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Abstract. In this paper, we present the sufficient and necessary conditions for generalized 

H�̈�lder’s inequality in weak p-summable sequence spaces which complete the Masta, et 

al. results in 2018. One of the keys to prove our results is to use the norm of the 

characteristic sequence of the balls in ℤ. 

Keywords: H�̈�lder's Inequality, Sufficient and Necessary Conditions, P-summable 

Sequence Spaces 

1   Introduction 

In mathematics, function spaces are one of the important topics, particularly in real and 

functional analysis. Lebesgue space is one of the spaces that are often studied in various fields 

such as statistics, applied mathematics and etc. There are two kinds of Lebesgue spaces which 

are ‘continuous’ Lebesgue spaces denoted by 𝐿𝑝 and p-summable sequence spaces denoted by 

ℓ𝑝. Many researchers have studied Lebesgue spaces and its generalization over a few decades 

[1-12]. For example, in 2016, discussed generalized H�̈�lder's inequality in ‘continuous’ 

Lebesgue spaces and in ‘continuous’ Orlicz – Morrey spaces [7]. In 2018, also presented 

sufficient and necessary conditions for generalized Hölder's inequality in Morrey spaces and in 

their weak type [13]. Recently, obtained the sufficient and necessary conditions for generalized 

Hölder's inequality in p-summable sequence spaces [14]. 

Motivated by these results, we are interested to obtain the sufficient condition for 

generalized Hölder’s inequality in weak p-summable sequence spaces. 

Let us recall definition of p-summable sequence spaces and weak p-summable sequence 

spaces. Let 1 ≤ 𝑝 < ∞, the p-summable sequence space ℓ𝑝 (ℤ) is the set of sequences 𝑋: =

(𝑥𝑛)𝑛∈ℤ such that Equation (1). 

‖𝑋‖ℓ𝑝(ℤ) ≔  (∑ |𝑥𝑛|𝑝∞
𝑛=1 )

1

𝑝 < ∞.                                      (1) 

Now, let 1 ≤ 𝑝 < ∞, the weak p-summable sequence 𝑤ℓ𝑝(ℤ) spaces is the set of sequences 

𝑋: = (𝑥𝑛)𝑛∈ℤ such that ‖𝑋‖𝑤ℓ𝑝(ℤ) ≔  sup
𝛾>0

𝛾|{𝑛 ∈ ℕ ∶  |𝑥𝑛| > 𝛾}|
1

𝑝 < ∞. 
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Note that, space 𝑤ℓ𝑝(ℤ) is quasi-Banach spaces equipped with quasi-norm ‖⋅‖𝑤ℓ𝑝(ℤ). 

The rest of this paper is organized as follows. In Section 2, we presented some lemmas 

which useful to obtain our results. The main results are presented in Section 3. In Section 3, we 

recall the sufficient and necessary conditions for generalized H�̈�lder’s inequality in  p-

summable sequence spaces and proved the sufficient and necessary conditions for generalized 

H�̈�lder’s inequality in weak p-summable sequence spaces. 

2   Method 

To obtain the sufficient and necessary conditions for generalized H�̈�lder’s inequality in 

weak p-summable sequence spaces, we use similar method and some lemmas as in the following 

[14]. 

 

Lemma 1. Let 𝑚 ∈ ℤand 𝑁 ∈ {0,1,2,3, … }, write 𝑆𝑚,𝑁 ≔ {𝑚 − 𝑁, … 𝑚, … , 𝑚 + 𝑁} [3]. Let 

Equation (2) 

𝜉𝑘
𝑚,𝑁 ≔ {

1, 𝑖𝑓 𝑘 ∈ 𝑆𝑚,𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (2) 

then there exists 𝐶 > 0 (independent of 𝑚and 𝑁) such that like Equation (3) 

(2𝑁 + 1)1/𝑝 ≤ ‖𝜉𝑘
𝑚,𝑁‖

ℓ𝑝(ℤ)
≤ ‖𝜉𝑘

𝑚,𝑁‖
𝑤ℓ𝑝(ℤ)

≤ 𝐶(2𝑁 + 1)1/𝑝     (3) 

for every 𝑁 ∈ {0,1,2,3, … }. 

Lemma 2. Let 𝑥𝑖 > 0 for 𝑖 = 1,2,3, … , 𝑚. If 1 ≤ 𝑝1, 𝑝2 , … , 𝑝𝑚, 𝑝 < ∞ satisfy the condition  

∑
1

𝑝𝑖

𝑚
𝑖=1 =

1

𝑝
, then we have Equation (4) [13] 

∏ 𝑥𝑖
𝑚
𝑖=1 ≤  ∑

𝑝

𝑝𝑖

𝑚
𝑖=1 𝑥

𝑖

𝑝𝑖
𝑝 .        (4) 

Corollary 3. Let 1 ≤ 𝑝1 , 𝑝2, 𝑝 < ∞ satisfy the condition
1

𝑝1
+

1

𝑝2
=

1

𝑝
, X= (𝑥𝑛) ∈ ℓ𝑝1

(ℤ) and 

𝑌 = (𝑦𝑛) ∈ ℓ𝑝2
(ℤ). If ∑ |𝑥𝑛|𝑝1∞

𝑛=1 = ∑ |𝑦𝑛|𝑝2∞
𝑛=1 = 1, then ∑ |𝑥𝑛𝑦𝑛|𝑝∞

𝑛=1 ≤ 1. [13]. 

Theorem 4. If 1 ≤ 𝑝1 ≤  𝑝2 < ∞, then we have ‖⋅‖ℓ𝑝2
(ℤ) ≤  ‖⋅‖ℓ𝑝1

(ℤ) [15]. 

3   Results and Discussions 

First, we recall the sufficient and necessary conditions for Hölder’s inequality 

inℓ𝑝(ℤ) space in the following theorem. 

 

Theorem 5. Let1 ≤ 𝑝1, 𝑝2, 𝑝3 , … , 𝑝𝑚, 𝑝 < ∞ [14]. 

(1) If ∑
𝟏

𝒑𝒊

𝒎
𝒊=𝟏 =

𝟏

𝒑
, then ‖∏ 𝑿𝒊

𝒎
𝒊=𝟏 ‖𝓵𝒑(ℤ) ≤ ∏ ‖𝑿𝒊‖𝓵𝒑𝒊

(ℤ)
𝒎
𝒊=𝟏  , for every 𝑿𝒊 ∈ 𝓵𝒑𝒊

(ℤ). 



 

 

 

 

(2) If ‖∏ 𝑿𝒊
𝒎
𝒊=𝟏 ‖𝓵𝒑(ℤ) ≤ ∏ ‖𝑿𝒊‖𝓵𝒑𝒊

(ℤ)
𝒎
𝒊=𝟏  , for every 𝑿𝒊 ∈ 𝓵𝒑𝒊

(ℤ), then ∑
𝟏

𝒑𝒊

𝒎
𝒊=𝟏 ≥

𝟏

𝒑
. 

Proof 

(1) For convenience, we recall the proof of Theorem 5. Let ∑
1

𝑝𝑖

𝑚
𝑖=1 =

1

𝑝
, 𝑋𝑖 = (𝑥𝑛,𝑖) ∈

ℓ𝑝𝑖
(ℤ)  for 𝑖 = 1,2,3, … , 𝑚. First, suppose that ∑ |𝑥𝑛,𝑖|

𝑝𝑖∞
𝑛=1 = 𝐴𝑖 for every 𝑖 =

1,2, … , 𝑚. By setting 𝑥𝑛,𝑖
′ =

𝑥𝑛,𝑖

𝐴
𝑖

1/𝑝𝑖
, we have ∑ |𝑥𝑛,𝑖

′ |
𝑝𝑖∞

𝑛=1 =
∑ |𝑥𝑛,𝑖|

𝑝𝑖∞
𝑛=1

𝐴𝑖
= 1. Using 

Lemma 4, we obtain Equation (5). 

∑ |∏ 𝑥𝑛,𝑖
𝑚
𝑖=1 |

𝑝∞
𝑛=1 ≤

𝑝

𝑝1
∑ |𝑥𝑛,1|

𝑝1∞
𝑛=1 +

𝑝

𝑝2
∑ |𝑥𝑛,2|

𝑝2∞
𝑛=1 + ⋯ +

𝑝

𝑝𝑚
∑ |𝑥𝑛,𝑚|

𝑝𝑚∞
𝑛=1 =  ∑

𝑝

𝑝𝑖

𝑚
𝑖=1 = 1.  (5) 

So we have Equation (6), 

1 ≥ ∑ |∏ 𝑥𝑛,𝑖
′𝑚

𝑖=1 |
𝑝∞

𝑛=1 = ∑ |∏
𝑥𝑛,𝑖

𝐴
𝑖

1
𝑝𝑖

𝑚
𝑖=1 |

𝑝

∞
𝑛=1 =

1

∏ 𝐴
𝑖
𝑝𝑚

𝑖=1

∑ |∏ 𝑥𝑛,𝑖
𝑚
𝑖=1 |

𝑝∞
𝑛=1 .      (6) 

Since 1 ≥ ∏ 𝐴
𝑖

−
𝑝

𝑝𝑖𝑚
𝑖=1 (∑ |∏ 𝑥𝑛,𝑖

𝑚
𝑖=1 |

𝑝∞
𝑛=1 ) is equivalent to ∑ |∏ 𝑥𝑛,𝑖

𝑚
𝑖=1 |

𝑝∞
𝑛=1 ≤ ∏ 𝐴

𝑖

𝑝

𝑝𝑖𝑚
𝑖=1 , 

we obtain Equation (7) 

(∑ |∏ 𝑥𝑛,𝑖
𝑚
𝑖=1 |

𝑝∞
𝑛=1 )

1/𝑝
≤ ∏ (∑ |𝑥𝑛,𝑖|

𝑝𝑖∞
𝑛=1 )

1

𝑝𝑖𝑚
𝑖=1 .     (7) 

So, we have Equation (8) 

‖∏ 𝑋𝑖
𝑚
𝑖=1 ‖ℓ𝑝(ℤ) ≤ 𝐶‖∏ 𝑋𝑖

𝑚
𝑖=1 ‖ℓ𝑝(ℤ) ≤  𝐶 ∏ ‖𝑋𝑖‖𝓵𝑝𝑖

(ℤ)
𝑚
𝑖=1 .    (8) 

(2) Now, assume that ‖∏ 𝑋𝑖
𝑚
𝑖=1 ‖ℓ𝑝(ℤ) ≤ ∏ ‖𝑋𝑖‖ℓ𝑝𝑖

(ℤ)
𝑚
𝑖=1  holds  for every 𝑋𝑖 ∈ ℓ𝑝𝑖

(ℤ). Take 

𝑋𝑖 = 𝜉𝑘
𝑚,𝑁

 for every 𝑖 = 1,2,3, … , 𝑚, by using Lemma 1, we have Equation (9) 

(2𝑁 + 1)1/𝑝 ≤ ‖𝜉𝑘
𝑚,𝑁‖

ℓ𝑝(ℤ)
≤ ∏ ‖𝜉𝑘

𝑚,𝑁‖
ℓ𝑝𝑖

(ℤ)
𝑚
𝑖=1 ≤ 𝐶𝑚(2𝑁 + 1)

∑
1

𝑝𝑖

𝑚
𝑖=1

 (9) 

or (2𝑁 + 1)
1

𝑝
−(∑

1

𝑝𝑖

𝑚
𝑖=1 )

≤ 𝐶𝑚 for every 𝑁 ∈ {0, 1, 2, 3, … }. Hence, we can conclude that 
1

𝑝
≤ ∑

1

𝑝𝑖

𝑚
𝑖=1 . 

 

Now, we come into sufficient and necessary conditions for generalized Hölder’s inequality 

in weak p-summable spaces as presented in the following theorem. 

 

Theorem 6. Let1 ≤ 𝑝1, 𝑝2, 𝑝3 , … , 𝑝𝑚, 𝑝 < ∞. 

(1) If ∑
𝟏

𝒑𝒊

𝒎
𝒊=𝟏 =

𝟏

𝒑
, then ‖∏ 𝑿𝒊

𝒎
𝒊=𝟏 ‖𝒘𝓵𝒑(ℤ) ≤ ∏ ‖𝑿𝒊‖𝒘𝓵𝒑𝒊

(ℤ)
𝒎
𝒊=𝟏  , for every 𝑿𝒊 ∈ 𝒘𝓵𝒑𝒊

(ℤ). 

(2) If ‖∏ 𝑿𝒊
𝒎
𝒊=𝟏 ‖𝒘𝓵𝒑(ℤ) ≤ 𝒎 ∏ ‖𝑿𝒊‖𝒘𝓵𝒑𝒊

(ℤ)
𝒎
𝒊=𝟏  , for every 𝑿𝒊 ∈ 𝒘𝓵𝒑𝒊

(ℤ), then ∑
𝟏

𝒑𝒊

𝒎
𝒊=𝟏 ≥

𝟏

𝒑
. 

 

 

 



 

 

 

 

Proof. 

(1) Suppose that ∑
𝟏

𝒑𝒊

𝒎
𝒊=𝟏 =

𝟏

𝒑
 holds for every 1 ≤ 𝑝1, 𝑝2, 𝑝3 , … , 𝑝𝑚, 𝑝 < ∞. Let 𝑋𝑖 ∈

𝑤ℓ𝑝𝑖
(ℤ), where 𝑖 = 1, … , 𝑚. For an arbitrary 𝑛 ∈ ℕ and 𝛾 > 0, let Equation (10) 

𝐴(𝑛, 𝛾): = [𝛾𝑝 |{𝑛 ∈ ℕ ∶  ∏𝑚
𝑖=1 |

𝑥𝑛
(𝑖)

∥𝑋𝑖∥𝒘𝓵𝒑𝒊
(ℤ)

| > 𝛾}|]

1

𝑝

.   (10) 

Observe that, by using Young’s inequality for products (Lemma 2), we have Equation 

(11,12) 

𝐴(𝐵, 𝛾) ≤ [𝛾𝑝 |{𝑛 ∈ ℕ ∶  ∑𝑚
𝑖=1

𝑝

𝑝𝑖
|

𝑥𝑛
(𝑖)

∥𝑋𝑖∥𝒘𝓵𝒑𝒊
(ℤ)

|

𝑝𝑖
𝑝

> 𝛾}|]

1

𝑝

    (11) 

≤ [∑𝑚
𝑖=1 𝛾𝑝 |{𝑛 ∈ ℕ ∶  

𝑝

𝑝𝑖
|

𝑥𝑛
(𝑖)

∥𝑋𝑖∥𝒘𝓵𝒑𝒊
(ℤ)

|

𝑝𝑖
𝑝

>
𝛾

𝑚
}|]

1

𝑝

.   (12) 

Note that 
𝑝

𝑝𝑖
|

𝑥𝑛
(𝑖)

∥𝑋𝑖∥𝒘𝓵𝒑𝒊
(ℤ)

|

𝑝𝑖
𝑝

>
𝛾

𝑚
 is equivalent to |𝑥𝑛

(𝑖)
| > (

𝑝𝑖𝛾

𝑚𝑝
)

𝑝

𝑝𝑖 ∥ 𝑋𝑖 ∥𝒘𝓵𝒑𝒊
(ℤ)=: 𝛾𝑖. 

Hence we obtain Equation (13-15) 

𝐴(𝐵, 𝛾) ≤ [∑𝑚
𝑖=1 (

𝑚𝑝.

𝑝𝑖
)

𝑝

(
𝛾𝑖

∥𝑋𝑖∥𝒘𝓵𝒑𝒊
(ℤ)

)

𝑝𝑖

|{𝑛 ∈ ℕ ∶  |𝑥𝑛
(𝑖)

| > 𝛾𝑖}|]

1

𝑝

   (13) 

= 𝑚 [∑𝑚
𝑖=1 (

𝑝

𝑝𝑖
)

𝑝 𝛾𝑖
𝑝𝑖|{𝑥∈𝐵∶ |𝑓𝑖(𝑥)|>𝛾𝑖}|

∥𝑋𝑖∥𝒘𝓵𝒑𝒊
(ℤ)

𝑝𝑖
]

1

𝑝

    (14) 

≤ 𝑚 [∑𝑚
𝑖=1 (

𝑝

𝑝𝑖
)

𝑝

]

1

𝑝
= 𝑚.     (15) 

We then take the supremum of 𝐴(𝑛, 𝛾) over 𝑛 ∈ ℕ and 𝛾 > 0 to obtain Equation (16) 

 ‖∏ 𝑋𝑖
𝑚
𝑖=1 ‖𝑤ℓ𝑝(ℤ) ≤ 𝑚 ∏ ‖𝑋𝑖‖𝑤ℓ𝑝𝑖

(ℤ)
𝑚
𝑖=1     (16) 

(2) Now, let ‖∏ 𝑋𝑖
𝑚
𝑖=1 ‖𝑤ℓ𝑝(ℤ) ≤ 𝑚 ∏ ‖𝑋𝑖‖𝑤ℓ𝑝𝑖

(ℤ)
𝑚
𝑖=1  holds  for every Xi ∈ wℓpi

(ℤ). Take 

𝑋𝑖 = 𝜉𝑘
𝑚,𝑁

 for every 𝑖 = 1,2,3, … , 𝑚, by using Lemma 1, we have Equation (17) 

(2𝑁 + 1)1/𝑝 ≤ ∏ ‖𝜉𝑘
𝑚,𝑁‖

𝑤ℓ𝑝𝑖
(ℤ)

𝑚
𝑖=1 ≤ 𝐶𝑚(2𝑁 + 1)

∑
1

𝑝𝑖

𝑚
𝑖=1

   (17) 



 

 

 

 

or (2𝑁 + 1)
1

𝑝
−(∑

1

𝑝𝑖

𝑚
𝑖=1 )

≤ 𝐶𝑚 for every 𝑁 ∈ {0, 1, 2, 3, … }. Hence, we can conclude that 
1

𝑝
≤ ∑

1

𝑝𝑖

𝑚
𝑖=1 . 

4   Conclusion 

We have shown the sufficient and necessary conditions for generalized Hölder’s inequality 

in wℓp(ℤ) space, we can state that the condition 
1

𝑝
≤ ∑

1

𝑝𝑖

𝑚
𝑖=1  is a necessary condition for 

generalized Hölder’s inequality in wℓp(ℤ) space. 
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