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Abstract

The majority of existing spectrum prediction models in Cognitive Radio Networks (CRNs) don’t fully explore
the hidden correlation among adjacent observations. In this paper, we first develop a novel prediction
approach termed high-order hidden bivariate Markov model (H2BMM) for a stationary CRN. The proposed
H2BMM leverages the advantages of both HBMM and high-order, which applies two dimensional parameters,
i.e., hidden process and underlying process, to more accurately describe the channel behavior. In addition, the
current channel state is predicted by observingmultiple previous states. Afterwards, themobility of secondary
users is fully considered and we propose an advanced approach based on H2BMM, termed Advanced H2BMM,
to accommodate a mobile CRN. Extensive simulations are conducted and results verify that the prediction
accuracy is significantly improved using the proposed (H2BMM. The Advanced H2BMM is also evaluated with
comparison to H2BMM and results show considerable improvements of H2BMM in a mobile environment.
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1. Introduction
Cognitive Radio Networks (CRNs) are commonly per-
ceived as a promising solution to the issue of spectrum
scarcity. In CRNs, Primary Users (PUs) and Secondary
Users (SUs) refer to the authorized and unauthorized
users of allocated channels, respectively [1]. SUs are
allowed to access channels opportunistically without
harmful interferences to PUs [2]. To implement CRNs
successfully, spectrum sensing is an essential process, in
which SUs must obtain awareness about the spectrum
usage to avoid destructive interferences to PUs [3].
A traditional CRN requires SUs to continually

conduct a spectrum sensing process [4]. Specifically,
time is divided into slots which consist of a small
portion of sensing period, followed by a relative long
period for data transmission. SUs conduct regular
sensing and update the sensing result every time slot,
which leads to high computational complexity [5]. To
speed up the sensing process and save more time
for transmission, spectrum prediction is a favorable
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technology. Spectrum prediction refers to the process
of estimating the future channel occupancy status by
analyzing sensing history [6]. With prediction, SUs are
not required to sense the channel every time slot and
hence the time for data transmission is prolonged.

A few spectrum prediction schemes have been
proposed in the recent literature. Authors in [7]
summarize several state-of-the-art spectrum prediction
techniques and illustrate their applications. In [8] [9]
[10], Markov related prediction algorithm has been
improved from Hidden Markov Model (HMM) to high-
order HMM and Hidden Bivariate Markov Model
(HBMM). The standard HMM [8], also named the first-
order HMM, solely depends on one immediately prior
state and the correlation with other previous states is
not fully explored. To improve the accuracy, a high-
order HMM is proposed and evaluated in [9] where the
current channel state depends on more than one prior
states. In addition, studies discover that the geometric
distribution characteristic of HMM is not suitable for
describing channel behaviors, especially when bursty
transmissions occur [11]. To better model the cognitive
radio channel, hidden bivariate Markovmodel (HBMM)
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is proposed and applied to spectrum prediction in [10].
The main idea of HBMM is to further divide a channel
state into multiple sub-states, forming an underlying
process, so that the channel sub-state dwell time follows
a Phase distribution.
As mentioned above, HBMM and high-order HMM

are proposed separately to improve the standard
HMM from two perspectives. In our paper, we first
consider a stationary CRN and propose a novel
prediction approaches, termed High-order Hidden
Bivariate Markov model (H2BMM), by leveraging the
advantages of both high-order and HBMM. H2BMM
is to apply two dimensional parameters, i.e., hidden
process and underlying process, to more accurately
describe the channel behavior. In a stationary CRN,
individual stationary SUs conduct H2BMM to complete
the tasks of sensing and prediction. Afterwards, we
extend H2BMM to a mobile CRN since mobility is an
inherent feature in a wireless environment. In a mobile
CRN, when SUs move, it is difficult for an individual
SU to analyze the activity patterns of PUs along with its
moving path [12]. Therefore, the concept of cooperative
sensing [13] is adopted and a base station will collect
sensing information from mobile SUs to analyze and
predict channel states. Besides, it is challenging to
continuously sense PUs’ status due to the mobility
of SUs. To accommodate a mobile CRN, we improve
H2BMM, termed Advanced H2BMM, by considering the
discontinuous sensing behaviors of mobile SUs, .
Our main contributions are briefly summarized as

below:

• For a stationary CRN, a novel High-order
Hidden Bivariate Markov Model (H2BMM) based
spectrum prediction approach is proposed to fully
inherit the strengths of high-order HMM and
HBMM. In this approach, the prediction accuracy
is enhanced by considering a underlying process
and observing multiple previous states as well.

• Theoretical analysis is tailored to the training and
prediction process for H2BMM. The dimensional-
ity of transition probability matrix in a standard
HBMM is two. In H2BMM, we increase the dimen-
sionality so that one state depends on previous
m(m ≥ 2) states. Accordingly, analysis of forward
and backward possibilities is revised to calculate
the conditional probability of the current state
under its previous m and future m states.

• For a mobile CRN, we further improve the
training algorithm of H2BMM to adapt to
the discontinuous sensing behaviors of mobile
SUs because H2BMM is originally developed
when both PUs and SUs are fixed. The new
training method of Advanced H2BMM can

achieve remarkably higher prediction accuracy in
a mobile environment.

The rest of the paper is organized as follows.
Related work on spectrum prediction is introduced in
Section 2. Section 3 presents the detailed description
of the proposed H2BMM based spectrum prediction
approach, along with theoretical analysis. Section
4 introduce the Advanced H2BMM for a mobile
environment. Simulation results are described in
Section 5 and conclusions are drawn in Section 6.

2. Related Work
The growing concern over the spectrum scarcity has
inspired considerable research on spectrum prediction
in CRNs. Spectrum prediction is a necessary mean to
address the spectrum fluctuation problem. Several com-
mon spectrum prediction algorithms, including HMM,
HBMM and high-order HMM, are first introduced in
this section, followed by a comparison among these
solutions.

2.1. Hidden Markov Model (HMM) Based Prediction
In CRNs, the two-state channel model is commonly
used, in which “0” and “1” indicate the channel being
idle and busy, respectively. Since the actual channel state
is typically hidden from SUs in HMM [8] [14], let X =
{“0”, “1”} denotes the actual and hidden state space,
while Y = {“0”, “1”} denote the observation/sensing
state space.
The model training process is to adjust each

element value of state transition probability matrix
A = [aij ], i, j ∈ X and emission probability matrix B =
[bij ], i, j ∈ Y [15]. As shown in Fig. 1, each element
aij of state transition probability matrix A denotes
the probability that the hidden channel state transfers
from state “i” to state “j”, while each element bij
of emission probability matrix denotes the probability
that hidden channel state “i” is observed as state
“j” [16]. With the trained matrices and observation
history, we are able to calculate the mostly likely hidden
states chain and future states. In [17], HMM is applied
to diagnose electronic circuit fault using high-order
spectral analysis, but the high-order concept is different
from that in our paper.

2.2. Hidden Bivariate Markov Model
HBMM can be viewed as an extension of standard HMM
[18]. The main advantage of HBMM [10] [14] is that
the dwell time in a given state has a discrete phase-
type distribution which is more suitable for modeling
a cognitive radio channel than the geometric dwell
time distribution of HMM. In HBMM, each channel
state contains r sub-states denoted by {Sn}. Let {Zn =
(Xn, Sn), n = 0, 1, . . . } denote a discrete-time bivariate
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Figure 1. Hidden Markov Model (HMM) [14]

Markov chain. {Xn} is referred to as the state process,
while {Sn} is the underlying process. The observable
process denoted by {Yn} is obtained by observing the
state process {Xn} through a Gaussian memoryless
channel. The transition matrix can be expressed by:

G =
[
G11 G12
G21 G22

]
, (1)

where Gab = {gab(ij), i, j = 1, 2, . . . , r} is an r × r matrix.

2.3. High-order HMM
In the conventional first-order HMM, the prediction
of current state is solely determined by its immediate
previous state. High-order HMM [9] [14], instead, make
predictions by considering multiple previous states
[19]. As a result, first-order HMM and high-order HMM
possess different transition matrix. Taking 2nd-order
HMM [20] as an example, the size of transition matrixG
is n × n × n and each element gijk means the probability
that the hidden channel state transfers from state “i”
to state “j” and then to state “k”. In general, when the
order of high-order HMM increases, the performance is
much better than the traditional HMM [21].
In summary, these typical prediction techniques have

their advantages and disadvantages. There are two key
problems of HMM. One is that the geometric dwell time
distribution characteristic of the HMM is not adequate
for modeling a cognitive radio channel, especially when
bursty transmissions happen. Another one is that HMM
is not able to fully explore the hidden correlation among
adjacent observations because a state only depends
on its previous one state. HBMM can be viewed as
a modified HMM with better dwell time distribution
characteristic through extending each hidden state
to several sub-states. High-order HMM solves the
limitation of low correlations and can obtain a better

performance. Therefore, we combine the concept of
High-order HMM and HBMM, and then propose a
H2BMM based spectrum prediction approach.

3. H2BMM Based Spectrum Prediction

In this section, the proposed H2BMM based spectrum
prediction will be introduced. Before we delve into
the details, the scenario of prediction on spectrum
sensing is described first. We assume that the channel
state alternates between “0 (idle)” and “1 (busy)”. An
SU observes the received signal and makes a sensing
decision for the channel state: either “0 (idle)” or
“1 (busy)”. Taking energy detection as an instance, if
the received energy amplitude exceeds a predefined
threshold, the channel is perceived busy, otherwise the
channel is determined as idle.

3.1. H2BMM Parameters
Due to signal noise and interference, the sensed channel
state does not necessarily represent the actual state.
Therefore, we can view that the actual channel state
is hidden from the SU. Let X = {“0”, “1”} denotes the
hidden state space, with “0” and “1” indicating that
the channel is idle and busy, respectively. Similarly, let
Y = {“0”, “1”} denote the observation state space, with
“0” and “1” indicating that the spectrum sensing results
is idle and busy respectively. The principle of spectrum
prediction is to predict future channel states from the
historical channel states.
In terms of notation, capital letters are used to denote

random variables and lower case letters to denote their
realizations. Let {Xn}, {Yn} and {Sn} represent the hidden
process (i.e., the actual channel states), observation
process (i.e., sensing results of channel state) and
underlying process. Note that the underlying process
{Sn} takes values in S = {1, 2, . . . , 5}, which implies that
each channel state in X, idle (“0”) or busy (“1”), contains
5 sub-states. The role of the underlying process {Sn} is
to facilitate mathematical analysis, i.e., induce a phase-
type distribution on the dwell times of {Xn} in the idle
or busy state. Let {Zn = (Xn, Sn), n = 0, 1, . . . , N } denotes
the discrete-time bivariate Markov chain.
We assume that energy detection is employed for

spectrum sensing and when channel state is idle,
the observed signal strength {Yn} follows a Gaussian
distribution with µ0 mean and σ2

0 variance. Similarly,
when channel state is busy, {Yn} follows a Gaussian
distribution with µ1 mean and σ2

1 variance.
The H2BMM parameters, denoted by ϕ = (π,G, µ, R),

consist of an initial probability distribution π, a
transition matrix G, a vector of mean observed signal
strengths µ = {µ0, µ1}, and a vector of observed signal
strengths variances R = {σ2

0 , σ
2
1 }. The size of transition

matrix G is related with the order of H2BMM. For
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example, the size of G is n × n × n for 2nd-order
H2BMM and each element gijk means the probability
that the channel state transfers from state “i” to state
“j” and then to state “k”.
To better understand the concept of H2BMM, we

illustrate the 2nd-order H2BMM with two sub-states in
Fig. 2. As can be seen, each main state contains two sub-
states and state transitions occur among these total four
sub-states. Since this is for the 2nd-order model, the
current state is related to its previous two states, i.e.,
from slot n − 2 to n − 1 and then to n.

Idle

Xn-2 = 0

Sn-2 = 0

Idle

Xn-2 = 0

Sn-2 = 1

Busy

Xn-2 = 1

Sn-2 = 0

Busy

Xn-2 = 1

Sn-2 = 1

Slot n-2

Idle

Xn = 0

Sn = 0

Idle

Xn = 0

Sn = 1

Busy

Xn = 1

Sn = 0

Busy

Xn = 1

Sn = 1

Slot n

Idle

Xn-1 = 0

Sn-1 = 0

Idle

Xn-1 = 0

Sn-1 = 1

Busy

Xn-1 = 1

Sn-1 = 0

Busy

Xn-1 = 1

Sn-1 = 1

Slot n-1

Figure 2. HHBMM Concept

3.2. H2BMM
In this subsection, the proposed H2BMM prediction
procedures will be described in detail. Specifically,
three major steps are involved. The first step is to
generate a hidden channel state chain and observation
chain as well. Then a training process is required
for H2BMM, in which the widely used Baum-Welch
algorithm [22] is adopted. Last, the strategy of making
a prediction decision is introduced. The following will
detail each main step.
1) Generating hidden state chain and observation chain
For the channel states, we include the duration time

for each state. It is assumed that the duration/dwell
time of channel busy and idle states follows an
exponential distribution, which is a special case of
Phase distribution. That is, we consider the channel
activity as a two-state model which incorporates busy
and idle durations. The exponential distribution is used
to generate a predictable hidden state chain {Xn, n =
0, 1, . . . , 2N },

fB(x, µB) =
{

µBe
−µBx x ≥ 0

0 x < 0 (2)

fI (x, µI ) =
{

µIe
−µIx x ≥ 0

0 x < 0 (3)

where µB and µI are busy and idle duration parameters.

The channel duration distribution functions deter-
mine how long (i.e., how many time slots) the chan-
nel will remain in the current state. It is known the
dwell/duration time of a channel state can be any
positive value. Here we are interested in the channel
state remaining for one time slot. Therefore, a new term
is introduced called transient state probability to indicate
the probability of channel state (idle or busy) remaining
for only one time slot. The transient state probability
significantly affects the performance of spectrum pre-
diction, which will be evaluated in Section 5. We use
transient state probability PB→I to represent the proba-
bility of channel staying on busy for only one time slot.
Similarly, PI→B indicates the probability of idle state for
one time slot. For example, in the case of PB→I = 0.5
and PI→B = 0.8, the possibility of one-slot dwell time
in busy state is 50%, and the probability of one-slot
dwell time in idle state is 80%. In other words, observing
three consecutive time slots, if the current slot is busy,
previous and next slots are both idle, this (i.e., staying in
busy for only one time slot) occurs with a probability of
50%. If the current slot is idle, previous slot is busy and
the next slot changes to busy, the likelihood of this (i.e.,
staying in idle for only one time slot) happening is 80%.
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Figure 3. Illustration of calculating the transient state
probability from an exponential duration distribution of a channel
state

Fig. 3 illustrates an exponential duration/dwell
distribution of a channel state. Since the transient state
probability is defined as the probability of staying
on the current state for one time slot, it is actually
the integral of channel duration distribution functions
from 0 to 1 (time slot), i.e., the shaded area in Fig. 3.
As a result, the formulas of PB→I and PI→B can be

derived as below:

PB→I =
∫ 1

0
fB(x, µB) dx (4)

PI→B =
∫ 1

0
fI (x, µI ) dx (5)
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In addition, a signal strength observation chain
{Yn, n = 0, 1, . . . , 2N } is generated by applying Gaussian
distribution. As mentioned previously, {Yn} follows a
Gaussian distribution N (µ0, σ

2
0 ) when {Xn} is idle, and

{Yn} follows a Gaussian distribution N (µ1, σ
2
1 ) when

{Xn} is active.

2. H2BMM Training

After generating the training sequence, H2BMM is
trained using the generated sequence. The widely used
training algorithm of HMM is Baum-Welch algorithm.
Based on the Baum-Welch algorithm, we design the
training and prediction algorithm for H2BMM. The
m order HBMM training flow is summarized in
Fig. 4. Once a new piece is received, the oldest
piece will be abandoned. Given an initial parameter
estimate ϕ = (π,G, µ, R) and a piece of signal strength
observations {Yn, n = 0, 1, . . . , N }, a parameter estimate
ϕ̂ = (π̂, Ĝ, µ̂, R̂) with a higher likelihood is computed.
Forward and backward probabilities are critical to
estimate the parameter ϕ = (π,G, µ, R), which will be
factored in Eq. 9. After a certain number of iterations, a
more accurate parameter estimate will be obtained.

Initial high-order HBMM parameters

 = (!, G, ", R) 

Generate simulation chain

{Xn}, {Yn}

Calculate forward and backward probabilities

αn, βn

Estimate new high-order HBMM parameters

 ! = ("# ,$!,%,&!) 

Whether 

reach iteration accuracy

or times

Calculate probability of 

future channel state

Y

N

Figure 4. High-Order HBMM (H2BMM) training flow

• Forward Probability

We define a forward probability, αkr (n), k ∈ X, r ∈
S, as the probability of current state Zn = {Xn, Sn}
being (k, r) under the condition of previous n vectors
{y0, . . . , yn−1}. Define a 10 × 10 block diagonal matrix Bn,

with its diagonal blocks given by {p(yn|Xn = k)I, k ∈ X}.
I is a 5 × 5 identity matrix. In Eq. 6, α(n) denotes a
1 × 10 vector of {α01(n), . . . , α05(n), α11(n), . . . , α15(n)}.

α(0) = πB0;
. . .

α(m − 1) = α(m − 2)GBm−1;
. . .

α(n) =
[(

m∏
i=1

α(n − i)
)
G

]
Bn, n = m, . . . , N .

(6)

where π denotes the initial states probability distribu-
tion and m denotes the order of H2BMM. The recur-
sive calculation of forward probability uses previous
m forward probability. Therefore, we first calculate the
forward probability of first m states: α(0) to α(m −
1), from which α(m) can be determined. By repeating
the process, with the forward probability of previous
m states, forward probability of the following state,
α(n), n = m + 1, . . . , N , can be obtained.

• Backward Probability

Similarly, we define a backward probability,
βkr (n), k ∈ X, r ∈ S as the probability of current
state Zn being (k, r) under the vectors of
{yn+1, . . . , yN }. In Eq. 7, β(n) denotes a 1 × 10 vector of
{β01(n), . . . , β05(n), β11(n), . . . , β15(n)}.

β(N ) = 1′

. . .
β(N −m + 1) = β(N −m + 2)BN−m+2G

′ ;
. . .

β(n) =
[(

1∏
i=m

β(n + i)
)
Bn+1

]
G′ ,

n = N −m, . . . , 0.

(7)

where “′” denotes matrix transpose and “1” denotes a
column vector of all ones. We calculate the backward
probability of last m states: β(N ) to β(N−m+1). With
the backward probability of last m states, backward
probability of the previous one state, β(n), can be
determined.

• Parameter Estimation

Applying the forward probability and backward
probability formulas above, we can calculate the condi-
tional probability p(zn−m, ..., zn−1, zn|yN0 ;ϕ), n = 2, . . . , N
for H2BMM in Eq. 8.

p(zn−m, ..., zn−1, zn|yN0 ;ϕ) =

G(zn−m, ..., zn−1, zn)Q(n)∑
zn−m,...,zn−1,zn

G(zn−m, ..., zn−1, zn)Q(n)
,

(8)
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where Q(n) = α(n−2)β(n)p(yn|xn).
The left side of this formula means the probability

of m + 1 states, zn−m, ..., zn−1, zn, appearing in the
whole observation sequence {Yn}. The whole training
computation complexity rises exponentially along with
the increase of order index m, which leads to high
computation delay. Taking both performance and
complexity into consideration, we choose the order
index to be two. In 2nd-order H2BMM, current channel
state depends on previous two states. Then we can
regenerate the transition matrix G:

ĝabc(ijk) =
N∑
n=2

p(zn−2 = (a, i), zn−1 = (b, j), zn = (c, k)|yN0 ;ϕ)

∑
(c,k)∈Z

N∑
n=2

p(zn−2 = (a, i), zn−1 = (b, j), zn = (c, k)|yN0 ;ϕ)

(9)

where ĝabc(ijk) indicates the possibility of transferring
from zn−2 = (a, i) to zn−1 = (b, j) and then to zn = (c, k).
In a standard HBMM, one state only depends on

its previous one state. Each element of transition
matrix of HBMM, G(Zn−1, Zn), means the possibility
of transferring from Zn−1 to Zn. In our proposed
H2BMM, one state depends on previous two states.
We redesign the training algorithm to generate a
transition matrix with 3 dimensionalities. Each element
of this 3D transition matrix, G(Zn−2, Zn−1, Zn), means
the possibility of transferring from Zn−2, Zn−1 to Zn.
The same as HMM, mean signal strengths vector
µ and signal strengths variances vector R are also
updated in each iteration. The variation of interferences
throughout the simulation can reflect on µ and R
because prediction model should be updated during
the whole simulation period not just the initial training
process.

3. Prediction Decision

Given the observation chain {Yt}, a most likely {Zt}
can be calculated. If the last two states of {Zt} are zn−1
and zn, then the possibility of next state being zn+1 is
G(zn−1, zn, zn+1). Any possible zn+1 has its corresponding
possibility. As we know, in a 2D matrix, if we specify
the first one dimensionality, a vector can be selected.
Similarly, in a 3D matrix, if we specify the first two
dimensionalities, a vector can also be selected. Then the
next state probability distribution can be expressed by

P (Zn+1) = G(Zn−1, Zn, :) (10)

where “:” denotes any possible zn. Therefore, P (Zn+1) is
a vector where each element indicates the probability of
a possible zn+1.
Since channel state is either idle or busy and each state

has 5 sub-states, P (Zn+1) is a vector with length of 10.
The first 5 elements of P (Zn+1) mean the 5 sub-states of
idle and the last 5 elements of P (Zn+1) mean the 5 sub-
states of busy. To determine the most possible zn+1, we
should find the maximum value of P (Zn+1). If the order
number of the maximum element in P (Zn+1) is s, the
next channel state Xn+1 is

Xn+1 =
{

0 s ≤ 5
1 s > 5 (11)

If the maximum value of P (Zn+1) is located inside the
first 5 elements, next one channel state Xn+1 should be
idle, otherwise Xn+1 should be busy.
Multi-step prediction can be conducted the same

as 1-step prediction. After we predict the next one
channel state {Xn+1}, the previous n + 1 channel states
are viewed as historical data. Then the next two channel
{Xn+2} can be predicted.

4. Advanced H2BMM Based Spectrum Prediction
As presented in Section 3.2, the H2BMM is designed for
stationary SUs to conduct spectrum prediction. In this
section, a mobile CRN is considered and an extension of
H2BMM, named Advanced H2BMM, is proposed.

4.1. Scenario
In a mobile CRN, SUs sense channel statuses and report
sensing results to a Control Base Station (CBS) during
their movement. The CBS is responsible for predicting
the channel status.When an SU is moving towards a PU,
at first, PU is out of the sensible range of SU, i.e., SUs
can not sense the PU’s existence. Hence, SUs determine
that channel is in the idle state in this situation. After
entering the sensible region of PU, SUs are able to sense
the channel status.
The Advanced H2BMM is applied to analyze

historical sensing information and then predict future
channel status. If the next channel state is predicted to
be busy, SUs should exit the current channel in advance.
After the channel is predicted to remain idle state, SUs
can remain communications.

4.2. Advanced Training Algorithm
Due to the mobility of SUs, continuous sensing of
any channel cannot be guaranteed. It should be
noted that, in mobile CRNs, we can not guarantee
continuous sensing data after taking user mobility into
consideration. Therefore, the actual condition could be
discontinuous sensing and the CBS may receive many
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pieces of sensing data. In order to keep prediction
matrix adapted to latest spectrum environment, we
set THtpn as the threshold of training piece number.
Therefore, instead of a whole sensing sequence {Yn}, a
CBS is likely to receive many sensing pieces as shown
in Eq. 12.

piece 1 : Yn1 = {y1, y2, . . . , yi}
piece 2 : Yn2 = {y1, y2, . . . , yj }

. . .
piece m : Ynm = {y1, y2, . . . , yk}

(12)

where Ynm indicates mth sensing piece received by
CBS. The length of received sensing pieces is random
and there is no relationship between piece number
and piece length. Piece length is random and could
be any integer from 1 to simulation length. The
training algorithm of the Advanced H2BMM is revised
by utilizing pieces of sensing sequences to update
the training matrix, based on Subsection 3.2. The
improvements are described as below.

• Forward Probability

In the Advanced H2BMM, the forward possibility is
calculated for each piece of sensing, which is denoted
by α(n)piece i . Then the forward recursion is updated as
below, based on Eq. 6 in subsection 3.2:

α(0)piece i = πB0;
. . .

α(m − 1)piece i = α(m − 2)piece iGBm−1;
. . .

α(n)piece i =
[(

m∏
i=1

α(n − i)piece i
)
G

]
Bn, n = m, . . . , N .

(13)

• Backward Probability

Similarly, the backward possibility for each piece of
sensing, denoted by the β(n)piece i , is derived based on
Eq. 7 in subsection 3.2, as follows:

β(N )piece i = 1′

. . .
β(N −m + 1)piece i = β(N −m + 2)piece iBN−m+2G

′ ;
. . .

β(n)piece i =
[(

1∏
i=m

β(n + i)piece i

)
Bn+1

]
G′ ,

n = N −m, . . . , 0.
(14)

• Parameter Estimation

So far we have calculated the forward and backward
possibilities for each sensing piece. By considering all
pieces, the conditional probability is calculated in Eq.
15, which is revised based on Eq. 8 in subsection 3.2.

p(zn−m, ..., zn−1, zn|yN0 ;ϕ) =∑
all pieces

G(zn−m, ..., zn−1, zn)Q(n)∑
all pieces

∑
zn−m,...,zn−1,zn

G(zn−m, ..., zn−1, zn)Q(n)
,

(15)

5. Simulation Results
In this section, the performance of H2BMM and
Advanced H2BMM are evaluated. First, H2BMM is
compared with two traditional models in a stationary
CRN environment. For a mobile CRN environment, the
Advanced H2BMM is compared with H2BMM to verify
its advantages.

5.1. H2BMM in Stationary CRNs
The proposed H2BMM is evaluated in comparison with
HMM and HBMM under a stationary environment,
where both PUs and SUs are fixed. There are three
key factors which affect the spectrum prediction
performance of H2BMM, i.e., transient state probability,
prediction steps and order of H2BMM. We evaluate the
corresponding impact on the prediction performance
by adjusting these factors.
First, prediction accuracies affected by the transient

state probability are evaluated. As presented in Section
3, transient state probability PB→I and PI→B are
calculated in Eqs. (4) and (5). The values of PB→I and
PI→B can be altered by adjusting parameters of µB
and µI , to simulate a various spectrum environment.
Specifically, PB→I is fixed to 0.8 while PI→B is increased
from 0.1 to 0.9, correspondingly µB is fixed to 1.61
while µI is increased from 0.11 to 2.30. We compare the
prediction accuracy of H2BMM, HBMM and HMMwith
1-step prediction. Results are shown in Fig. 5.
Comparing these three lines in Fig 5, they have a

similar V-shaped trend but H2BMM obtains higher
prediction accuracy than HMM and HBMM. From the
line of 1-step HBMM in Fig. 5, it can be seen that
the prediction accuracy is a V-shaped graph, starting
considerably high around 87% when PI→B = 0.1, then
it gradually decreases while PI→B increases from 0.1 to
0.5. When PI→B = 0.5, the prediction accuracy reaches
the lowest point. Afterwards, it continuously increases
when PI→B increases from 0.5 to 1. This trend is
reasonable and can be interpreted as follows. When
PI→B = 0.1, it means the probability of channel state
experiencing “busy-idle-busy” for three consecutive
slots is 0.1. That implies the probability that both
the current and the next states are idle is 90%. In
this situation, the spectrum has a strong pattern and
thus future states are relatively easy to be predicted.
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Figure 5. Prediction accuracy of H2BMM, HBMM and HMM
when PB→I = 0.8, PI→B from 0.1 to 0.9

The prediction accuracy is lowest when the value of
PI→B is equal to 0.5. This is due to the fact when
the transient state probability is close to 0.5, the
possibility is approaching 50% for the next state to be
idle or busy, which results in random and unpredictable
spectrum pattern. Similarly, the spectrum pattern
becomes stronger when PI→B increases from 0.5 to 0.9.
Consequently, the prediction accuracy keeps rising and
achieves the highest point again when PI→B = 0.9.
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Figure 6. Prediction accuracy of H2BMM (2nd-order) when
PB→I is 0.8 and 0.5

Second, the performance of 2nd-order H2BMM
is evaluated when PB→I is set to 0.8 and 0.5,
correspondingly µB is set to 1.61 and 0.69 respectively,
while PI→B increases from 0.1 to 0.9. The prediction
accuracy of 1-step, 3-step and 5-step prediction are
calculated, respectively. k-step prediction refers to that

the channel states of next k slots instead of only one slot
are predicted for each prediction. Results for 2nd-order
H2BMM are depicted in Fig 6.
In contrast, when the value of PB→I is set to 0.5 and

other factors are kept unchanged, all the prediction
accuracies obtained by these three algorithms are
relatively lower. Especially when the transient state
probability reaches 0.5, the spectrum pattern becomes
more and more random which greatly reduces the
predict accuracy. However, the 1 step H2BMM still
achieves reasonable prediction accuracy even when the
transient state probability reaches 0.5. In addition, the
effect of prediction steps can also be observed from
Fig. 6. The prediction of the 1-step achieves the highest
accuracy, and the prediction accuracy decreases with
the increase of steps.
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Figure 7. False alarm possibility of HBMM (1st-order) and
H2BMM (2nd-order)

Third, the false alarm and miss detection of the
prediction achieved by the H2BMM are evaluated.
The false alarm probability means that the channel
state is falsely detected as busy when the channel is
actually idle, while miss detection is the opposite, that
is, the channel state is false perceived as idle when
the channel is actually busy [23]. In addition, order
of H2BMM indicates the correlation degree among
adjacent observations. Higher order means the model
can better explore the hidden correlation information
from training sequences. In this simulation, we mainly
compare the false alarm and miss detection achieved
by the 1st-order H2BMM, which becomes HBMM, and
2nd-order H2BMM.
The probabilities of false alarm andmiss detection for

1st-order H2BMM (i.e., HBMM) and 2nd-order H2BMM
are depicted in Figs. 7 and 8, respectively. It can be seen
that both the false alarm probability and miss detection
probability of the prediction achieved by the H2BMM
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Figure 8. Miss detection possibility of HBMM (1st-order) and
H2BMM (2nd-order)

is obviously lower than that of the 1st-order H2BMM
(i.e., HBMM). In addition, the effect of multi-step can be
observed. That is, higher-step leads to worse prediction
accuracy for both 1st-order H2BMM (i.e., HBMM) and
2nd-order H2BMM.
Next, we evaluate the computation complexities

between HMM, HBMM and H2BMM by comparing
the relative time consumed on performing the three
algorithms. For a channel prediction algorithm, the
computation complexity is proportional to three
parameters, namely, the number of sub-states (r), the
order index (m), and the prediction steps (k), which
is verified in Fig. 9. As depicted in the figure, the
5-step H2BMM has the highest time consumption,
which is used as reference and set to be 100%. The
consumed time reduces with the decrease of k, r
and m. In addition, the order of of an algorithm has
much heavier impact on the computation complexity
than the prediction step. This could be observed by
comparing the 1-steps H2BMM and 1-step HBMM in
Fig. 9. With the decrease of steps from 5 to 1, the time
consumption of H2BMM has slight degrade by 15%.
By contrast, when changing the prediction algorithm
from H2BMM to HBMM, i.e., reducing the order of
prediction algorithm from 2 to 1, the corresponding
time consumption significantly drops from 86% to 43%.
In Fig. 10, we evaluate the average time consumption

on spectrum discovery, which is referred to as the
average interval for an SU to find an available
channel. The spectrum prediction aims to accelerate the
spectrum discovery process. If a channel is predicted
to be idle, SUs will access the channel without sensing.
Even if the predict results are wrong, it is acceptable
as long as SUs exits the channel within the PU’s
tolerance period. If the channel is predicted as busy,
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Figure 9. Computation Complexity of HMM, HBMM and
H2BMM

SUs will repeat the discovery process until an idle
channel is found. As shown in the figure, H2BMM
spends less time than HMM and HBMM to discover
an available channel. Besides, multi-step prediction
can foresee the channel status of several future
slots, which greatly reduces the time consumption
of channel detection. Consequently, increasing the
prediction steps of H2BMM can further reduce the
time consumption on spectrum discovery. In addition,
through comparing Figs. 9 and 10, it reveals a
trade-off between computation complexity and time
consumption on spectrum discovery.
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Figure 10. Time Consumption of HMM, HBMM and H2BMM

5.2. Advanced H2BMM vs. H2BMM in a Mobile
CRN
In this subsection, we compare the performance of the
Advanced H2BMM and H2BMM in a mobile CRN. For
both H2BMM and Advanced H2BMM, the cooperative
sensing technique, i.e., majority fusion rule, is adopted
to make a final decision. In contrast with the H2BMM,
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in which each SU detects the PU distributively and
shares the sensing information with its neighbors, the
Advanced H2BMM collects the sensing data from SUs
at the CBS for a centralized spectrum sensing.
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Figure 11. Prediction accuracy of Advanced H2BMM and
H2BMM

We first evaluate the prediction accuracy of the
Advanced H2BMM and H2BMM in Fig. 11. When a
mobile SU moves into the protected area of a PU, both
the Advanced H2BMM and H2BMM can update their
training matrix based on the new sensing result so that
the prediction model can adapt to the new spectrum
environment timely. However, as demonstrated in
Fig. 11, their prediction accuracies have significant
difference. The Advanced H2BMM achieves higher
prediction accuracy than the H2BMM benefiting from
the centralized spectrum sensing on the CBS. The
increased number of SUs sending the sensing data to
CBS brings better training on the matrix of H2BMM
and improves the prediction accuracy, as illustrated
in Fig. 11. By contrast, for H2BMM, the increase of
SU number has no evidential impact on the prediction
accuracy since each SU conducts the spectrum sensing
and prediction independently. The prediction accuracy
of H2BMM, therefore, is much lower than that of the
advanced H2BMM in a mobile CRN environment.
Fig. 12 compares the false alarm possibilities of

H2BMM and Advanced H2BMM. As shown in the
figure, when the number of SUs is less than three,
the CBS of Advanced H2BMM cannot collect sufficient
sensing reports for an accurate channel prediction.
Therefore, the Advanced H2BMM has a higher false
alarm possibility than H2BMM when the number of
SUs is less than 3. When more SUs join the network,
the CBS in the Advanced H2BMM collects more sensing
information from SUs and becomes better aware of the
surrounding channel behavior and hence reduces the
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Figure 12. False alarm of Advanced H2BMM and H2BMM
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false alarm probability. The reason why the increase
of SU number has no significant effect on H2BMM has
been explained in Fig. 11.
In Fig. 13, the miss detection probabilities of

Advanced H2BMM and H2BMM are presented. As
illustrated in the figure, the Advanced H2BMM has a
lower miss detection possibility than H2BMM because
the former obtains better training sequence and adopts
an enhanced matrix training method. In Advanced
H2BMM, if the CBS cannot collect sufficient sensing
information for an accurate spectrum prediction, it
tends to set the status of the future channel as busy.
Using such a conservative strategy, the SUs have a less
chance to interfere with the PU; the opportunity that
an SU access the channel, however, is also reduced. As
illustrated in Fig. 13, the miss detection rate is as low
as 0.65 when the number of SUs is less than 3. With
the increase of the SU number, the CBS can obtain more
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sensing data and hence to decrease prediction tendency
of status busy. Similarly, the slight effect of the increase
of SU numbers on H2BMM has been explained in Fig.
11.
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Figure 14. Computation Complexity of Advanced H2BMM and
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Now, we compare the computational complexities
of Advanced H2BMM and H2BMM in a mobile CRN
environment, and show the results in Fig. 14. As
we discussed in Fig. 9, the computational complexity
is proportional to three parameters, namely, r, m,
and k. Therefore, a processor takes a longer time to
perform an algorithm with more prediction steps. As
observed in Fig. 14, the time consumption of 1-step
H2BMM is 90%, which is slightly lower than the 3-
step H2BMM. In addition, owing to the enhanced
training method, the computational complexities of
the 1-step and 3-step Advanced H2BMM are 19% and
23%, respectively, which are much lower than that of
the H2BMM. Specifically, in the Advanced H2BMM,
the training method is improved so that the CBS
only needs to calculate the forward and backward
probabilities for a small portion of training sequences.
By contrast, an SU in H2BMM needs to calculate
the forward and backward possibilities of the whole
training sequence, which remarkably increases the
computational complexity.
The time that H2BMM and Advanced H2BMM spent

on discovering the vacant channel is illustrated in Fig.
15. Recall that Fig. 10 indicates less time consumption
on spectrum discovery with increased prediction steps.
For H2BMM, the time consumptions of 1-step and 3-
step prediction are 6.8 and 3.5 slots, respectively, which
is accelerated to 2.3 and 1.2 slots in the 1-step and 3-
step Advanced H2BMM, respectively. Particularly, the
Advanced H2BMM is specially designed for a mobile
CRN environment and the H2BMM is initially designed
for a stationary CRN.
To summarize, the Advanced H2BMM has superior

performance than H2BMM in a mobile CRN, in terms
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Figure 15. Time Consumption of Advanced H2BMM and
H2BMM

of higher prediction accuracy, smaller false alarm
and miss detection probabilities, lower computation
complexity and less time consumption on spectrum
discover.

6. Conclusion
In this paper, we have proposed a new spectrum pre-
diction approach, called the H2BMM for CRN. The pro-
posed approach fully explores the hidden correlation of
previous states to make a spectrum prediction. There-
fore, it remarkably increases the prediction accuracy
compared with the conventional spectrum prediction
approaches. To achieve a satisfactory performance in a
mobile CRN environment, an Advance H2BMM algo-
rithm is also designed through improving the training
method of H2BMM. Extensive simulations have been
carried out and results verify that the prediction per-
formance is significantly improved. The computational
complexity and the time consumption for spectrum
discovery are evaluated as well.
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