EAI Endorsed Transactions
 on Context-aware Systems and Applications

Products, Coproducts and Universal Properties of Autonomic Systems

Phan Cong Vinh ${ }^{1, *}$, Nguyen Minh Truong ${ }^{2}$
${ }^{1}$ Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
${ }^{2}$ Ho Chi Minh City Industry and Trade College, 20 Tang Nhon Phu Street, Phuoc Long B Ward, District 9, Ho Chi Minh City, Vietnam

Abstract

Abstract

Self-* is widely considered as a foundation for autonomic computing. The notion of autonomic systems (ASs) and self-* serves as a basis on which to build our intuition about category of ASs in general. In this paper we will specify ASs and self-* and then move on to consider products, coproducts and some universal properties of ASs. All of this material is taken as an investigation of our category, the category of ASs, which we call AS.

Received on 02 January 2015; accepted on 11 January 2016; published on 12 February 2016
Keywords: Autonomic computing, Autonomic systems, Coproduct, Product, Self-*
Copyright © 2016 Phan Cong Vinh and Nguyen Minh Truong, licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.
doi:10.4108/eai.12-2-2016.151088

1. Introduction

Autonomic computing (AC) imitates and simulates the natural intelligence possessed by the human autonomic nervous system using generic computers. This indicates that the nature of software in AC is the simulation and embodiment of human behaviors, and the extension of human capability, reachability, persistency, memory, and information processing speed. AC was first proposed by IBM in 2001 where it is defined as
"Autonomic computing is an approach to selfmanaged computing systems with a minimum of human interference. The term derives from the body's autonomic nervous system, which controls key functions without conscious awareness or involvement" [1].
$A C$ in our recent investigations [2-8] is generally described as self-*. Formally, let self-* be the set of self-__'s. Each selfto be an element in self-* is called a self-*facet. That is,

$$
\begin{equation*}
\text { self- } *=\{\text { self }-\ldots \mid \text { self- } \ldots \text { is a self- } * \text { facet }\} \tag{1}
\end{equation*}
$$

We see that self-CHOP is composed of four self-* facets of self-configuration, self-healing, self-optimization and self-protection. Hence, self-CHOP is a subset of self-*.

[^0]That is, self-CHOP $=$ \{self-configuration, self-healing, selfoptimization, self-protection $\} \subset$ self-*. Every self-* facet must satisfy some certain criteria, so-called self-* properties.

In its AC manifesto, IBM proposed eight facets setting forth an AS known as self-awareness, self-configuration, self-optimization, self-maintenance, self-protection (security and integrity), self-adaptation, self-resource- allocation and open-standard-based [1]. In other words, consciousness (selfawareness) and non-imperative (goal-driven) behaviors are the main features of autonomic systems (ASs).

In this paper we will specify ASs and self-* and then move on to consider products and coproducts of ASs. All of this material is taken as an investigation of our category, the category of ASs, which we call AS.

2. Outline

In the paper, we attempt to make the presentation as selfcontained as possible, although familiarity with the notion of self-* in ASs is assumed. Acquaintance with the associated notion of algebraic language is useful for recognizing the results, but is almost everywhere not strictly necessary.

The rest of this paper is organized as follows: Section 3 presents the notion of autonomic systems (ASs). In section 4, self-* actions in ASs are specified. In section 5, products and coproducts of ASs are considered. Some universal properties of ASa are investigated in section 6 . Finally, a short summary is given in section 7 .

3. Autonomic Systems (ASs)

We can think of an $A S$ as a collection of states $x \in A S$, each of which is recognizable as being in $A S$ and such that for each pair of named states $x, y \in A S$ we can tell if $x=y$ or not. The symbol \oslash denotes the $A S$ with no states.

If $A S_{1}$ and $A S_{2}$ are ASs, we say that $A S_{1}$ is a sub-system of $A S_{2}$, and write $A S_{1} \subseteq A S_{2}$, if every state of $A S_{1}$ is a state of $A S_{2}$. Checking the definition, we see that for any system $A S$, we have sub-systems $\oslash \subseteq A S$ and $A S \subseteq A S$.

We can use system-builder notation to denote sub-systems. For example the autonomic system can be written $\{x \in A S \mid$ x is a state of AS $\}$.

The symbol \exists means "there exists". So we can write the autonomic system as $\{x \in A S \mid$ $\exists y$ is a final state such that self- $* \operatorname{action}(x)=y\}$

The symbol \exists ! means "there exists a unique". So the statement " $\exists!x \in A S$ is an initial state" means that there is one and only one state to be a start one, that is, the state of the autonomic system before any self-* action is processed.
Finally, the symbol \forall means "for all". So the statement " $\forall x \in A S \exists y \in A S$ such that self-* $\operatorname{action}(x)=y$ " means that for every state of autonomic system there is the next one.
In the paper, we use the $\stackrel{\text { def }}{=}$ notation " $A S_{1} \stackrel{\text { def }}{=} A S_{2}$ " to mean something like "define $A S_{1}$ to be $A S_{2}$ ". That is, a def declaration is not denoting a fact of nature (like $1+2=3$), but our formal notation. It just so happens that the notation above, such as Self-CHOP $\stackrel{\text { def }}{=}$ \{self-configuration, self-healing, selfoptimization, self-protection\}, is a widely-held choice.

4. Self-* Actions of Autonomic Systems

If $A S$ and $A S^{\prime}$ are sets of autonomic system states, then a self* action self-*action from $A S$ to $A S^{\prime}$, denoted self-*action: $A S \rightarrow A S^{\prime}$, is a mapping that sends each state $x \in A S$ to a state of $A S^{\prime}$, denoted self-*action $(x) \in A S^{\prime}$. We call $A S$ the domain of self-*action and we call $A S^{\prime}$ the codomain of self-*action.

Note that the symbol $A S^{\prime}$, read "AS-prime", has nothing to do with calculus or derivatives. It is simply notation that we use to name a symbol that is suggested as being somehow like $A S$. This suggestion of consanguinity between $A S$ and $A S^{\prime}$ is meant only as an aid for human cognition, and not as part of the mathematics. For every state $x \in A S$, there is exactly one arrow emanating from x, but for a state $y \in A S^{\prime}$, there can be several arrows pointing to y, or there can be no arrows pointing to y.

Suppose that $A S^{\prime} \subseteq A S$ is a sub-system. Then we can consider the self-* action $A S^{\prime} \rightarrow A S$ given by sending every state of $A S^{\prime}$ to "itself" as a state of $A S$. For example if $A S=\{a, b, c, d, e, f\}$ and $A S^{\prime}=\{b, d, e\}$ then $A S^{\prime} \subseteq A S$ and we turn that into the self-* action $A S^{\prime} \rightarrow A S$ given by $b \mapsto$ $b, d \mapsto d, e \mapsto e$. This kind of arrow, \mapsto, is read aloud as "maps to". A self-* action self-*action: $A S \rightarrow A S^{\prime}$ means a rule for assigning to each state $x \in A S$ a state self-*action $(x) \in A S^{\prime}$. We say that " x maps to self-*action (x) " and write $x \mapsto$ self-*action (x).

As a matter of notation, we can sometimes say something like the following: Let self-*action: $A S^{\prime} \subseteq A S$ be a sub-system. Here we are making clear that $A S^{\prime}$ is a sub-system of $A S$, but that self-*action is the name of the associated self-* action.

Given a self-* action self-*action: $A S \rightarrow A S^{\prime}$, the states of $A S^{\prime}$ that have at least one arrow pointing to them are said to be in the image of self-*action; that is we have $\operatorname{im}($ self-*action $) \stackrel{\text { def }}{=}\left\{y \in A S^{\prime} \mid \exists x \in\right.$ $A S$ such that self-*action $(x)=y\}$. Given self-*action: $A S \rightarrow$ $A S^{\prime}$ and self-*action ${ }^{\prime}: A S^{\prime} \rightarrow A S^{\prime \prime}$, where the codomain of self-*action is the same set of autonomic system states as the domain of self-*action (namely $A S^{\prime}$), we say that self*action and self-*action ${ }^{\prime}$ are composable

$$
A S \xrightarrow{\text { self-*action }} A S^{\prime} \xrightarrow{\text { self-*action' }} A S^{\prime \prime}
$$

The composition of self-*action and self-*action ${ }^{\prime}$ is denoted by self-*action' o self-*action: $A S \rightarrow A S^{\prime \prime}$.

We write $\operatorname{Hom}_{\mathbf{A S}}\left(A S, A S^{\prime}\right)$ to denote the set of self-*actions $A S \rightarrow A S^{\prime}$. Two self-* actions self-*action, self-*action' ${ }^{\prime}$ $A S \rightarrow A S^{\prime}$ are equal if and only if for every state $x \in A S$ we

We define the identity self-*action on $A S$, denoted $i d_{A S}$: $A S \rightarrow A S$, to be the self-* action such that for all $x \in A S$ we have $i d_{A S}(x)=x$.

A self-*action: $A S \rightarrow A S^{\prime}$ is called an isomorphism, denoted self-*action: $A S \xrightarrow{\cong} A S^{\prime}$, if there exists a self-* action self*action' $: A S^{\prime} \rightarrow A S$ such that self-*action ${ }^{\prime} \circ$ self-*action= $i d_{A S}$ and self-*action \circ self-*action ${ }^{\prime}=i d_{A S^{\prime}}$. We also say that self-*action is invertible and we say that self-*action' is the inverse of self-*action. If there exists an isomorphism $A S \stackrel{\cong}{\rightrightarrows} A S^{\prime}$ we say that $A S$ and $A S^{\prime}$ are isomorphic autonomic systems and may write $A S \cong A S^{\prime}$.
Proposition 1. The following facts hold about isomorphism.

1. Any autonomic system $A S$ is isomorphic to itself; i.e. there exists an isomorphism $A S \stackrel{\cong}{\rightrightarrows} A S$.
2. For any autonomic systems $A S$ and $A S^{\prime}$, if $A S$ is isomorphic to $A S^{\prime}$ then $A S^{\prime}$ is isomorphic to $A S$.
3. For any autonomic systems $A S, A S^{\prime}$ and $A S^{\prime \prime}$, if $A S$ is isomorphic to $A S^{\prime}$ and $A S^{\prime}$ is isomorphic to $A S^{\prime \prime}$ then $A S$ is isomorphic to $A S^{\prime \prime}$.

Proof:

1. The identity self-* action $i d_{A S}: A S \rightarrow A S$ is invertible; its inverse is $i d_{A S}$ because $i d_{A S} \circ i d_{A S}=i d_{A S}$.
2. If self-*action: $A S \rightarrow A S^{\prime}$ is invertible with inverse self*action' $: A S^{\prime} \rightarrow A S$ then self-*action ${ }^{\prime}$ is an isomorphism with inverse self-*action.
3. If self-*action: $A S \rightarrow A S^{\prime}$ and self-*action $: A S^{\prime} \rightarrow A S^{\prime \prime}$ are each invertible with inverses self-*action ${ }^{\prime}: A S^{\prime} \rightarrow A S$ and self-*action ${ }^{\prime}: A S^{\prime \prime} \rightarrow A S^{\prime}$ then the following calculations show that self-*action \circ self-*action is invertible with inverse self-*action' \circ self-*action :
$($ self-*action \circ self-*action $) \circ\left(\right.$ self-*action' \circ self-*action $\left.{ }^{\prime}\right)=$ self-*action $\circ\left(\right.$ self-*action \circ self-*action $\left.{ }^{\prime}\right) \circ$ self-*action ${ }^{\prime}=$ selff-*action $\circ i d_{A S^{\prime}} \circ$ selff-*action ${ }^{\prime}=$
selff-*action \circ self-*action ${ }^{\prime}=i d_{A S^{\prime \prime}}$
and
$\left(\right.$ self-*action' \circ self-*action $\left.{ }^{\prime}\right) \circ($ self-*action \circ self $-*$ action $)=$ self-*action' $\circ($ self-*action \circ self-*action $) \circ$ self-*action $=$ self- $*$ action $^{\prime} \circ$ id $_{A S^{\prime}} \circ$ self- $*$ action $=$
self-*action' \circ self-*action $=i d_{A S}$
Q.E.D.

For any natural number $n \in \mathbb{N}$, define a set $\underline{n}=\{1,2, \ldots, n\}$. So, in particular, $\underline{0}=\oslash$. A function $f: \underline{n} \rightarrow A S$ can be written as a sequence $f=(f(1), f(2), \ldots, f(n))$. We say that $A S$ has cardinality n, denoted $|A S|=n$ if there exists an isomorphism $A S \cong \underline{n}$. If there exists some $n \in \mathbb{N}$ such that $A S$ has cardinality n then we say that $A S$ is finite. Otherwise, we say that $A S$ is infinite and write $|A S| \geqslant \infty$.

Proposition 2. Suppose that $A S$ and $A S^{\prime}$ are finite. If there is an isomorphism of autonomic systems $f: A S \rightarrow A S^{\prime}$ then the two autonomic systems have the same cardinality, $|A S|=\left|A S^{\prime}\right|$.

Proof: Suppose that $f: A S \rightarrow A S^{\prime}$ is an isomorphism. If there exists natural numbers $m, n \in \mathbb{N}$ and isomorphisms $\alpha: \underline{m} \xlongequal{\cong} A S$ and $\beta: \underline{n} \xlongequal{\cong} A S^{\prime}$ then

$$
\underline{m} \xrightarrow{\alpha} A S \xrightarrow{f} A S^{\prime} \xrightarrow{\beta^{-1}} \underline{n}
$$

is an isomorphism. We can prove by induction that the sets \underline{m} and \underline{n} are isomorphic if and only if $m=n$.
Q.E.D.

Consider the following diagram:

We say this is a diagram of autonomic systems if each of $A S, A S^{\prime}, A S^{\prime \prime}$ is an autonomic system and each of self*action, self-*action', self-*action" is a self-* action. We say this diagram commutes if self-*action' \circ self-*action $=$ self-*action ${ }^{\prime \prime}$. In this case we refer to it as a commutative triangle of autonomic systems. Diagram (2) is considered to be the same diagram as each of the following:

Consider the following picture:

We say this is a diagram of autonomic systems if each of $A S, A S^{\prime}, A S^{\prime \prime}, A S^{\prime \prime \prime}$ is an autonomic system and each of self*action, self-*action', self-*action", self-*action"'I is a self* action. We say this diagram commutes if self-*action' \circ self-*action $=$ self-*action"' \circ self-*action" ${ }^{\prime \prime}$ In this case we refer to it as a commutative square of autonomic systems.

5. Products and Coproducts of Autonomic Systems

Let $A S$ and $A S^{\prime}$ be autonomic systems. The product of $A S$ and $A S^{\prime}$, denoted $A S \times A S^{\prime}$, is defined as the autonomic system of ordered pairs (x, y) where states of $x \in A S$ and $y \in A S^{\prime}$. Symbolically, $A S \times A S^{\prime}=\left\{(x, y) \mid x \in A S, y \in A S^{\prime}\right\}$. There are two natural projection actions of self-* to be self-*action ${ }_{1}$: $A S \times A S^{\prime} \rightarrow A S$ and self-*action ${ }_{2}: A S \times A S^{\prime} \rightarrow A S^{\prime}$

For illustration, suppose that $\{a, b, c\}$ are states in $A S$ and $\{d, e\}$ in $A S^{\prime}$, the states are happening in such autonomic systems. Thus, $A S$ and $A S^{\prime}$, which are running concurrently, can be specified by $A S \mid A S^{\prime} \stackrel{\text { def }}{=}$ $\{(a \mid d),(a \mid e),(b \mid d),(b \mid e),(c \mid d),(c \mid e)\}$. Note that the symbol "|" is used to denote concurrency of states existing at the same time. We define self-* actions as disable((d, e) and $\operatorname{disable}(a, b, c)$ to be able to drop out relevant states.

It is possible to take the product of more than two autonomic systems as well. For example, if $A S_{1}, A S_{2}$, and $A S_{3}$ are autonomic systems then $A S_{1}\left|A S_{2}\right| A S_{3}$ is the system of triples,

$$
A S_{1}\left|A S_{2}\right| A S_{3} \stackrel{\text { def }}{=}\left\{(a|b| c) \mid a \in A S_{1}, b \in A S_{2}, c \in A S_{3}\right\}
$$

Proposition 3. Let $A S$ and $A S^{\prime}$ be autonomic systems. For any autonomic system $A S^{\prime \prime}$ and actions self-*action ${ }_{3}: A S^{\prime \prime} \rightarrow A S$ and self-* action $_{4}: A S^{\prime \prime} \rightarrow A S^{\prime}$, there exists a unique action $A S^{\prime \prime} \rightarrow A S \times A S^{\prime}$ such that the following diagram commutes

We might write the unique action as

$$
\left\langle\text { self-*action }{ }_{3} \text {, self-*action }{ }_{4}\right\rangle: A S^{\prime \prime} \rightarrow A S \times A S^{\prime}
$$

Proof: \quad Suppose given self-*action ${ }_{3}$ and self-*action ${ }_{4}$ as above. To provide an action $z: A S^{\prime \prime} \rightarrow A S \times A S^{\prime}$ is equivalent to providing a state $z(a) \in A S \times A S^{\prime}$ for each $a \in A S^{\prime \prime}$. We need such an action for which self-*action ${ }_{1} \circ z=$ self- * action $_{3}$ and self-*action $n_{2} \circ z=$ self- * action $_{4}$. A state of $A S \times A S^{\prime}$ is an ordered pair (x, y), and we can use $z(a)=(x, y)$ if and only if $x=\operatorname{self}^{-*} \operatorname{action}_{1}(x, y)=$ self- * action $_{3}(a)$ and $y=$ self- $^{*} \operatorname{action}_{2}(x, y)=$ self-* $^{*} \operatorname{action}_{4}(a)$. So it is necessary and sufficient to define 〈self-*action ${ }_{3}$, self-*action $\left.{ }_{4}\right\rangle \stackrel{\text { def }}{=}$ $\left(\right.$ self-* $^{-} \operatorname{action}_{3}(a)$, self- $\left.\operatorname{action}_{4}(a)\right)$ for all $a \in A S^{\prime \prime} . \quad$ Q.E.D.

Given autonomic systems $A S, A S^{\prime}$, and $A S^{\prime \prime}$, and actions self-*action ${ }_{3}: A S^{\prime \prime} \rightarrow A S$ and self-*action ${ }_{4}: A S^{\prime \prime} \rightarrow A S^{\prime}$, there is a unique action $A S^{\prime \prime} \rightarrow A S \times A S^{\prime}$ that commutes with self*action $_{3}$ and self-*action 4 . We call it the induced action $A S^{\prime \prime} \rightarrow A S \times A S^{\prime}$, meaning the one that arises in light of self${ }^{*}$ action $_{3}$ and self-*action 4 .

For example, as mentioned above autonomic systems $A S=\{a, b, c\}, A S^{\prime}=\{d, e\}$ and $A S \mid A S^{\prime} \stackrel{\text { def }}{=}$ $\{(a \mid d),(a \mid e),(b \mid d),(b \mid e),(c \mid d),(c \mid e)\}$. For an autonomic system $A S^{\prime \prime}=\oslash$, which stops running, we define self-* actions as enable (d, e) and enable (a, b, c) to be able to add further relevant states. Then there exists a unique action

$$
\operatorname{enable}((a \mid d),(a \mid e),(b \mid d),(b \mid e),(c \mid d),(c \mid e))
$$

such that the following diagram commutes

Let $A S$ and $A S^{\prime}$ be autonomic systems. The coproduct of $A S$ and $A S^{\prime}$, denoted $A S \sqcup A S^{\prime}$, is defined as the "disjoint
union" of $A S$ and $A S^{\prime}$, i.e. the autonomic system for which a state is either a state of $A S$ or a state of $A S^{\prime}$. If something is a state of both $A S$ and $A S^{\prime}$ then we include both copies, and distinguish between them, in $A S \sqcup A S^{\prime}$. There are two natural inclusion actions self-*action $1: A S \rightarrow A S \sqcup A S^{\prime}$ and self-*action ${ }_{2}: A S^{\prime} \rightarrow A S \sqcup A S^{\prime}$.

For illustration, suppose that $\{a, b, c\}$ are states in autonomic system $A S$ and $\{d, e\}$ in $A S^{\prime}$. Thus, $A S \sqcup A S^{\prime}$, which is disjoint union, can be specified by $A S \sqcup A S^{\prime} \stackrel{\text { def }}{=}$ $\{a, b, c, d, e$,$\} . We define self-* actions as ensable((d, e)$ and enable (a, b, c) to be able to add further relevant states.

Proposition 4. Let $A S$ and $A S^{\prime}$ be autonomic systems. For any autonomic system $A S^{\prime \prime}$ and actions self-*action $3: A S \rightarrow A S^{\prime \prime}$ and self-* action ${ }_{4}: A S^{\prime} \rightarrow A S^{\prime \prime}$, there exists a unique action $A S \sqcup A S^{\prime} \rightarrow A S^{\prime \prime}$ such that the following diagram commutes

We might write the unique action as

$$
\left[\text { self- }^{*} \text { action }_{3}, \text { self- }^{*} \text { action }_{4}\right]: A S \sqcup A S^{\prime} \rightarrow A S^{\prime \prime}
$$

Proof: Suppose given self-*action n_{3}, self-*action ${ }_{4}$ as above. To provide an action $z: A S \sqcup A S^{\prime} \rightarrow A S^{\prime \prime}$ is equivalent to providing a state self- * action $_{3}(m) \in A S^{\prime \prime}$ is for each $m \in A S \sqcup A S^{\prime}$. We need such an action such that $z \circ$ self-*action $_{1}=$ self- * action $_{3}$ and $z \circ$ self- 2 action $_{2}=$ self-*action ${ }_{4}$. But each state $m \in A S \sqcup A S^{\prime}$ is either of the form self-*action $1 x$ or self-*action ${ }_{2} y$, and cannot be of both forms. So we assign $\left[\right.$ self-*action ${ }_{3}$, self-*action $\left.{ }_{4}\right](m)=$ $\left\{\begin{array}{ll}\text { self-*action } & (x) \\ \text { self- } \operatorname{aiction}_{4}(y) & \text { if } m=\text { self-*action }{ }_{1} x \\ \text { self- } * \text { action }_{2} y\end{array} \quad\right.$ This assignment is necessary and sufficient to make all relevant diagrams commute.
Q.E.D.

For example, as mentioned above autonomic systems $A S=\{a, b, c\}, A S^{\prime}=\{d, e\}$ and $A S \sqcup A S^{\prime} \stackrel{\text { def }}{=}\{a, b, c, d, e\}$. For an autonomic system $A S^{\prime \prime}=\oslash$, which stops running, we define self-* actions as $\operatorname{disable}(d, e)$ and $\operatorname{disable}(a, b, c)$ to drop out relevant states. Then there exists a unique
action $\operatorname{disable}(a, b, c, d, e)$ such that the following diagram commutes

6. Universial Properties

We denote the coproduct of two autonomic systems $A S$ and $A S^{\prime}$ by the notation $A S+A S^{\prime}$ rather than $A S \sqcup A S^{\prime}$. It is a reasonable notation in general, and one that is often used.

The following isomorphisms exist for any autonomic systems $A S, A S^{\prime}$, and $A S^{\prime \prime}$
$A S+\underline{0} \cong A S$
$A S+\bar{A} S^{\prime} \cong A S^{\prime}+A S$
$\left(A S+A S^{\prime}\right)+A S^{\prime \prime} \cong A S+\left(A S^{\prime}+A S^{\prime \prime}\right)$
$A S \times \underline{0} \cong \underline{0}$
$A S \times \underline{1} \cong A S$
$A S \times \bar{A} S^{\prime} \cong A S^{\prime} \times A S$
$\left(A S \times A S^{\prime}\right) \times A S^{\prime \prime} \cong A S \times\left(A S^{\prime} \times A S^{\prime \prime}\right)$
$A S \times\left(A S^{\prime}+A S^{\prime \prime}\right) \cong\left(A S \times A S^{\prime}\right)+\left(A S \times A S^{\prime \prime}\right)$
$A S^{0} \cong 1$
$A S^{1} \cong A S$
$\underline{0}^{A S} \cong \underline{0}$
$\underline{1}^{A S} \cong \underline{1}$
$\bar{A} S^{A S^{\prime}+A S^{\prime \prime}} \cong A S^{A S^{\prime}} \times A S^{A S^{\prime \prime}}$
$\left(A S^{A S^{\prime}}\right)^{A S^{\prime \prime}} \cong A S^{A S^{\prime} \times A S^{\prime \prime}}$
In the case of $\underline{0}^{\underline{0}}$, we get conflicting answers, because for any autonomic system $A S$, including $A S=\oslash=\underline{0}$, we have claimed both that $A S^{0} \cong \underline{1}^{\prime}$ and that $\underline{0}^{A S} \cong \underline{0}$. Based on the definitions of 0,1 and $A S^{A \bar{S}^{\prime}}$ given in 4 , the correct answer for $\underline{0}^{\underline{0}}$ is $\underline{0}^{\underline{0}} \cong \underline{1}$. The universal properties, which are considered in this section, are in some sense about isomorphisms. It says that understanding isomorphisms of autonomic systems reduces to understanding natural numbers. But note that there is much more going on in the category of $\mathbf{A S}$ than isomorphisms; in particular there are self-* actions that are not invertible.

7. Conclusions

The paper is a reference material for readers who already have a basic understanding of self-* in ASs and are now ready to
consider products, coproducts and some universal properties of ASs using algebraic language. Algebraic specification is presented in a straightforward fashion by discussing in detail the necessary components and briefly touching on the more advanced components.

Acknowledgements. Thank you to NTTU ${ }^{1}$ for the constant support of our work which culminated in the publication of this paper. As always, we are deeply indebted to the anonymous reviewers for their helpful comments and valuable suggestions which have contributed to the final preparation of the paper.

References

[1] IBM. Autonomic Computing Manifesto. Retrieved from http://www.research. ibm.com/ autonomic/, 2001.
[2] P.C. Vinh. Autonomic Computing and Networking, chapter Formal Aspects of Self-* in Autonomic Networked Computing Systems, pages 381-410. Springer, 2009.
[3] P.C. Vinh. Toward Formalized Autonomic Networking. Mobile Networks and Applications, 19(5):598-607, October 2014. DOI: 10.1007/s11036-014-0521-z.
[4] P.C. Vinh. Algebraically Autonomic Computing. Mobile Networks and Applications, 2016. DOI: 10.1007/s1 1036-015-0615-2.
[5] P.C. Vinh. Concurrency of Self-* in Autonomic Systems. Future Generation Computer Systems, 56:140-152, 2016. DOI: 10.1016/j.future.2015.04.017.
[6] P.C. Vinh. Products and Coproducts of Autonomic Systems. In P.C. Vinh and V. Alagar, editors, The 4th International Conference on Context-Aware Systems and Applications (ICCASA 2015), volume 165 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST). Springer, 2016.
[7] P.C. Vinh and N.T. Tung. Coalgebraic Aspects of ContextAwareness. Mobile Networks and Applications, 18(3):391-397, June 2013. DOI 10.1007/s11036-012-0404-0.
[8] P.C. Vinh and E. Vassev. Nature-Inspired Computation and Communication: A Formal Approach. Future Generation Computer Systems, 56:121-123, 2016. DOI: 10.1016/j.future.2015.10.011.

[^1]
[^0]: * Corresponding author. Email: pcvinh@ntt.edu.vn

[^1]: ${ }^{1}$ Nguyen Tat Thanh University, Vietnam

