuracy results for model using Gabor filter descriptor with Isomap for dimensionality reduction on MNIST dataset with images of size 28×28

Downsampling factor	Reduced features	Accuracy %
14	75	88.45
7	176	86.85

Table 9. Accuracy results for model using Gabor filter descriptor with Isomap for dimensionality reduction on CVL SVD dataset with images of size 28×28

Downsampling factor	Reduced features	Accuracy %
14	64	85.36
7	160	83.56

is fairly closeby the highest one. 40×40 resized image dimension CVL SD dataset achieves the highest predictive classification accuracy of 85.32% for the testing set containing 21780 images against a training set having only 7000 images as provided by the ICDAR2013 source using PCA. Even though PCA achieves the highest accuracy, the factor of achieving nearly the same classification accuracy with much lesser components has to be credited to LDA. LDA achieves its best predictive classification accuracy of 98.34% and 84.2% for MNIST and CVL SD datasets respectively, capturing most essential information in the feature sets within only 9 components. In this experiment, the 9 components generated by LDA are used, which almost achieves equal accuracy as PCA. LDA uses discrimination based on classes present in the feature space, the number of components that are required to capture most of the information in the higher dimensionality space is n-1 where n is the number of classes in the feature space. Hence, LDA generates a maximum of n - 1 components in its lower dimensionality subspace.

The first component of the PCA reduced set contains the maximum information, followed by the second and it reduces to an asymptotic stage after the initial components. Following figure 3 makes it is clear that the initial components hold the maximum information and have a compulsion to be included to the reduced feature set to avoid information loss.

The graph of cumulative explained variance and the number of components for PCA shown in the following figure 4 shows a proper way to select the minimum number of components from which a major part of the information is extracted.

The point on the curve whose slope at a point to the right of it is not as steep as the slope on the point to the left of it gives the approximate sufficient

Figure 3. Graph showcasing component wise variance for n^{th} component for PCA conducted on 32×32 images of the MNIST dataset with the feature set generated using HOG

Figure 4. Graph showcasing cumulative explained variance across the number of components for PCA conducted on 32×32 images of the MNIST dataset with the feature set generated using HOG

number of principal components in figure 4. Inclusion of information with low information may distract the classifier from the optimal classification hyperplane or may play a major role in case of overfitted models.

Similary, following figure 5 depicts that the initial components are the most important amongst the 9 components that have been generated in the reduced dimensionality subspace which manages to capture most of the information(datapoints) present the higher dimensional feature space. Hence, the initial components are exceptionally crucial for satisfactory classification to be implemented for the handwritten digit recognition system.

Following figure 6 depicts using bar graphs the comparison between initial number of features and the reduced number of components derived from the initial features for the three dimensionality reduction techniques used in the model, PCA, LDA, and Isomap.

Given LDA discriminates using information between the classes present in the feature space (in handwritten

Figure 5. Graph showcasing component wise variance for n^{th} component for LDA conducted on 32×32 images of the MNIST dataset with the feature set generated using HOG

Figure 6. Bar graph showcasing amount of reduction in number of features in experiments run where HOG was used to generate the initial feature sets for MNIST dataset

digit datasets, 10 classes are present for the 10 numeric digits), the number of components it generates is found to be the least amongst the three dimensionality reduction techniques. The above table II infers that PCA components provide us with the best classification results even though the number of components generated is significantly higher.

5. Conclusion & Future Work

In these experiments, it is observed that 32×32 resized MNIST image dataset with PCA as the dimensionality reduction technique and HOG as the feature descriptor performs the best classification by correctly predicting 99.29% of the images present in the testing set. We conclude that the LDA model achieves a comparatively high accuracy with the least number of features in its lower dimensional subspace with an accuracy of 98.29% and 98.34% for MNIST dataset for 32×32 and 40×40 resized images respectively for the HOG feature descriptor.

Further, in these experiments, processing time of the models are calculated. It is noticed that the HOG-PCA model for MNIST dataset with the highest accuracy took a training and testing time of 140.631 seconds. In comparison, a convolutional neural network with 2 convolutional layers, a max pooling layer and 2 dropout layers is run and it achieved an accuracy of 99.16% taking a time of 142.60 seconds on the same computational hardware configurations. Whereas the HOG-LDA model with 98.34% takes a time of 28.248 seconds also compressing most of the feature information onto 9 components. Hence, the HOG-LDA is rendered as the most time and memory efficient model despite having a slightly lower accuracy performance than the best models.

The research article has provided an insight into the compression of feature space and the time efficiency of such recognition models. Such models may prove to lead to efficient document recognition models running on lower time and memory configurations in the following future.

References

- [1] LeCun Y. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/.1998.
- [2] Poultney C, Chopra S, Cun YL. Efficient learning of sparse representations with an energy-based model. In Advances in neural information processing systems 2007 (pp. 1137-1144).
- [3] Bellman R. Dynamic programming. Courier Corporation; 2013 Apr 9.
- [4] Hamamoto Y, Uchimura S, Watanabe M, Yasuda T, Tomita S. Recognition of handwritten numerals using Gabor features. InPattern Recognition, 1996., Proceedings of the 13th International Conference on 1996 Aug 25 (Vol. 3, pp. 250-253). IEEE.
- [5] Cireŧan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. arXiv preprint arXiv:1202.2745. 2012 Feb 13.
- [6] Maji S, Malik J. Fast and accurate digit classification. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-159. 2009 Nov 25.
- [7] Cruz RM, Cavalcanti GD, Ren TI. Handwritten digit recognition using multiple feature extraction techniques and classifier ensemble. In17th International Conference on Systems, Signals and Image Processing 2010 Jun (pp. 215-218).
- [8] Van Der Maaten L, Postma E, Van den Herik J. Dimensionality reduction: a comparative. J Mach Learn Res. 2009 Oct 26;10:66-71.
- [9] Song Q, Gao Z. Real time handwritten digit recognition on mobile devices. InIntelligent Control and Information

Processing (ICICIP), 2013 Fourth International Conference on 2013 Jun 9 (pp. 487-490). IEEE.

- [10] Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Advances in bioinformatics. 2015;2015.
- [11] Diem M, Fiel S, Garz A, Keglevic M, Kleber F, Sablatnig R. ICDAR 2013 Competition on Handwritten Digit Recognition (HDRC 2013). In ICDAR 2013 Aug 25 (pp. 1422-1427).
- [12] SchÃűlkopf B, Smola A, MÃijller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural computation. 1998 Jul 1;10(5):1299-319.
- [13] Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine learning. 2002 Jan 1;46(1-3):389-422.
- [14] Vapnik VN. Adaptive and Learning Systems for Signal Processing Communications, and control. Statistical learning theory. 1998.
- [15] Fukunaga K. Introduction to statistical pattern recognition. Elsevier; 2013 Oct 22.
- [16] MartÃŋnez AM, Kak AC. Pca versus lda. IEEE Transactions on Pattern Analysis & Machine Intelligence. 2001 Feb 1(2):228-33.
- [17] Fisher RA. The statistical utilization of multiple measurements. Annals of eugenics. 1938 Aug;8(4):376-86.
- [18] Yu H, Yang J. A direct LDA algorithm for highdimensional data-with application to face recognition. Pattern recognition. 2001 Oct 1;34(10):2067-70.
- [19] Savakis A, Sharma R, Kumar M. Efficient eye detection using HOG-PCA descriptor. InImaging and Multimedia Analytics in a Web and Mobile World 2014 2014 Mar 3 (Vol. 9027, p. 90270J). International Society for Optics and Photonics.
- [20] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of educational psychology. 1933 Sep;24(6):417.
- [21] Pearson K. LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1901 Nov 1;2(11):559-72.
- [22] Gabor D. Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering. 1946 Nov;93(26):429-41.
- [23] Dalal N, Triggs B. Histograms of oriented gradients for human detection. InComputer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on 2005 Jun 25 (Vol. 1, pp. 886-893). IEEE.
- [24] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998 Nov;86(11):2278-324.

