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Abstract. There are many open problems in the metric dimension of a graph, espessially 

the bridge graph and the disconnected graph, that have not been resolved until now. This 

paper presents the metrics dimension of the bridge graph in several classes of graphs 

namely cycle, complete, and star graphs. We know that the metric dimensions of the 

complete, cycle or star graph have been obtained. The bridge graph 𝐵 (𝐺1, 𝐺2, 𝑒) is a graph 

which is obtained from the operation of adding edge 𝑒 to graphs 𝐺1 and 𝐺2. To obtain the 

metric dimension of the bridge graph from the graphs 𝐺1 and 𝐺2 on edge 𝑒, 

𝑝𝑑(𝐵 (𝐺1, 𝐺2, 𝑒)), we used the graph structure of 𝐺1, 𝐺2 and the properties of the bridge 

graph based on the endpoint on the edge e. The results obtained the metric dimension of 

the bridge graph 𝐵(𝐺1, 𝐺2, 𝑒) for the cycle, complete, or star graphs. 
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1   Introduction 

The metric dimension is a concept that uses a revolving set. The resolving set is a set of 

vertices as a marker component that distinguishes all vertices on the graph. The concepts have 

used in several fields namely chemical structures [1], robot navigation [2],  and optimization of 

combinations  [3]. However, the applications cannot be used optimally because all the metric 

dimensions of the graph cannot be obtained yet. Therefore, several researchers conducted a 

study of metric dimensions in various ways, including the use of graph operations. Some graph 

operations that have been published are sum-product, cross-product operations, and corona 

product. The metric dimension of the cross product of path order 𝑚 with path order 2, 𝑃𝑚  ×  𝑃2 

[1], the cartesian product [4], and the corona product [5]. In addition to the metric dimension, 

some researchers use another variant to solve the problem of the dimension of the graph, namely 

partition dimensions. The partition dimension appears in many published articles, namely the 

partition dimension of subdivision homogeneous caterpillar  [6], homogeneous firecrackers [7], 

subdivision of a Complete graph [8] and a complete multipartite graph [9]. 

To find the metric dimension of the graphs, there is also another interesting operation of 

the graph to study in the metric dimension, namely the bridge of two graphs. Therefore this 

paper shows the metric dimensions on some bridge graphs. The bridge graph is the result of the 

operation of two graphs connected by two vertices of the two graphs in the form of edges. In 

this paper, it is devoted to discussing the metric dimensions of bridge graphs formed from cycle 

graphs 𝐶𝑛, star graphs 𝐾1,𝑛 and the complete graph 𝐾𝑛. 
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2   Preliminaries 

Let 𝐺 = (𝑉, 𝐸) be a connected graph.bridge graph and 𝑣 ∈  𝑉(𝐺). An ordered set of 

vertices 𝑊 = {𝑤1, 𝑤2, ⋯ , 𝑤𝑘} ⊂  𝑉(𝐺). The representation of 𝑣 respect to 𝑊, 𝑟(𝑣|𝑊), is a 

vector (𝑑(𝑣, 𝑤1), 𝑑(𝑣, 𝑤2), ⋯  , 𝑑(𝑣, 𝑤𝑘)). The set 𝑊 is called the resolving set of 𝐺 if any two 

distinct vertices 𝑥, 𝑦, then 𝑟(𝑊) ≠  𝑟(𝑦|𝑊).  The representation 𝑟(𝑥│𝑊) and 𝑟(𝑦|𝑊) are 

called the distinct if there is a component of the vector which is distinct, in other words, there is 

a 𝑖-component which is distinct, 𝑑(𝑥, 𝑤𝑖) ≠ 𝑑(𝑦, 𝑤𝑖) for some 𝑖 ∈  {1,2, ⋯ , 𝑘}.    The basis of 

the bridge graph 𝐺 is a resolving set with the minimum cardinality. The metric dimension 𝐺, 

𝑑𝑖𝑚(𝐺),  is the cardinality of the basis of 𝐺. Let 𝑥, 𝑦 be two distinct vertices of 𝐺. If 𝑑(𝑥, 𝑤1) ≠
 𝑑(𝑦, 𝑤1) then we say that the vertices 𝑥 and 𝑦 are distinguished by 𝑤1. 

2.1 The Bridge Graph 

Let 𝐺1 and 𝐺2 be two connected graphs,  𝑎 ∈ 𝑉(𝐺1), 𝑏 ∈ 𝑉(𝐺2). The bridge graph 

𝐵(𝐺1, 𝐺2, 𝑎𝑏) is a graph which is obtained from 𝐺1 and 𝐺2 with linking 𝑎 ∈  𝑉(𝐺1) to 𝑏 ∈
 𝑉(𝐺2) [10] For example, look at Figure 1. 

 

 

Fig. 1. The graphs 𝐺1, 𝐺2 and bridge graph  𝐵(𝐺1, 𝐺2, 𝑢𝑣) 

 

 

2.2 Basic concepts 

In section, we give some results of the metric dimension of the graph which is used in this 

research. 

Theorem 1. [4] 

Let 𝐺 and 𝑃𝑛 be a connected graph and a path graph of order 𝑛. The metric dimension 𝑑𝑖𝑚(𝐺) =
1 if and only if 𝐺 =  𝑃𝑛. 



 

 

 

 

 

Theorem 2. [4] 

Let 𝐺 and 𝐾𝑛 be a connected graph and a complete graph of order 𝑛. The metric dimension 

𝑑𝑖𝑚(𝐺) = 𝑛 − 1 if and only if 𝐺 =  𝐾𝑛. 

 

Referring to the Theorems 1 and 2, it can be obtained that other graphs of order n only have 

the metric dimensions from 2 to 𝑛 − 2. 

 

Lemma 1. 

If 𝐺 is a connected graph, then 𝑝𝑑(𝐺) ≤  𝑑𝑖𝑚(𝐺)  +  1. 

 

Lemma 1 gives the properties interconnection between the metric dimension and the 

partition dimension of the graphs. 

 

3  The Main Results 

 

This section discusses the metric dimensions of bridge graphs from three class graphs 

namely a cycle graph, a star graph, and a complete graph. The first result, we show that the 

metric dimension of bridge graf from two-cycle graphs is two, as in the following Theorem 3.  

The cycle of order 𝑛 ≥ 3, 𝐶𝑛, is a regular graph of degree 2 and has n edges. 

 

Theorem 3.  

If 𝐶𝑛 𝑎𝑛𝑑  𝐶𝑚 are two-cycle graphs with 𝑛, 𝑚 ≥ 3,   𝑣1 ∈ 𝑉(𝐶𝑛); 𝑢1 ∈ 𝑉(𝐶𝑚), then 

𝑑𝑖𝑚 (𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1)) = 2. 
 

Proof 

 

Let 𝐺 =  𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1) and let 𝑉(𝐶𝑛) = {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛} be a vertices set of 𝐶𝑛, and 

𝑉(𝐶𝑚) = {𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚} be a vertices set of 𝐶𝑚. Since 𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1) is not a path, then 

by Teorema 1, we obtain  

dim(𝐵(𝐶𝑛 , 𝐶𝑚, 𝑣1𝑢1)) ≥ 2.         (1) 

Suppose 𝑊 = {𝑣𝑛 , 𝑢𝑚} ⊂ 𝑉(𝐺), We will prove that 𝑊 is a basis of 𝐺. 

Let  𝑥, 𝑦 be two distinct vertices of 𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1). To prove that 𝑑𝑖𝑚 (𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1)) ≤
2, we consider the vertices 𝑥, 𝑦 in two cases:    

The first case. Suppose both 𝑥, 𝑦 ∈ 𝐶𝑛. 

Now we consider  𝑑(𝑥, 𝑣1) and 𝑑(𝑦, 𝑣1). If 𝑑(𝑥, 𝑣1) = 𝑑(𝑦, 𝑣1), then clearly,  𝑑(𝑥, 𝑣𝑛) ≠
𝑑(𝑦, 𝑣𝑛). So we obtain 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊). Next, If 𝑑(𝑥, 𝑣1) ≠ 𝑑(𝑦, 𝑣1), then we have  

𝑑(𝑥, 𝑢1) ≠ 𝑑(𝑦, 𝑢1).  As a consequence, we have  𝑑(𝑥, 𝑢𝑛) ≠ 𝑑(𝑦, 𝑢𝑛).  So we obtain 

𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊).   Similarly,  apply the same argument for 𝑥, 𝑦 ∈ 𝐶𝑚. We obtain  𝑟(𝑥|𝑊) ≠
𝑟(𝑦|𝑊).  

The second case. Suppose 𝑥 ∈ 𝐶𝑛  and 𝑦 ∈ 𝐶𝑚. 

If  𝑑(𝑥, 𝑣𝑛) = 𝑑(𝑦, 𝑣𝑛), then consider 𝑑(𝑥, 𝑢𝑚) and 𝑑(𝑦, 𝑢𝑚). Since 𝑣𝑛 , 𝑣1, 𝑥 ∈ 𝑉(𝐶𝑛)  and 

𝑣𝑛 is adjacent to 𝑣1,  then 𝑑(𝑥, 𝑢𝑚) is at least 𝑑(𝑥, 𝑣𝑛) + 1.  Whereas if 𝑢𝑚, 𝑢1, 𝑦 ∈ 𝑉(𝐶𝑛)  and 

𝑢𝑚 is adjacent to 𝑢1,  then 𝑑(𝑦, 𝑢𝑚) is at most 𝑑(𝑥, 𝑣𝑛) − 1. As a consequence, 𝑑(𝑦, 𝑢𝑚) <
𝑑(𝑥, 𝑢𝑚). Therefore, we have 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊). 



 

 

 

 

By these two cases, we have  

𝑑𝑖𝑚 (𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1)) ≤ 2.      (2) 

As a consequence of these both two inequations (1) and (2), we obtain that the dimension of 

𝐵(𝐶𝑛, 𝐶𝑚, 𝑣1𝑢1) is 2.                             

 

If the bridge graph is obtained from the star graph and the cycle graph, then the metric 

dimension of the bridge graph depends on the bridge edge. Next, the metric dimension is 

discussed in the following Theorem 4. The star graph, 𝐾1,𝑛, is a tree with a vertex of degree 𝑛 

and 𝑛 verices of degree 1. The vertex of degree 1 is called the center of 𝐾1,𝑛 and the others are 

the leaves. 

 

Theorem 4.  

Let 𝐾1,𝑛 be a star and 𝐶𝑚 be a cycle graph. 

If 𝑎 ∈  𝑉(𝐾1,𝑛) and 𝑏 ∈  𝑉(𝐶𝑚), then   

𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛 , 𝐶𝑚, 𝑎𝑏))  = {𝑛 𝑛 − 1 𝑖𝑓 𝑎 𝑖𝑠 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝐾{1,𝑛} 𝑜𝑡ℎ𝑒𝑟𝑠 . 

 

Proof 

 

Let 𝑉(𝐾1,𝑛) = {𝑢, 𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛 },  𝑉(𝐶𝑚) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑢𝑚 } and 𝐺 =  𝐵(𝐾1,𝑛 , 𝐶𝑚, 𝑎𝑏) 

We consider the proof in two cases 

Case 1.  If 𝑎 = 𝑢 and 𝑏 = 𝑣1, then we suppose 𝑊 = {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛−1, 𝑣𝑛}. 

We will show that 𝑊 is the basis of 𝐺. 

Let 𝑥, 𝑦 be two distinct vertices of  𝐺.  We consider two subcases 

Subcase 1.1 the vertices  𝑥, 𝑦 ∈  𝑉(𝐶𝑚)   or 𝑥, 𝑦 ∈  𝑉(𝐾1,𝑛). If 𝑥, 𝑦 ∈  𝑉(𝐾1,𝑛) and 𝑥, 𝑦 ∉  𝑊  

then {𝑥, 𝑦} = {𝑢, 𝑢𝑛}. So, the vertices 𝑥 and 𝑦 are distinguished by 𝑣𝑚.  Next, we consider the 

vertices 𝑥, 𝑦 ∈  𝑉(𝐶𝑚). If 𝑑(𝑥, 𝑣𝑚) ≠  𝑑(𝑦, 𝑣𝑚) then clearly 𝑟(𝑊) ≠  𝑟(𝑦|𝑊). Now, if  If 

𝑑(𝑥, 𝑣𝑚) =  𝑑(𝑦, 𝑣𝑚) then we obtain 𝑑(𝑥, 𝑣1) ≠  𝑑(𝑦, 𝑣1) because the vertex 𝑣1  is adjacent to 

𝑣𝑛  in 𝐶𝑚. As a consequence,  we have 𝑑(𝑥, 𝑢1) ≠  𝑑(𝑦, 𝑢1). So, we can say that 𝑟(𝑊) ≠
 𝑟(𝑦|𝑊). 

Subcase 1.2 the vertex  𝑥 ∈  𝑉(𝐶𝑚)   and 𝑦 ∈  𝑉(𝐾1,𝑛). If 𝑥, 𝑦 ∈  𝑉(𝐾1,𝑛) and 𝑥, 𝑦 ∉  𝑊   

If  𝑑(𝑥, 𝑣𝑚) ≠ 𝑑(𝑦, 𝑣𝑚), then the vertices 𝑥, 𝑦 are distinguished by 𝑣𝑚. So, we have 𝑟(𝑥|𝑊) ≠
𝑟(𝑦|𝑊). If  𝑑(𝑥, 𝑣𝑚) = 𝑑(𝑦, 𝑣𝑚), then consider 𝑦 ∈  {𝑢, 𝑢𝑛}. If 𝑦 = 𝑢 then 𝑑(𝑦, 𝑣_𝑚) = 2, 

Therefore, since 𝑑(𝑦, 𝑣𝑚) = 2 and  𝑑(𝑦, 𝑣𝑚) =  𝑑(𝑥, 𝑣𝑚),  then 𝑥 = 𝑣2 or 𝑥 = 𝑣𝑚−2. Since 

𝑑(𝑦, 𝑢1) = 1 and 𝑑(𝑥, 𝑢1) ≥  3, then we obtain 𝑑(𝑦, 𝑢1) ≠ 𝑑(𝑥, 𝑢1).   If 𝑦 = 𝑢𝑛 then 

𝑑(𝑦, 𝑣_𝑚) = 2, Therefore, 𝑥 = 𝑣2 or 𝑥 = 𝑣𝑚−2. Since 𝑑(𝑦, 𝑢1) = 1 and 𝑑(𝑥, 𝑢1) ≥  3, then we 

obtain 𝑑(𝑦, 𝑢1) ≠ 𝑑(𝑥, 𝑢1). Therefore, we have 𝑟(𝑥|𝑊) ≠ 𝑟(𝑦|𝑊).   As these consequences of 

two subcases, we obtain that 𝑊 is a basis of 𝐺. So, we obtain  

𝑑𝑖𝑚(𝐺) ≤  𝑛.                             ………..(3) 

 

Next, We show 𝑑𝑖𝑚(𝐺) ≥  𝑛. Suppose 𝑑𝑖𝑚(𝐺) < 𝑛.   

Let 𝑊 be  a basis of 𝐺. Since 𝑑𝑖𝑚(𝐺) < 𝑛 then |𝑊| < 𝑛.  Let 𝑊 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑡}  with 𝑡 ≤
𝑛 − 1. If all vertices of  𝑊 are in the vertices of 𝐾1,𝑛 subgraph of 𝐺 then there are at least two 

vertices of 𝐶𝑚 subgraph of 𝐺 which have the same distance to all vertices of 𝑊 namely 𝑣2  and 

𝑣𝑚. So we have 𝑟(𝑣2|𝑊) =  𝑟(𝑣𝑚|𝑊), a contradiction.  



 

 

 

 

If there is at least one vertex  of 𝑊 in 𝐶𝑚 subgraph of 𝐺.  Suppose 𝑎_𝑡 in 𝐶𝑚 the  and  𝑎𝑖 = 𝑢𝑖 

for 𝑖 = 1,2, ⋯ , 𝑡 − 1. So, there are at least three vertices of 𝐾1,𝑛 subgraph of G which are not 

vertices of 𝑊. The three vertices of 𝐾1,𝑛 are  𝑢, 𝑢𝑛 , and 𝑢𝑛−1.  Consider the vertices  𝑢1  and 

𝑢2, they have the same distance to all vertices of 𝑊. We have 𝑟(𝑣2|𝑊) =  𝑟(𝑣𝑚|𝑊), a 

contradiction. As the consequences, we obtain  

𝑑𝑖𝑚(𝐺) ≥   𝑛.          (4) 

By inequations (3) and (4), we have 𝑑𝑖𝑚(𝐺) = 𝑛.        

  

Case 2.  If 𝑎 = 𝑢𝑛 and 𝑏 = 𝑣1, then we suppose 𝑊 = {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛−2, 𝑣𝑚}. 

We will show that 𝑊 is a basis of 𝐺   

Let 𝑥, 𝑦 be two distinct vertices of 𝐺.  We consider in two subcases 

Subcase 1.1 the vertices  𝑥, 𝑦 ∈  𝑉(𝐶𝑚)   or 𝑥, 𝑦 ∈  𝑉(𝐾1,𝑛). If 𝑥, 𝑦 ∈  𝑉(𝐾1,𝑛) and 𝑥, 𝑦 ∉  𝑊  

then {𝑥, 𝑦} = {𝑢, 𝑢𝑛−1}. So, the vertices 𝑥 and 𝑦 are distinguished by 𝑣𝑚.  Next, we consider the 

vertices 𝑥, 𝑦 ∈  𝑉(𝐶𝑚). If 𝑑(𝑥, 𝑣𝑚) ≠  𝑑(𝑦, 𝑣𝑚) then clearly 𝑟(𝑊) ≠  𝑟(𝑦|𝑊). Now, if  If 

𝑑(𝑥, 𝑣𝑚) =  𝑑(𝑦, 𝑣𝑚) then we obtain 𝑑(𝑥, 𝑣1) ≠  𝑑(𝑦, 𝑣1) because the vertex 𝑣1  is adjacent ot 

𝑣𝑛  in 𝐶𝑚. As a consequence,  we have 𝑑(𝑥, 𝑢1) ≠  𝑑(𝑦, 𝑢1). So, we can say that 𝑟(𝑊) ≠
 𝑟(𝑦|𝑊). 

Subcase 1.2 the vertex  𝑥 ∈  𝑉(𝐶𝑚)   and 𝑦 ∈  𝑉(𝐾1,𝑛). If 𝑥, 𝑦 ∈  𝑉(𝐾1,𝑛) and 𝑥, 𝑦 ∉  𝑊.  If  

𝑑(𝑥, 𝑣𝑚) ≠ 𝑑(𝑦, 𝑣𝑚), then the vertices 𝑥, 𝑦 are distinguished by 𝑣𝑚. So, we have 𝑟(𝑥|𝑊) ≠
𝑟(𝑦|𝑊). If  𝑑(𝑥, 𝑣𝑚) = 𝑑(𝑦, 𝑣𝑚), then consider 𝑦 ∈  {𝑢, 𝑢𝑛−1}. If 𝑦 = 𝑢 then 𝑑(𝑦, 𝑣𝑚) = 3, 

Therefore, since 𝑑(𝑦, 𝑣𝑚) = 3 and  𝑑(𝑦, 𝑣𝑚) =  𝑑(𝑥, 𝑣𝑚),  then 𝑥 = 𝑣3 or 𝑥 = 𝑣𝑚−3. Since 

𝑑(𝑦, 𝑢1) = 1 and 𝑑(𝑥, 𝑢1) ≥  3, then we obtain 𝑑(𝑦, 𝑢1) ≠ 𝑑(𝑥, 𝑢1), so, 𝑟(𝑊) ≠  𝑟(𝑦|𝑊).   If 

𝑦 = 𝑢𝑛−1 then 𝑑(𝑦, 𝑣_𝑚) = 4, Therefore, 𝑥 = 𝑣4 or 𝑥 = 𝑣𝑚−4. Since 𝑑(𝑦, 𝑢1) = 2 and 

𝑑(𝑥, 𝑢1) ≥  4, then we obtain 𝑑(𝑦, 𝑢1) ≠ 𝑑(𝑥, 𝑢1), so 𝑟(𝑊) ≠  𝑟(𝑦|𝑊). 

Therefore, by two subcases, we have  

𝑑𝑖𝑚(𝐺) ≤  𝑛 − 1.          (5) 

 

Next we  will show 𝑑𝑖𝑚 𝑑𝑖𝑚 ≥   𝑛 − 1. 

Suppose 𝑑𝑖𝑚(𝐺) ≤ 𝑛 − 2.   

Let 𝑊 be  a basis of 𝐺. Since 𝑑𝑖𝑚(𝐺) < 𝑛 then |𝑊| < 𝑛.  Let 𝑊 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑡}  with 𝑡 ≤
𝑛 − 2. If all vertices of  𝑊 are in the vertices of 𝐾1,𝑛 subgraph of 𝐺 then there are at least two 

vertices of 𝐶𝑚 subgraph of 𝐺 which have the same distance to all vertices of 𝑊 namely 𝑣2  and 

𝑣𝑚. So we have 𝑟(𝑣2|𝑊) =  𝑟(𝑣𝑚|𝑊), a contradiction.  

If there is at least one vertex  of 𝑊 in 𝐶𝑚 subgraph of 𝐺.  Suppose 𝑎_𝑡 in 𝐶𝑚 the  and  𝑎𝑖 = 𝑢𝑖 

for 𝑖 = 1,2, ⋯ , 𝑡 − 1. So, there are at least three vertices of 𝐾1,𝑛 subgraph of G which are not 

vertices of 𝑊. The three vertices of 𝐾1,𝑛 are  𝑢, 𝑢𝑛 , and 𝑢𝑛−1.  Consider the vertices  𝑢1  and 

𝑢2, they have the same distance to all vertices of 𝑊. We have 𝑟(𝑣2|𝑊) =  𝑟(𝑣𝑚|𝑊), a 

contradiction. As the consequences, we obtain  

𝑑𝑖𝑚(𝐺) ≥   𝑛 − 1               (6) 

By inequations (5) and (6), we have 𝑑𝑖𝑚(𝐺) = 𝑛-1.        

          



 

 

 

 

In the next Theorem 5, we show the metric dimension of bridge graf from a complete graph and 

a cycle graph.  The complete graph, 𝐾𝑛, is a graph formed by joining each pair of 𝑛 vertices 

[10]. 

 

Theorem 5.  

Let 𝐾𝑛 be a complete graph and 𝐶𝑚 be a cycle. If 𝑎 ∈  𝑉(𝐾𝑛) and 𝑏 ∈  𝑉(𝐶𝑚), then  

𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾𝑛 , 𝐶𝑚, 𝑎𝑏))  = 𝑛 − 1 

Proof 

Let  𝐺 =  𝐵(𝐾𝑛 , 𝐶𝑚, 𝑎𝑏) and  𝑉(𝐾𝑛) = {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛 },  𝑉(𝐶𝑚) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑢𝑚 } 

First, we will show 𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾𝑛, 𝐶𝑚, 𝑎𝑏))  ≥ 𝑛 − 1. 

Suppose 𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾𝑛 , 𝐶𝑚, 𝑎𝑏))  ≤ 𝑛 − 2. So there is a basis W of G with |W|=𝑛 − 2. 

If all vertices of 𝑊 are contained in 𝑉(𝐾𝑛), then there are two vertices of 𝐾𝑛 which are not in 

𝑊. We say  that the vertices   𝑢1  and 𝑢2 are not in 𝑊. As a consequence, we have 𝑑(𝑢1, 𝑧) = 1  

and 𝑑(𝑢1, 𝑧) = 1 for any 𝑧 ∈  𝑊. So we obtain 𝑟(𝑢1|𝑊) = 𝑟(𝑢2|𝑊), a contradiction. If there 

is at least one vertex of 𝑊 which is contained in 𝑉(𝐾𝑛), then there are at least three vertices of 

𝐾𝑛 which are not in 𝑊. So the vertices have the same representation, a contradiction. As a 

consequence we have   

𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾𝑛 , 𝐶𝑚, 𝑎𝑏))  ≥ 𝑛 − 1          (7) 

 

Next, we will show that 𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾𝑛, 𝐶𝑚, 𝑎𝑏))  ≤ 𝑛 − 1. 

Let 𝑉(𝐾𝑛) = {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛 },  𝑉(𝐶𝑚) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑢𝑚 } ,  𝑎 = 𝑣1  and 𝑏 = 𝑢1.  

Suppose 𝑊 = {𝑣𝑚 , 𝑢3, 𝑢4, ⋯ , 𝑢𝑛}. We will show that 𝑊 is the basis of 𝐺. 

Let 𝑥, 𝑦 be  two distinct vertices of  𝐺 which are not in W.   If the vertices  𝑥, 𝑦 ∈  𝑉(𝐶𝑚)  then 

we consider the distance between the vertices 𝑥, 𝑦 to 𝑣𝑚. If  𝑑(𝑥, 𝑣𝑚) ≠  𝑑(𝑦, 𝑣𝑚) then they are 

distinguished by 𝑣𝑚. If  𝑑(𝑥, 𝑣𝑚) =  𝑑(𝑦, 𝑣𝑚) then 𝑑(𝑥, 𝑣1) ≠  𝑑(𝑦, 𝑣1). Therefore, we obtain 

𝑑(𝑥, 𝑣3) ≠  𝑑(𝑦, 𝑣3). So the vertices 𝑥, 𝑦 are distinguished by 𝑣3.  Then, we have 𝑟(𝑊) ≠
 𝑟(𝑦|𝑊). If the vertices  𝑥, 𝑦 ∈  𝑉(𝐾𝑛)  then 𝑥 = 𝑢1 and 𝑦 = 𝑢2. So, clearly, they are 

distinguished by 𝑣𝑚.   

Next, we consider 𝑥 ∈  𝑉(𝐶𝑚) and 𝑦 ∈  𝑉(𝐾𝑛). We know 𝑑(𝑦, 𝑢3) = 1 and 𝑑(𝑥, 𝑢3) ≥  2. The  

consequence, the vertices x,y are distinguished by 𝑢3. So we have 𝑟(𝑊) ≠  𝑟(𝑦|𝑊). 

As the consequences, we obtain  

𝑑𝑖𝑚(𝐺) ≤   𝑛 − 1.                    (8) 

By inequations (7) and (8), we obtain 𝑑𝑖𝑚(𝐺) = 𝑛 − 1    

           

Theorem 6.  

If  𝐾1,𝑛 is a star graph and  𝐾𝑚 is a complete graph with  𝑛, 𝑚 ≥ 3, 𝑣 ∈ 𝑉(𝐾1,𝑛); 𝑢 ∈ 𝑉(𝐾𝑚), 

then  𝑑𝑖𝑚 (𝐵(𝐾1,𝑛 , 𝐾𝑚, 𝑢𝑣)) = {(𝑛 + 𝑚) − 4 𝑖𝑓  𝑣 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑓 𝑜𝑓 𝐾1,𝑛  (𝑛 + 𝑚) − 3 𝑜𝑡ℎ𝑒𝑟𝑠  
Proof 

Let 𝑉(𝐾 𝑚) = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚} and 𝑉(𝐾1,𝑛) = {𝑣1, 𝑣2, ⋯ , 𝑣𝑛,, 𝑐} where 𝑐 is a non-leaf of 𝐾1,𝑛  

Let 𝐺 =  𝐵(𝐾1,𝑛 , 𝐾𝑚, 𝑢𝑣) .   we consider the vertex 𝑢 in two cases. 

Case 1. The vertex 𝑣 is a leaf of 𝐾1,𝑛   

We will show that 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣)) ≤ (𝑛 + 𝑚) − 4. 



 

 

 

 

Since 𝑣 is a leaf, so we suppose 𝑢 = 𝑢1, 𝑣 = 𝑣1 and 𝑊 = {𝑢3, 𝑢4, ⋯ , 𝑢𝑚 } ∪  {𝑣3, 𝑣4, ⋯ , 𝑣𝑛} 

where |𝑊| = 𝑛 + 𝑚 − 4. We will show that 𝑊 is the basis of 𝐺. Let 𝑥, 𝑦 be two distinct vertices 

of 𝐺. Since there are only five vertices of G which are not in 𝑊 namely 𝑐, 𝑣1, 𝑣2, 𝑢1, 𝑢2, then 

clearly, they have a different representation of 𝑊, 𝑟(𝑊) ≠  𝑟(𝑦|𝑊).  As a consequence, we 

have  

𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣)) ≤ (𝑛 + 𝑚) − 4                  (9) 

Next, we will show that 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣) ≥ (𝑛 + 𝑚) − 4. In another word, There is a 𝑊 ⊂

 𝑉(𝐺) as a basis of G such that |𝑊| ≥  𝑚 + 𝑛 − 4.  

Suppose 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣)) < (𝑛 + 𝑚) − 4. So, we have a basis W such that |𝑊| = 𝑚 +

𝑛 − 5.   Since the order of 𝐺 is 𝑛 + 𝑚 + 1, then there are at least six vertices of G that are not 

in W. we say the vertices 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6} ⊂  𝑉(𝐺) and every ℎ𝑖 ∉  𝑊 for 𝑖 ∈
{1,2, … ,6}. 

We will show that there are at most two vertices ℎ𝑖  ∈  𝑉(𝐾𝑛). Suppose there are three vertices 

ℎ1, ℎ2, ℎ3 ∈  𝐻 and ℎ𝑖 ∈ 𝑉(𝐾𝑛).  Let ℎ1 = 𝑢. So, we have 𝑑(ℎ2, 𝑊) =  𝑑(ℎ3, 𝑊), a 

contradiction of 𝑊 as a basis of 𝐺.  

The second, Since  there are at most two vertices ℎ𝑖  ∈  𝑉(𝐾𝑛), we say ℎ1and  ℎ2 ∈  𝑉(𝐾_𝑛), 

then there are four vertices ℎ3, ℎ4, ℎ5, ℎ6 of H which are in the 𝑉(𝐾1,𝑛). Let ℎ3 = 𝑐 and ℎ4 = 𝑣. 

Now, we consider vertices ℎ5, ℎ6 which are a leaf of 𝐾1,𝑛. As a consequence, we have  

𝑑(ℎ5, 𝑊) =  𝑑(ℎ6, 𝑊), a contradiction of 𝑊 as a basis of 𝐺. 

These consequences, we obtain  

𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣)) ≥ (𝑛 + 𝑚) − 4.    (10) 

By inequations (9) and (10), we obtain  𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣))  = (𝑛 + 𝑚) − 4. 

Case 2. The vertex 𝑢 is not a leaf of 𝐾1,𝑛. So we have 𝑢 = 𝑐.   We will show that 

𝑑𝑖𝑚 (𝐵(𝐾1,𝑛 , 𝐾𝑚, 𝑢𝑣)) ≤ (𝑛 + 𝑚) − 3. Since 𝑣 is not a leaf, so we have  𝑣 = 𝑣1. Let 𝑢 = 𝑢1 

and 𝑊 = {𝑢3, 𝑢4, ⋯ , 𝑢𝑚 } ∪  {𝑣2, 𝑣3, 𝑣4, ⋯ , 𝑣𝑛} where |𝑊| = 𝑛 + 𝑚 − 3. We will show that 𝑊 

is a basis of 𝐺. Let 𝑥, 𝑦 be two distinct vertices of 𝐺. Since there are only four vertices of 𝐺 

which are not in 𝑊 namely 𝑐, 𝑣1, 𝑢1, 𝑢2, then clearly, they have a different representation of 𝑊, 

𝑟(𝑊) ≠  𝑟(𝑦|𝑊).   

As a consequence, we have  

𝑑𝑖𝑚 (𝐵(𝐾1,𝑛 , 𝐾𝑚, 𝑢𝑣)) ≤ (𝑛 + 𝑚) − 3    (11) 

Next, we will show that 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣) ≥ (𝑛 + 𝑚) − 3. In other words, There is a 𝑊 ⊂

 𝑉(𝐺) as a basis of G such that |𝑊| ≥  𝑚 + 𝑛 − 3.  

Suppose 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣)) < (𝑛 + 𝑚) − 3. So, we have a basis W such that |𝑊| = 𝑚 +

𝑛 − 4.   Since the order of 𝐺 is 𝑛 + 𝑚 + 1, then there are at least five vertices of G that are not 

in W. we say the vertices 𝐻 = {ℎ1, ℎ2, ℎ3, ℎ4, ℎ5} ⊂  𝑉(𝐺) and every ℎ𝑖 ∉  𝑊 for 𝑖 ∈ {1,2, … ,5}. 

We will show that there are at most two vertices ℎ𝑖  ∈  𝑉(𝐾𝑛). Suppose there are three vertices 

ℎ1, ℎ2, ℎ3 ∈  𝐻 and ℎ𝑖 ∈ 𝑉(𝐾𝑛).  Let ℎ1 = 𝑢. So, we have 𝑑(ℎ2, 𝑊) =  𝑑(ℎ3, 𝑊), a 

contradiction of 𝑊 as a basis of 𝐺.  



 

 

 

 

The second, Since  there are at most two vertices ℎ𝑖  ∈  𝑉(𝐾𝑛), we say ℎ1and  ℎ2 ∈  𝑉(𝐾_𝑛), 

then there are four vertices ℎ3, ℎ4, ℎ5 of 𝐻 which are in the 𝑉(𝐾1,𝑛). Let 𝑣 = ℎ3 = 𝑐. Now,  we 

consider vertices ℎ4, ℎ5 which are a leaf of 𝐾1,𝑛. As a consequence, we have  𝑑(ℎ4, 𝑊) =
 𝑑(ℎ6, 𝑊), a contradiction of 𝑊 as a basis of 𝐺. 

These consequences, we obtain  

𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣)) ≥ (𝑛 + 𝑚) − 3.   (12) 

By inequations (11) and (12), we obtain  𝑑𝑖𝑚 𝑑𝑖𝑚 (𝐵(𝐾1,𝑛, 𝐾𝑚 , 𝑢𝑣))  = (𝑛 + 𝑚) − 3. 
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