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Abstract

The importance of accurate and efficient positioning and tracking is widely understood. However, there is
a pressing lack of progress in the standardisation of methods, as well as generalised framework of their
evaluation. The aim of this survey is to discuss the currently prevalent and emerging types of sensors
used for location estimation. The intent of this review is to take account of this taxonomy and to provide
a wider understanding of the current state-of-the-art. To that end, we outline various sensor modalities,
as well as popular fusion and integration techniques, discussing how their combinations can help in
various application settings. Firstly, we present the fundamental mechanics behind sensors employed by
the localisation community. Furthermore we outline the formal theory behind prominent fusion methods
and provide exhaustive implementation examples of each. Finally, we provide points for future discussion
regarding localisation sensing, fusion and integration methods.
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1. Introduction
Indoor localisation has been regularly cited as an impor-
tant ambition of many fields in both, academia and
industry. The use cases include pervasive health mon-
itoring [13, 78], targeted advertising [9], factory vehicle
tracking [71] and robotics [15, 90], amongst others.
However, implementations of localisation methods and
algorithms differ, depending on the need, deployment
methods, available utilities, resources and sensors [54,
181].

At the heart of every implementation lies effective
sensor data utilisation and analysis. In this review, we
provide a taxonomy of more and less popular sensing
modalities currently preferred by the experts in the
field. These sensors are used to achieve target tracking
and localisation. Additionally, we provide an overview
of favoured fusion mechanisms employed to achieve
higher accuracy [182], efficiency [83], robustness [57],
or combination thereof [78]. The utilisation of these
sensors is highly dependent on the use case. For
example, there exist scenarios, where the accuracy of
location estimation assumes a secondary role to energy
efficiency [79] or user identification [53]. The selection
of which sensors to use, and how, is usually left
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to user’s preference and experience. This makes the
relative selection space large, and frequently open to
interpretation with regard to available resources and
constraints.

Whilst the survey literature pertaining to localisation
systems and methods is large [54, 171, 181], there
exists very little in the way of localisation-centric
sensor utilisation. This encompasses the use of bespoke
[39] or off-the-shelf [13, 118] sensors, specifically for
the use of location estimation, robustification and
optimisation. This area is extensive [20, 35, 57, 83, 136,
146], yet very often bundled along with localisation
technology surveys, without subsequent scrutiny. We
aim to close this gap, by reviewing sensors, their
fusion and utilisation as applied to localisation, in
contrast to localisation methods, technologies and
implementations themselves.

Most of the existing localisation surveys include
technology-specific reviews [30, 54, 92, 181]. They con-
centrate upon the methods and algorithms related to
indoor localisation [30, 92], techniques and technolo-
gies [181]. Some work also addresses localisation from
the perspective of the device itself, such as smart-
phones [171]. Xiao et al. study [171] is the most closely
related work to our proposed examination. The main
difference is, that instead of reviewing the devices as
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sensor clusters, we review the sensor modalities them-
selves. We also offer a more comprehensive review of
fusion methods and provide exhaustive examples for
each case.

The main contribution of this paper is the inventori-
sation of the popular types of sensors used to provide
location estimation and their respective advantages and
disadvantages. We also provide the detailed description
of their fusion methods with respect to their benefits
and drawbacks. Finally, we show how these sensors are
likely to fare in the future, paying close attention to the
current community preference and trends surrounding
each modality. To the knowledge of the authors, this is
the first survey of its kind.

In Section 2 we outline the problem of localisation
and provide a brief synopsis of the review process, con-
centrating on the most important indoor localisation-
centric challenges found in literature. Then, in Section
3, we consider various sensors which are used in the
service of localisation. In Section 4 we outline how the
sensor fusion is performed, and review the state-of-the-
art literature pertaining to effective sensor fusion and
combination methods. Then, we provide a summary of
the above inventorisation in Section 5, and formally
outline the likely future avenues for research. Finally,
we conclude in Section 6.

2. Objective and Evaluation of Indoor Localisation
In this Section, we outline the evaluation criteria used
to scrutinise the existing literature. We then list and
discuss the sensors which are popular.

2.1. Semantic understanding of Indoor Positioning
and Tracking
There exist various interpretations of positioning,
navigation and tracking under the umbrella term
indoor localisation. For example, Van Haute et al.
[152] stipulates that tracking and positioning are not
comparable. Whereas positioning implies establishing
the location of an agent, either at real time or offline,
tracking would involve performing localisation based
on previous known location data, effectively storing the
entire navigational history of an agent. This carries an
additional risk of privacy intrusion, as the historical
data would expose an agent’s habits and previous
locations [152]. We intend to adopt a similar mindset,
regarding the naming conventions of navigational
methods in this review.

In addition to the above assertion, we consider it
necessary to address a common misconception with
regards to the semantic meaning of indoor localisation.
A catch-all term, it grew to signify localisation inside,
regardless of whether the environment is accessible
by doors or not. In this paper, we understand

indoor localisation to be an epitome of technologies
and implementations for localisation in an enclosed
environment. Examples of few such environments range
from, but are not limited to, residential abodes [13],
commercial shopping malls [160], industrial halls and
factories [73], hospitals [64] and natural formations,
such as underwater caves [99]. Here we consider sensor
combinations stemming from the necessities imposed
by these environments.

2.2. The Task of Probabilistic Localisation
Formally, the task of probabilistic localisation can be
encapsulated by considering the minimisation of error
between the location prediction and its corresponding
ground-truth. If the true location in d dimensions is
given by x(t) ∈ IRd , and its prediction x̂(t) ∈ IRd , then:

min(|

√√√
d∑
i=1

(xi(t) − x̂i(t))2|) (1)

that is, minimisation of the absolute Euclidean error
between the prediction and label. Whilst there exist
other metrics of evaluation [78], Euclidean error is
by far the most popular [97], and is used extensively
throughout this study.

Simply put, an agent traversing an enclosed environ-
ment is being localised if its location or navigational
history is estimated with respect to their previous posi-
tion, performed actions or current sensor reading. This
estimation usually takes place in 2- or 3-dimensional
space. The agent is assumed to be able to access the
entirety of the surveyed environment. The model, or
algorithm, performing the estimation also has access
to the description of said environment as well as the
features explaining the agent’s actions. In the domain of
sensor-driven estimation, agent’s actions and locations
are described through the use of sensors, which the
agent either bears on itself or is subjected to, when
travelling.

Simultaneous Localisation and Mapping (SLAM) is
just one of the open problems in localisation literature,
but it clearly and succinctly explains the challenge.
In a perfect, noiseless world, the robot would be able
to localise itself based on the Dead Reckoning (DR)
alone. Then, by using the pictures, it would map out
the environment, effectively solving the problem, by
providing a map, and a vector of locations it visited.
However, due to various conditions it is subjected
to, noiseless localisation is so far unattainable. Its
wheels will drift, adding noisy readings to the model.
Camera pictures can be subjected to occlusion and
lighting effects, making direct comparison difficult. The
environment itself can also be dynamic, which adds
to the complexity of the problem, as, in the case of
this example, the photogrammetric features used by
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the robot can be shifted, moved or otherwise removed
from the corridor. For explicit explanation of the above
problem, we invite the reader to [29].

The above mentioned Camera-SLAM example can
be considered representative of the general problem
of localisation. The noise associated with this method
also explains the possible drawbacks of sensor driven
indoor localisation approaches well. It should also be
mentioned that the paragraph above explains a small
subsection of a large field of study that is SLAM, and
that Camera-SLAM was chosen due to its relatively
intuitive explanation of the challenge. There also exist
various other approaches to SLAM, some of which can
be found later on in this text.

The motivation of using various sensor modalities,
and their fusion, stems from the above mentioned
issues. So far, there is no one definite way of performing
localisation, as various sensors present different advan-
tages and disadvantages. Whilst camera is known as a
very accurate tool for feature extraction, it does so at
the cost of high dimensionality and complexity of the
data it collects. There exist modalities, which reduce the
need for such high dimensionality, but in turn provide
coarser location estimation. This implies that leveraging
computational cost and estimation potential, across all
modalities is, at the present moment, key to a successful
implementation of an Indoor Positioning System (IPS)
in GPS-denied settings.

2.3. Evaluation Criteria
The existing surveys of current localisation literature
usually scrutinise the research through the use of a
evaluation framework. Here we list the most popular
criteria established either through literature [30, 54,
92, 181] or the authors’ own experience. This list is
not exhaustive and is only provided to encapsulate the
issues faced by the present-day implementations. Note
also, that not all of these metrics can be applied to
all of the scrutinised localisation methods and their
utilised modalities. These will be used as evaluation as
applicable.

Distance Accuracy. The most prevalent of metrics
regarding localisation. Accuracy is usually calculated
as Euclidean distance in 2D or 3D space [97]. Formal
example is provided in Eq. 1. While effective, this
metric is not infallible - there exist sensors and
systems where a direct comparison of location accuracy
(alternatively accuracy error) would not capture all
necessary information required to examine any two
given sensing systems. This point also considers
whether certain sensors make it possible to scale the
system to include more than one tracking node at a
time.

Noise resilience. Sensing, in any form, will suffer from
noise. This noise can be inherent in the sensing

modality [88], environment [165], can be introduced
during the manufacturing process[12, 112], or as a
consequence of other factors, such as striving for
improved energy efficiency [38]. Resilience of a sensor
can also dictate whether drift and quantisation affect
the location estimation and whether dependence on
other sensor modalities can reduce it.

Cost. The costs associated with specific sensors are
varied. These can be simple hardware costs, upkeep
costs, deployment costs or maintenance costs. Hard-
ware and upkeep costs encompass the initial expense
of creating the infrastructure. Deployment and main-
tenance costs are related, in that they describe the
value of labour associated with aforementioned tasks.
Since different sensors will be comprised of different
concessions regarding their performance and operation,
they will all enjoy various advantages unique to their
topology.

Energy efficiency. Efficiency has been cited as an
important aspiration of a sensor-based system [37].
Deploying any system will come at a cost of establishing
a number of trade-offs. Energy is often traded for
accuracy/resilience to noise, as they tend to be mutually
exclusive [125]. It is also important to recognise how
easy is it to control the energy expenditure as part of a
positioning system, and also whether the sensors make
the system adaptable for energy-aware operation.

Popularity. The systems present within the literature
rarely exhibit the same taxonomy of sensors, share
the same evaluation environment or training methods.
There exist implementations of positioning systems
which consider various sensor modalities, and various
fusion combinations. Currently, localisation relies on
objective-specific sensor fusion as to ensure appropriate
redundancy during its operation. The trends in
literature are also greatly influenced by the relative
costs and availability of hardware. We additionally aim
to provide a future trend which the sensors are likely to
take.

3. Sensor Modalities for Indoor Localisation
3.1. Inertial sensors
Inertial sensors use the relative change in their frame
of reference to provide an output. They are com-
monly employed in motion tracking and detection sys-
tems [43]. In relation to robotic or human localisation
and tracking, they mostly comprise of Micro-Electro-
Mechanical Systems (MEMS) accelerometers and gyro-
scopes, embedded within Inertial Measurement Unit
(IMU) chipsets [167].

Accelerometers calculate the acceleration in 3-
dimensional space, the domain of which is provided
by black arrows in Fig. 1, given by units in g or
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Figure 1. Domains of accelerometer (black) and gyroscope (blue)
sensing.

alternatively in m/s2. Their electro-mechanical design
is relatively simple [135] making them easy to produce.
An example of the data they produce can be noted in
Fig. 2a. The manufacture of MEMS gyroscopes on the
other hand, is much more involved [135]. This is due
to the nature of the sensing paradigm they provide. By
measuring the vibration of a proof mass relative to the
axis (also known as Coriolis effect), they provide the
angular rate of rotation, given by °/s, shown in blue in
Fig. 1. A vibrating mechanical mass is used to establish
the amount of electrical excitation using, for example,
capacitors, which can be directly related to its angular
velocity. For further reading, we refer to [116].

One other important difference between the two
sensors is the power expenditure. Due to the method of
operation, gyroscopes are known to draw more power
(sometimes in orders of magnitude) when compared
directly to accelerometers at the same sampling
rates [95]. They are both, however, prominently
used as part of Inertial Navigation Systems (INS),
which constitute the focus of many localisation-centric
research enquiries. There is a large body of literature
pertaining to inertial sensing for localisation [2, 12,
28, 54, 78, 100]. They are particularly popular as part
of the Pedestrian Dead Reckoning (PDR) applications
[12, 67, 183].

In an early implementations of PDR, the authors
strived to complement the shortcomings presented
by GPS systems by including a sensing module
designed to perform pedometry [45, 70]. In 2005,
Foxlin [45] presented a system dubbed NavShoe,
where the accelerometer and gyroscope, along with a
magnetometer, were mounted on foot-gear. The study
then confirmed that the pedometry-based system can
complement a GPS. This was also one of the earliest
papers to coin the phrase Pedestrian Dead Reckoning.

As the manufacturing costs of MEMS devices reduced
over years, their usage and the quality of their output
has correspondingly increased. Lately, implementations
feature smartphone devices which have these sensors
readily embedded. One such study by Strozzi et al. [141]

utilises a number of different hand held smartphones
as a proxy to estimating step and its length. Similarly,
Yin et al. [177] considers smartphone-based sensing,
albeit as a tool for walking and running detection using
accelerometers and gyroscopes embedded within.

While smartphones remain the favourite platform for
sensing in many cases, there exist dedicated devices, so
called wearables, which can provide acceleration and
angular rotation from different parts of the body [10,
38]. Signatures from different sections of the human
body were found to differ both, in the way they are
exerted and their own estimation potential as per
Bao et al. [10]. In our own study [78] we considered
wrist-worn accelerometer as a complementary source of
information in indoor location estimation. This method
aimed to robustify the localisation performance by
assuming that humans have a tendency of performing
similar tasks in similar places in a house.

This type of sensing is not without its challenges
however, as there has also been some advances in
residential user identification. McConville et al. [104]
showed that due to uniqueness of each person’s gait
patterns, it is possible to recognise them directly
from the inertial signals. The authors argued, that
even though this was useful in pervasive health
environments, it posed a significant privacy intrusion
risk [104]. Off-body inertial sensor usage has also been
investigated. Dang et al. [28] used different walking
canes with attached IMUs to establish gait of the
users, and consequently the distance travelled. This
however relied on the participant using the cane with
no abnormal deviations.

3.2. Ultrasonic and Acoustic Sensors
Ultrasound has also been explored for indoor locali-
sation applications [56, 110, 119, 120, 184]. The basic
implementation considers a number of speakers in the
environment, which exert ultrasonic vibration [56] or
frequency chirping [110]. The sensor designs them-
selves do not differ much from generic transducer-based
microphones and speakers. In fact, this is done by using
a piezo-ceramic or piezo-film transmitter, excited to
generate a response at frequencies in [110] or over
the human audible range [56], which is subsequently
registered by a receiver.

The bulk of the localisation estimation is done
through lateration schemes, such as Time-of-Arrival
(ToA) [119, 121] and Time-difference-of-Arrival
(TDoA)[110, 114] or angulation, like Angle-of-Arrival
(AoA) [120]. They can be further categorised into
Active and Passive [110]. Due to their physical nature,
the sound waves experience similar shortcomings
as electro-magnetic (EM) waves, in that they are
limited by the Line-of-Sight (LoS) conditions However,
when not experiencing multi path fading effects and
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(a)

(b)

Figure 2. Example of tri-axial Accelerometer (2a) and RSS (2b) time series data from an indoor localisation ’living’ experiment.
Courtesy of Byrne et al. [13]
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Non-Loss-of-Sight (NLoS) conditions, the localisation
based on acoustic signal reportedly outperforms radio
frequency (RF) based methods [110].

Early approaches, such as Cricket [119] used a
combination of an ultrasound and RF to obtain a cheap
localisation system. The experiments included static
and mobile performance of the algorithm in an indoor
office environment. This was late expanded into Cricket
Compass [120] aimed at using angle of arrival in order
to perform localisation.

More recently, Murakami et al. [110] used a
smartphone-based mixture of active and passive
signals. They were able to track the target along an open
corridor. Qi et al. [121] used a number of ultrasonic
receiver and transmitter modules in an Wireless Sensor
Network environment. The aim was to establish a
viable method for localisation under Non-Line-of-Sight
conditions. This was tested by using a mobile robot,
traversing in circles.

In their paper, Khyam et al. [75] used orthogonal
ultrasonic chirping to utilise the wider part of the
spectrum and facilitate multi-transmitter positioning in
a passive context. Their experiments were carried out in
largely noise-saturated environments. In the domain of
robotics for indoor localisation Ogiso et al. [113] used a
robot-mounted microphone array to attain positioning
information of a pre-defined track. The robot would
move in an 6m × 6m arena enclosed by four sources of
sound, achieving sub-meter performance.

3.3. Visible Light Sensors
Visible Light Communication (VLC) is a subset of opti-
cal telecommunications concentrating on the visible
light spectrum, or 380 to 780 nm wavelengths [127]. It
supports faster transmission speeds [68], and offers a
relief to congested radio frequency spectrum communi-
cation schemes [132]. Its fundamental operation relies
on a source of light, such as a Light Emitting Diode
(LED), modulated to flicker at a specific frequency,
often to obfuscate the flickering. A light sensor is then
used at the other end to receive and demodulate the
transmission [132].

VLC is often used as part of the Visual Light
Positioning (VLP) systems, whereby the modulated
LEDs are used to estimate an object’s position, relative
to lighting beacons [82, 131]. Much like Ultrasound, the
schemes used to perform lateral or angular positioning
rely on extraction of light signal strength [159] or
relative AoA [82].

In their recent work, Rátosi et al. performed a real-
time positioning based on LED anchor points [131].
In their work, they localised an object with a fish-eye
lens camera extracting the positions and IDs of the
LED beacons. They concluded that this approach is
viable, even at relatively fast velocities of the object.

Wang et al. [159] was able to extract the beam strength
of each uniquely-blinking LED through Fast Fourier
Transform. Their LIPOS system was able to localise to
within 2 meters Euclidean error in 3 dimensions.

Kuo et al. used a smartphone-based system to
perform localisation, attempting to simulate the
conditions usually found in retail spaces [82]. Their
system considered using the lights mounted on the
ceiling as beacons and smartphone’s front-facing
camera as a capture method. Qiu et al. [123] used a
kernel-based method to estimate the modulated light
intensities. The authors noted, that due to the relative
low-cost of the system and re-usability of an already
existing lighting infrastructure, it could be used as a
practical and efficient localisation implementation in
the future.

3.4. Radio Frequency Sensors
This is undoubtedly the most examined area of indoor
localisation implementations. RF-based sensing and
location estimation have been the cutting edge methods
of positioning due to their relatively low cost, off-the-
shelf sensor availability and solid performance. This,
coupled with the recent advances in Internet-of-Things
(IoT) and ever-decreasing costs of maintenance have
made this type of sensing a go-to for many researchers
[8, 11, 13, 49, 78, 79, 103].

Whilst the number of technologies and standards
within this group is vast, the basic idea of localisation
remains the same. Generally, there exist a number
of static anchor nodes, or Access Points (AP), which
are able to transmit signals to a sensor traversing an
environment of interest. They are comparable with
ultrasound and visible light in the way that they are
able to utilise similar schemes such as ToA and TDoA.
Traditionally, Received Signal Strength (RSS) between
a transmitter and a receiver was used as a metric to
obtain information about the relative distance between
the two nodes. This is made possible, as signal strength,
assuming perfect propagation medium and lack of
multi-path fading, will follow a steady decrease as a
function of distance and is more formally described in
terms of a path-loss equation [175]:

P L(d) = P L0 + 10nlog
d
d0

+ Xσ (2)

where d is the measure distance, P L0 is a measured
average path loss at a reference distance d0 and Xσ is
a zero-mean Gaussian random variable simulating the
fading effect. This model is only an approximation of
an indoor environment however, as the signal will vary
in different surroundings and even different users [31].
A more realistic example is provided in Fig. 2b. There,
the actual signal is obfuscated in noise, brought on by
shadowing effects and fading. Recently, there have been
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some work done using Channel State Information (CSI)
[147, 175]. Using newer standards, such as IEEE 802.11,
one can extract the amplitude and phase information
from the channel directly, offering better performance
[147].

The actual performance of RF localisation is deep-
rooted in the technologies which are utilised to achieve
it. Wi-Fi [42, 144] has been cited as one of the more
popular approaches. Increasingly, the Bluetooth Low
Energy (BLE) based sensors have been used, which
leverage the low-power consumption with cheap cost
and ubiquity [13, 150]. Radio Frequency Identification
(RFID) [31] and Ultra Wide-band (UWB) [47] have also
been used for location estimation, with UWB achieving
sub-metre accuracy.

Fingerprinting. These schemes often rely on fingerprint-
ing to achieve its performance. This consists of users
visiting all fiducial locations in the environment, in
order to build up an RF map [13, 178]. Whilst effective,
fingerprinting has been recognised as difficult to obtain
and maintain [13, 78, 79]. There have also been some
work done, with multi-user environments, where it was
confirmed that fingerprinting from one user is unlikely
to be optimal on a different user [31]. There are however
approaches designed to mitigate this difficulty [79].

The work done on RF localisation by Bahl and
Padmanabhan [8] is widely regarded as the seminal
paper on the subject of RF-based localisation. There,
the authors outlined basic procedure for fingerprinting,
where each required sector of the environment was
characterised before outlining their algorithm for signal
strength localisation. They used a specially fitted
wireless adapters. Since then, the literature pertaining
to sensor-based RF localisation steadily grew and so did
the availability of off-the-shelf- implementations.

Byrne et al. [13] presented a data collection of four
different residential houses in Bristol. Each house was
parametrised using approximately 1m × 1m states,
which permeated the living space. Then, a thorough
fingerprinting of each abode took place. The dataset
also included living experiments, and was performed
using the SPHERE-in-the-box infrastructure [118]. This
included Raspberry Pi-based access points and a
bespoke SPHERE wearable sensor [39].

Wireless fingerprinting was also tackled by Yiu et
al. [178]. They provide a comprehensive overview of
fingerprinting methods, noting the online and offline
phases of the radio map generation. Offline phase
specifies the actual map generation, as in [13], and
online phase is the location inference given current
sensor output, which in their case was a Google
Nexus tablet. They then outline different fingerprinting
modalities, such as parametric (using path loss models)
and parameter-free (based on Gaussian Processes).

Figure 3. Example of discretised floor plan, for the use with
fingerprinting. Figure above shows the corresponding floor plan.
Below, each discretised state is 1 meter apart. Different colours
of the grids signify different rooms. These approaches have been
proven to be notoriously arduous in labour, especially in large
industrial and commercial spaces. Image courtesy of Byrne et al.
[13]

Lateration and Angulation Schemes. There are also
methods based on lateration and angulation of
the signal from the prescribed sensor locations
[26, 162]. These methods would assume that the
signal propagation characteristics of some environment
of interest can be directly calculated, and their
solutions used to predict agent’s movement directly.
The difference between lateration and angulation is
the method of calculation of the position. Whereas
lateration estimates the position with respect to the
direct distance from the sensor nodes(for example ToA),
angulation does so, but with respect to the angle (for
example AoA).

In [26], the authors offer a method for lateration,
whereby the calculation of relative distances from
provided sensors can be used to position a user.
The study compared the methods based on least
squares lateration and simple lateration schemes, using
a smartphone, showing considerable improvement in
positioning accuracy. In [69], the authors used a
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trilateration scheme, based on Wi-Fi signals in order
to localise an agent using a smartphone. In this paper,
the authors made a distinction between LoS and NLoS
conditions, achieving sub-2m accuracy. A paper by
Paterna et al. [16] gives a thorough formalisation
of lateration, and provides its own scheme, which
the authors named ‘weighted trilateration’. Validation
includes experiments based on frequency diversity,
Kalman filtering and lateration, with reported best
accuracy of sub-2m for a moving agent.

Park et al. [115] performed 3-dimensional localisa-
tion based on triangulation scheme from BLE nodes.
The author performed the experiment, whereby 4 BLE
beacons would be placed in the periphery of the central
node. The results show that the authors’ method is at
least as good as the current methods used to perform
3D localisation in the community.

3.5. Magnetometer Sensors
Ambient Magnetic Field (AMF) Localisation was
inspired by the migration tendencies of certain animals
[55]. Many species sense the Earth’s magnetic field and
use it to navigate [55]. This method uses the extraction
of a varying magnetic field inside buildings, in order to
build a map of the environment, i.e. fingerprint. These
distortions in magnetic field come from ferromagnetic
fluctuations caused by the building’s metal construction
and general topology [55, 173].

F

I

Ly

Lx

BX

Figure 4. Schematic of a basic MEMS implementation of Lorenz
Force-based magnetic field sensor in a single dimension. Adapted
from Herrera-May et al. [58].

MEMS magnetometers [23, 143] are the most com-
monly used sensors in service of indoor localisation,
due to their relatively low cost and high sensitivity [59].
They are generally used along with accelerometers and
gyroscopes as part of PDR implementations [67, 70]
where they act as directional sensors. However, they can
also be used to estimate the ambient magnetic field in
a given location inside a building [55]. They work by
estimating the Lorenz force [59], measured as a function
of current and magnetic field, given by [89]:

FL = IBXLZ (3)

where BX is the magnetic field in T, LZ is the length
of the loop or a wire in m, and I is the current through
the wire, in A. This force generates a displacement
of a suspended control weight [89], which can be
measured through piezo-resistive or capacitive means.
The magnetic field induces current in the wire, which
in turn forces the loop to move. The red piezo-resistors
at the end of the loop in Fig. 4 are used to calculate
the relative deflection and in turn, the causing magnetic
field strength. Comprehensive outline is given in [59]
and [89].

Haverinen and Kemppainen [55] stipulated that these
anomalies in a magnetic field could be utilised for
localisation. A subject wearing a magnetometer on
their chest would walk along a corridor, measuring the
field. Whilst they first proved its viability in a single
dimension, this was later extended to 2 dimensions by
Navarro and Benet [111]. However, the latter study was
not directly comparable, as it was done using a wheeled
robot as opposed to a human subject.

The popular approach of fingerprinting was appro-
priated to magnetic fields by Chung et al. [23]. In their
work, the researchers used an offline map against which
the observations were compared. The magnetometer
was again worn on the chest, and proved comparable to
other approaches, such as WLAN and RADAR. Similar
fingerprinting was done by Subbu et al. [143], who pub-
lished a smartphone-based localisation technique called
LocateMe. The authors exploited the mobile phone’s
magnetic sensor in order to gather fingerprinting maps
of the environment and stipulated that this approach is
also able to distinguish corridors with high precision.

3.6. Camera-based Sensors
When discussing camera-based localisation, it is
important to distinguish between approaches where
the localisation is a priority [164], and methods which
render location information as a consequence of other
inference, such as personalised silhouette detection
[53, 150]. Whilst wide-scale indoor localisation with
cameras is yet to be attempted, there are plenty of vision
based tracking methods which consider smaller spaces
[14, 153, 164].

There are many implementations of camera sensors
on the market today. Digital cameras are most
frequently based on CMOS technology [44] or obtained
through charge-coupled devices (CCD) [128]. They
are analogue devices, in the way they produce a
lattice of pixels excited by the visible light to produce
electrical signals, which are subsequently amplified
and processed. Owing to its topology, this data is
high in resolution and dimensionality [153]. This,
in the context of indoor localisation, necessitates a
streamlined and latency-free connection to a reference
database to compare against a calibration set [153, 164]
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or a thorough dimensionality reduction study [53] in
order to become viable.

Early studies consider localisation through stereo
vision. By using a stereo vision sensor, Bahadori
et al. [7] presented a method of tracking multiple
people in crowded environments, by modelling the
background and the people themselves. This work
outlined the basic principle of multi-person tracking in
an indoor environment and noted issues with tracking
identification.

Numerous approaches consider smartphone-based
indoor localisation [153, 164]. Werner et al. [164]
proposed MoVIPS, a visual positioning system. In
their work, the authors used a smartphone to take
pictures of the environment and compare them to a
training set, with server-side feature extraction based on
Speeded Up Robust Features (SURF). Similar approach
was attempted by Van Opdenbosch et al. [153], albeit
with a larger emphasis on efficient data analysis (by
modifying a Vector of Locally Aggregated Descriptors
(VLAD)), with comparisons between lossless and lossy
compression.

As the depth-sensitive cameras became more cost
effective, the research enquiry shifted to RGB-depth
(RGB-D) sensors. Using RGB-D cameras for tracking
has been established for some time [140]. In their
work, Song et al. provided a large public dataset of
RGB and RGB-D based videos for object tracking.
RGB-D cameras are also widely used for Simultaneous
Localisation and Mapping (SLAM) implementations
[36, 142]. In these dataset papers, the consecutive
depth-perceiving images are compared in order to
evaluate location and at the same time produce a map.

In [109], Muñoz-Salinas et al. uses cameras in order
to perform real time landmark-based visual SLAM.
Here the authors used a fiducial markers, in order
to estimate the location within the environment. In
[33], the authors used 20 Kinect cameras in order to
perform tracking of multiple targets transiting various
trajectories. This was done in conjuction with Wi-
Fi collected through user-carried smartphones. The
authors reported sub-meter accuracy even in scenarios
of 10 or more users walking simultaneously.

Study Method Performance

Werner et al. [164] Smartphone 1.25m-4.4m
no markers

Muñoz-Salinas et al. [109] RGB-D SLAM 0.16m-0.6m

Van Opdenbosch et al. [153] Smartphone <1m
modified VLAD

Domingo et al. [33] RGB-D Tracking <0.5m
with Kinect for multi

and smartphone user scenario

Table 1. Table of recent camera-based systems with their method
and performance.

3.7. LiDARs
Light Detection and Ranging (LiDAR) devices are used
as part of popular data association methods in order to
obtain the position of the agent. They perform tracking
by detecting the immediate vicinity of the agent and
comparing it to previous readings [170]. LiDARs used
in context of indoor localisation are most commonly
found in robotics [60, 77]. There, the LiDARs are used
most commonly utilised to perform SLAM [77].

Figure 5. Example of a bird’s eye view of a room outline
(left) with 2-dimensional laser ranging device. The noisy LiDAR
’returns’ are shown on the right.

Whilst theoretically, any part of the light spectrum
can be utilised to perform ranging, laser are most
popular [61]. The working principle is rather simple
and relies on ToA schemes - a beam of laser is sent out
from the sensor and is reflected off the environment.
Then, the time it takes to return is calculated from that
beam, establishing likely distance between the LiDAR
and the obstacle [25].

The data produced by a LiDAR can be either 2- or 3-
dimensional [61]. This data is most commonly referred
to as point clouds, due to discrete granularity of the
environment it produces. These point clouds are later
used as descriptors of the indoor environment and
most commonly used to perform SLAM [60], usually
as part of scan matching techniques [60, 163]. This
data is however high dimensional and requires large
reserves of computational power to optimise [77]. As
shown in Fig. 5, point clouds are also susceptible to
environment noise and jitter, which additionally creates
scan matching issues.

Some early approaches to LiDAR localisation used
robots in indoor positioning scenarios [21, 129].
Chmelař et al. used a laser range finder sensor in order
to localise a robot in an indoor office environment. They
used a compensation method in order to reduce the
aggregated error. Rekleitis et al. was one of the first to
propose a multi-agent localisation with LiDARs. Whilst
the mapping was performed using a sonar, the robot
agents were tracking each other using the LiDAR, in
order to compensate for odometry errors.

Modern approaches enjoy better LiDARs and more
computing power, allowing for faster processing and
more resolute mapping [117, 163]. Peng et al. used
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a novel scan matching technique to achieve robot
localisation in an indoor environment. Based on this
work, Wang et al. [163], performed a similar study. Note
that the robot used in both of the above papers was a
ground-based device. Lee et al. [85] has used a LiDAR,
along with a Virtual Reality (VR) headset, to obtain high
resolution positioning using a drone. This experiment
was in part inspired by disaster management and
designed for first responders as an aid for finding
survivors.

3.8. Other modalities
The above list is by no means exhaustive. In the
literature, there exist various other implementations of
IPS, which utilise less popular modalities. An example
of one such implementation include Seo et al. [134],
which used an ultrasonic anemometer to complement
the IMU on a mobile robot. Anemometers measure
relative velocity of air. In the above study, the robot was
moving through static air, which ensured no erroneous
readings.

Some research has also included pyroelectric infrared
(PIR) sensors. Luo et al. [96] used a lattice-like sensor, in
order to track an agent through the environment, at the
same time performing activity recognition. The study
motivated the use of PIR sensors, by noting that they are
relatively infrastructure-free, and are easy and cheap to
deploy. There also exist some data sets, where the PIR
sensors are included, such as Twomey et al. [150].

There also exist studies using the piezo-electric effect
in order to obtain the location and activity information
of the users. The study of ’smart carpets’ done by
Chaccour et al. [19] does not cite indoor localisation as
its main objective. However, this implementation could
be used for very coarse location estimation as well. In
their work, the authors have considered fall detection
using specially adapted carpets with piezo-resistive
pressure sensors embedded within them. Similar study
was also done by Contigiani et al. [24], which used
piezo-electric wire lattice, inside the carpet, as a
tracking modality.

3.9. Drawbacks and Modality Evaluation
The presented modalities all differ in terms of the data
that is being captured, and they way they obtain these
readings. All of their topologies offer advantages and
disadvantages in the domain of indoor localisation. It is
possible, that the inherent form of data which a given
sensor produces can provide a more or less confident
estimate of the user’s position in the environment. The
sensors in this review have been shown to produce
viable localisation mechanisms. However, there exist
sensors (such as accelerometers) which are more likely
to be used in conjunction with other modalities (such as
cameras) due to the performance they are able to obtain

in positioning problems. It is important to distinguish
the usability of each of the modalities before a more
thorough discussion is provided.

Inertial sensors, whilst cheap and relatively energy
efficient, often suffer from degrading noise [12, 112].
This noise is usually rectified by the researchers,
though meticulous planning and closely controlled
experiments [12, 67, 182]. Results ’from-the-wild’
indicate that these sensors, are much more effective
when used as part of a wider family of activity
recognition tasks [13, 31, 32].

Ultrasound and acoustic sensors offer great precision
but only at short ranges and in LoS laboratory
conditions [113, 122]. Interestingly, most of the studies
included in this survey have indicated that aside from
these shortcomings, ultrasound is mostly preferred due
to its low-cost and ability to reuse already existing
sensor infrastructure, such as smartphones [110].

The biggest issue with RF sensing for localisation
is the labour associated with training and the
unpredictable nature of RF signals in the environment.
The topology of this sensor make it great for tailored
applications [78, 118], but often fail to generalise to
other environments, and even users [31]. In addition,
whilst fingerprinting is a powerful training technique,
it is often cited as a drawback in any RF implementation
[13, 87].

One of the major drawbacks of camera-based
systems is the large computational complexity [153,
168]. Additionally, these sensors suffer performance
degrading occlusion and lighting effects [14]. High
dimensionality has also been cited as an important
consideration [53]. These type of sensors are likely to
be omitted in favour of other modalities in IPS settings.

Magnetic field sensing has been proven to be
effective, but only in confined spaces, taking advantage
of ferromagnetic effects brought on by buildings [173],
and under controlled conditions [52, 55]. This type
of localisation also suffers from fingerprinting issues
[23, 158]. Localisation based on an AMF could still be
considered emerging, leaving plenty of opportunity for
further work.

Visible light sensors provide a very accurate 3-
dimensional positioning results at the cost of big
infrastructures and controlled experimental testbeds
[131]. Additionally, NLoS conditions are difficult
to negotiate with this type of sensors [5, 88].
Modulation of the light beam is an another issue - it
requires frequencies large enough as to prevent visible
flickering, which has been proved to be detrimental to
the user experience [88].

LiDARs are a great intermediary between high
dimensional data and reliable efficiency. However, the
sizes and cost of these devices are still considerable
when compared to the costs of inertial or even RF
sensors. They are also prone to environment noise and,
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Accuracy Noise Resilience Cost Current Consumption Popularity References

Inertial 1m-10m Low Low 100µA - 3500µA Outstanding [28, 65]
[39, 157, 166]

Ultrasound 0.01m-0.1m Medium Medium Varies with application Moderate/Emerging [110, 122]

RF 1m-10m Low Low Varies with protocol Outstanding [8, 47, 78]
∼ 20µA per packet [166]

Camera 0.01m Mid to high Mid to high Usage & processing Prominent [7, 86]
� 1A

Magnetometer 3m-5m Mid to high Low ∼ 300µA Emerging [23, 143, 166]
[55, 89]

Visible Light 0.2m-5m Low (LoS) Medium ∼ 5100µA Moderate [63, 123, 159]

LiDAR 0.01m-0.1m Medium High ∼ 300µA - 1A Prominent [60, 61, 138]

Table 2. Table of sensor modalities, evaluated using the criteria from Section 2.3. This table summarises the criteria of various sensing
modalities, additionally giving the justifying references for each.

since scan matching relies on DR and will aggregate
error over time, requires additional optimisation steps
to become viable [60].

These modalities have been tabulated in Table 2,
and scrutinised against the evaluation criteria provided
earlier in this section.

4. Sensor Fusion

The above sensors are popular within indoor local-
isation literature. There exist numerous reasons for
using these particular sensors on their own. However,
by introducing an additional modality, one can obtain
more information about the environment or its dynam-
ics [78, 83]. By not relying solely on a single modality,
an IPS can enjoy a number of advantages, ranging from
resilience [15], accuracy improvement [20] or energy-
awareness [79, 83].

Whilst, theoretically, fusion of any sensors is possible,
not every combination is convenient. The most popular
combination in the domain of inertial sensing, for
example, is the consolidation of accelerometer and
gyroscope with magnetometers, in order to produce
robust PDR systems [80]. Nowadays, the relative energy
output of these type of inertial sensors is negligible,
which makes these sensors a popular choice in low-
power applications [31].

RF-centric localisation has also been improved with
fusion [15, 57, 146]. The combination of sensors in this
context is usually performed for location improvement,
as realistically, pure RF can only provide coarse location
estimation. Mostly this involves either predicting or
compensating the RF prediction with an inertial
measurement [57, 78, 136]. Fusion of RF and magnetic
field strength for performance improvement has also
been explored [106].

In terms of robotic LiDAR SLAM applications, the
fusion is also performed using the robot’s own IMU
and magnetometer, in addition to the LiDAR [81]. VLC
positioning has also been complemented by an IMU
[185], as has ultrasound [48]. In each case this provides
accuracy improvement to the system.

The relative fusion between different sensor modali-
ties are visualised in Fig. 6. These sensor fusion combi-
nations are by no means exhaustive. They were picked
on the condition of being current examples of fusions
between these types of modalities. Likewise in Fig. 6,
the fusion was visualised only to help expose gaps in
the literature pertaining to sensor fusion for indoor
localisation. The intention of these is to give the reader
a good starting point for their own investigations.

In the following sections we will review the studies
which used fusion for a specific purpose.

4.1. Objective-specific Fusion Combinations
Fusion for Robustness. Fusion for robustness entails
combining different sensor modalities in order to make
the performance more resilient to outside adversity.
Considering indoor localisation as our main motive,
this adversity can come in the form of network-wide
interruptions [78], dynamicity of the environment [98]
or hostile agents [130].

By utilising Particle Filtering (PF), Canedo-Rodriguez
et al. [15] was able to fuse a number of different
modalities together for a robot-based indoor locali-
sation system. These systems included LiDAR, Wi-Fi
signal strength, cameras and magnetic signals from
inside a museum. This robustification ensured a steady
performance even in the event of dynamic environment,
such as body shadowing. Li et al. [90] presented a
technique for the fusing of UWB and IMU signals. This
was done in the context of robotic indoor localisation
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using a Kalman Filtering (KF). The authors tested the
algorithm against Gaussian noise, where their fusion
method proved to be a viable safeguard.

Elbakly et al. [35] considered the fusion of a
barometric sensor with Wi-Fi signal strength to provide
a reliable prediction of floor transitions. It was tested
thoroughly across three different environments, using
4 participants, and was proven to provide a robust
performance across users. He et al. [57] used a Bayesian
Network approach to fuse Wi-Fi and IMU signals. The
authors arrived at the conclusion that the IMU was
able to robustify the positioning based on a smartphone
application.

Fan et al. [41] robustified the result of an DR-
based indoor pedestrian localisation system using
novel Kalman filtering and the fusion of MEMS-IMU.
Through the use of robust fusion filter, the authors
were able to reduce the overall aggregated error.
This particular study additionally utilised a wavelet
denoising method, as a preprocessing step, in order to
remove as much inherent MEMS sensor noise as it was
possible.

In the domain of robotics for indoor localisation,
Paredes et al. [114] used a hybrid of an ultrasonic and
camera-based sensing to achieve 3D positioning for a
Unmanned Aerial Vehicle (UAV). The study concluded
that purely ultrasonic localisation result is improved
when using a ToA depth information from a camera.

Fusion for Accuracy. Accuracy in indoor localisation
is most often calculated through the Euclidean error
metric [97] and given in meters. Improvement of
accuracy is the main ambition of many positioning
studies. The fusion in this context would entail pin-
point estimation of position based on a number of
modalities. Over the years, many fusion attempts have
achieved substantial reduction of positioning error,
however no consensus among the community regarding
the optimal way this fusion has to be attempted.

Similar approach to Canedo-Rodriguez et al. was
attempted by Shi et al. [136]. The authors fused
LiDAR and Wi-Fi, to robustify the accuracy of the
location estimate. They compare a simple PF approach
to their own, achieving considerable accuracy boost
in a controlled environment. By using a KF, Chen et
al. [20] fused Wi-Fi with landmark information on a
smartphone sensor. In this study, the landmarks were
found through unique locations of signature traces,
such as elevators, stairs and steps. The authors were
able to reduce the error of a single Wi-Fi based system
by approximately 5m.

Yu et al. [180] performed the fusion of Wi-Fi
and PDR on a smartphone, in order to achieve a
better positioning accuracy of the model. They used
an Unscented Kalman Filter (UKF) to provide a
rough initial estimate of the location, before using

accelerometers on the smartphone to estimate the
location more precisely. The use of this system on
an experimental track yielded considerable localisation
accuracy improvement.

Zhang et al. [182] considered the fusion of a variety
of sensors to achieve improvement on localisation using
PDR, where the user was asked to take a challenging
route up and down the stairs. Knauth also considered
a PDR application [76] using the fusion of inertial,
magnetic and RF sensors through a particle filter. It
was again proven, that an inertial-based sensor fusion
with Wi-Fi is able to outperform simple Wi-Fi-based
positioning. Xing et al. [172] used the fusion of inertial,
ultrasonic and optical flow sensors, along with ArUco
markers in order to improve the positioning of a small
drone.

Fusion for Energy Efficiency. In order to ensure
continued operation of an IPS, the system itself
has to be made aware of its energy usage. This
is because the use cases of IPS usually necessitate
them being operational for prolonged periods of time.
Some of the implementations use smartphones as the
computational foundation of their systems [76, 110].
Smartphones have been found to be less efficient than
tailored implementations [83].

Kwak et al. [83] presented a system, based on
the fusion of various inertial sensors and magnetic
fingerprinting in order to achieve energy efficient IPS.
The authors claimed a lifetime of almost a year on a
single coin battery, at the same time reporting an error
of 1.6m in a controlled office environment. Sung et al.
[146] considered a smartphone-based inertial and RF
fusion. In this work, the efficiency comes from the novel
fusion implementations provided by the authors, and
is validated with a thorough study of computational
complexity between algorithms.

In our own work [79], we considered the utilisation
of various sensor modalities for energy efficiency, using
a Reinforcement Learning approach. Here, we were
able to fuse BLE RSS with passive infrared and camera
sensing to provide performance improvement over
time, whilst retaining energy-awareness at all times.

4.2. Methods of Fusion
Having established possible reasons for fusion, we now
consider the theoretical interpretations of the fusion
methods which were previously mentioned. This sub-
section covers various generative and discriminative
algorithms which make the fusion possible. They are
listed in the order of their relative complexity.

Bayesian Networks. Bayesian Networks are often used
in order to obtain a fusion of sensors [1, 139]. In a
broad sense, Bayesian Networks are a subset of directed
acyclic Graphical Models. The nodes of the graph
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represent random variables which are being modelled.
In a multi-sensor setting we can assume that the
connections between the nodes in the graph represent
their conditional dependencies. In other words, given a
set of nodes x, the general form of the joint probability
distribution between variables is given by [139]:

p(x1, ..., xN ) =
N∏
i=1

p(xi |P a(xi)) (4)

where P a(xi) are the parents of the node. Hidden
Markov Models (HMM) are a popular example of
dynamic Bayesian Networks, which are used to evaluate
temporal processes. Found often in literature, their
principle if rooted in the Markov property. They are
formalised through the following equation:

p(x1:t , z1:t) = p(x0)
t∏
i=1

p(zt |xt)p(xt |xt−1) (5)

The equation above describes the overall process
of evaluating joint probability between states x and
observations z as a function of prior probability
p(x0), emissions (i.e. likelihood) p(zt |xt) and transition
dynamics p(xt |xt−1). For further reading, we refer to
[124].

There are many examples of Bayesian Fusion in
sensor fusion literature [57, 62, 78]. He et al. [57]
considered an HMM approach to fusion of multiple
modalities on a mobile device using different graph
structures for online and offline processing phases.
Our own work, also based on HMM [78] involved
scrutinising a number of different data flow models,
which fused RSS and accelerometer data for robustness.

Hoang et al. [62] used a Bayesian approach to fuse
RSS and steps detection signals for indoor localisation.
The fusion proved superior to methods based solely on
RSS. Similarly, Han et al. [50] used a novel approach
to Viterbi coding to fuse RSS, Magnetic field and
IMU traces to obtain an improvement on positioning
accuracy.

Particle Filters. Particle Filters or Sequential Monte
Carlo (SMC) are a subset of Bayesian Estimation
methods. The basic algorithm relies on recursive
estimation of the posterior probability of the state xk
given some sensor observation zk at step k. The objective
of this algorithm is to estimate a probability density
function associated with state xk , taking into account
all sensor observations up to step k, given by z1:k [6].
This is done by first providing the prediction about our
belief of p(xk |z1:k−1) and then updating the probability
using Bayes’ Theorem. More formally [6]:

p(xk |z1:k−1) =
∫
p(xk |xk−1)p(xk−1|z1:k−1)dxk−1 (6)

which is the prediction given by the Chapman-
Kolmogorov equation [6]. The update can then be given
by:

p(xk |z1:k) =
p(zk |xk)p(xk |z1:k−1)

p(zk |z1:k−1)
(7)

Simply put, particle filters approximate probability
density function of an unknown state as a recursive
function of sensor observations which were observed
up to some time. This particular approach has found
applications in sensor fusion literature ranging from
robotics [107], to activity recognition [133].

In the field of indoor localisation, they are most
popular among the fusion of inertial sensors, especially
when applied to PDR [3, 66, 126]. Hsu et al. [66]
considered the fusion of a foot-mounted IMU and GPS
signals to rectify noise drift. A similar approach was
proposed by Akiyama et al. [3], albeit without the use
of a GPS. There, the PF was scrutinised against energy
efficiency, in addition to positioning accuracy. Racko et
al. [126] also used particle filtering in service of PDR.
They did this by predicting steps and heading from an
IMU.

Kalman Filters. Kalman Filters are intimately related
to recursive Bayesian filtering [34]. The popularity
of KF was mostly thanks to its formulation, which
allows many different sensor modalities to be arbitrarily
modelled by the filter [46]. It is also preferred for its
ability to obtain the result in real time. The usual KF
formulation follows a pattern of state-space modelling,
and their subsequent prediction and update [34].

Formally, the Kalman filter equation for state space
input and output responses, in continuous time, are
given by [34]:

ẋ(t) = F (t)x(t) + B(t)u(t) + v(t) (8)

z(t) = H (t)x(t) + ω(t) (9)

where ẋ is the state vector, z is the output vector,
u is the control input, v is the process noise and ω is
the noise due to measurement. Additionally, F specifies
system state matrix, B is the input matrix and H is
the matrix specifying the observations. The usual KF
approach has two phases, prediction and update, which
we will omit in our formalisation and instead refer the
reader to [34, 46].

There exist work in the use of KF for indoor
localisation [81, 134]. Kumar et al. used a KF to provide
a 3D localisation of an indoor UAV, by integrating a
LiDAR and an IMU. Here, the authors used KF to
fuse the output of two LiDARs together to achieve 3-
dimensional localisation.

KF can also be used as part of Extended Kalman
Filtering (EKF), which is the nominal method used
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in literature. EKF is a non-linear formulation of
the KF, whereby the models of state transition can
instead approximated through linearisation [148].
There exists a body of work dedicated to EKF for indoor
localisation [18, 174]. Caruso et al., for example, uses an
implementation of an EKF to perform localisation based
on Visual-inertial Navigation System (VINS). They
achieved superior performance to DR-based methods.

There is also a dedicated SLAM approach called EKF-
SLAM [148]. In their paper, Vivet et al. [156] used a
line-based EKF-SLAM for a robot based application.
D’Alfonso et al. [27] also used an EKF-based approach
to SLAM for a robotic indoor navigation task,
supporting their simulated results with subsequent real
life experimental work.

By using EKF, Alatise et al. [4] performed fusion of
a 6 degrees of freedom (DOF) IMU sensor. They fused
accelerometer and gyroscope to obtain the pose of the
robot, i.e. the heading and its location. Kaltiokallio et al.
[72] compared the relative performance of PF and EKF.
The study concluded that for indoor positioning based
on RSS, they are largely similar with the exception of
the computational overhead, which favours the EKF.

Neural Networks. Due to the emergence of Artificial
Neural Networks (ANN) in the recent years, a number
of researchers have considered the use of a tailored
network for sensor fusion. Most of the approaches use
Deep Neural Networks (DNN) [84, 94, 161]. While
there exists a body of literature dedicated to objective-
specific fusion methods using ANN [151, 154, 155,
176], there is an evident lack of standarisation between
the positioning methods, and it still remains largely
unexplored.

Interestingly, ANN has often been used as a pre-
processing step before actual fusion [154, 155, 161].
Whilst not strictly related to indoor positioning
application, Vargas-Meléndez et al. [154, 155] used an
ANN to estimate the pseudo roll angle of a vehicle,
before performing fusion based on a PF. Wang et al.
[161] performed indoor localisation, using CSI and deep
learning. They were able to extract the location features
by weighting them, using an ANN. This was later fused
together during an online phase of their algorithm.

Liu et al. [94] proposed using deep learning for
scene recognition and fingerprinting tasks. Using
a smartphone, they were able to perform scene
recognition from pictures using deep learning. Based
entirely on the deep learning architecture, Lee et al.
[84] performed localisation based on ambient magnetic
field. They extracted magnetic features, as well as
odometry and fed them to the network to obtain a
robot’s position.

5. Future Directions

Figure 6 shows the fusion combinations and popular
approaches in sensor-driven indoor localisation in the
last decade. This particular figure is not exhaustive, and
as it was noted before, is only attached as a starting
point for further investigation of a particular fusion
combination. Indeed, there is an evident community
preference towards sensors which, either have a
broad foundation on which to build the algorithms
such as RF, or are based on modalities which are
easy to come by, such as IMUs and magnetometers.
While magnetometers have seen extensive use as part
of PDR applications where they usually establish
direction, there is lack of recent, comprehensive study
of its viability with RF sensors. Both types utilise
fingerprinting as part of its training phase. This type of
data could be collected simultaneously, and can often
reuse already existing IMU chipsets reported in various
studies.

Cameras have seen a large body of literature
dedicated to localisation, mainly due to the rise
of camera-enabled smartphones. With easy access
to smartphone sensor clusters, and their processing
plants, researchers can perform more in-depth fusion of
the sensors and collect more resolute data. Additionally,
phones have good connectivity capabilities making
them well suited for applications with quick-transfer
requirements such as databases and for range-based RF
localisation tasks. Interestingly, due to the recent trend
in smartphone photography, where in order to obtain
more resolute images the devices include two cameras,
it could technically be possible to perform structure-
from-motion mapping using a single smartphone with
two or more camera sensors.

In terms of modality fusion, Ultrasound and
VLC could both be considered relatively unexplored.
Most of the literature, for both of these modalities,
present implementations in a sterile environment of a
laboratory, reporting sub-meter accuracy. That would
suggest that these types of modalities are still in
the proof of concept stage of research. There is
yet to be study which would use these modalities
in a wide-scale positioning infrastructure or fusion
campaign. On the other hand, the fusion of RF and
Inertia/Magnetometers is very widely explored, in both
performance studies and their appearace in various
data sets. The aforementioned Ultrasound and VLC-
based approaches are, however, again underrepresented
in this domain. This is not surprising due to
the relatively large infrastructures demanded by
these modalities. Additionally, there exists space for
localisation-specific data set encompassing human-
borne LiDAR for fingerprinting applications. This could
be used with AMF or RF.
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Figure 6. Outline of reported fusion combinations, data sets and seminal papers in the literature of sensors and their fusion for indoor
localisation in the past decade. The data sets and fusion combinations include dashed lines, signifying that the study encompassed
respective selected modalities.

Fusion methodologies are also likely to shift. Recent
proliferation of DL techniques and ANN in general,
is likely to drive the fusion into the deep learning
domain. Indeed, this paper has shown that there have
been strides made in that direction, however when
compared to Bayesian methods, this particular domain
is lacking, in both proper theoretical formulation and
exhausting comparison studies. This is not to say, that
the current state-of-the-art Bayesian methods will be
completely ousted. A more likely prediction is one of
the two systems working together, either in unison, or
as complements of each other, in order to make the
prediction more accurate.

6. Conclusion

In this paper, we have reviewed the popular sensor
modalities which are currently being used for indoor
localisation. First, we have detailed each sensor modal-
ity and have given a thorough literature overview
for each. The modalities were then scrutinised under
widely accepted evaluation criteria. Then, we outlined
the recent attempts at fusion and the most popular
combination of sensors, considering context-specific
consolidations. Among them were Robustness, Accu-
racy and Energy Efficiency. Finally, we have considered
the popular sensor fusion methods, which range from
Particle to Kalman Filters.
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