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Abstract. In this research, we develop a mathematical model to investigate the 

effectiveness of embankment and vegetation on the reduction of wave run-up. We solve 

the model numerically using a staggered conservative scheme. Wave run-up testing on a 

sloping beach is conducted to show the accuracy of our numerical scheme. In this case, we 

compare our numerical results with data of laboratory experiments of Synolakis provided 

in [9]. The results of the comparison show that the numerical results are in good agreement 

with the experimental data. Further, the results of the influence of the vegetation, 

embankment, and combination of both of them are presented in the article. 
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1   Introduction 

Sea wave has potential to threat (even to destroy) coastal area. Some examples of the 

phenomena are tsunami and abrasion. In order to minimize the destruction of the area, some 

methods are used such as by planting vegetation or by building embankment as a wave barrier. 

This article is focused on numerical modeling for investigating the effectiveness of embankment 

and vegetation on the reduction wave run-up. 

Numerical modeling on each case (embankment or vegetation only) can be found in many 

references for instances see [1], [2] for the vegetation modeling and [3], [4] for the embankment 

modelling. In the work of Adytia et al. in [1], the model is based on shallow water equations 

with Manning friction. The model was solved numerically using staggered conservative scheme. 

Further, the shallow water model was also used to describe overtopping over sea dike as 

described in [4]. Wave interaction with vegetation can be modelled also using Navier-Stokes 

type equations as described in [2]. In the reference, influence of vegetation is considered as 

friction. Several frictions such as Manning, Darcy, and laminar, were used in the reference to 

model the influence of vegetation.   

Wave run up is also often observed in the problem. An accurate run up prediction becomes 

important thing in the reseacrh field and several authors focused their research in the area for 

instances see [5], [6], [7], and [8]. Different model and numerical method are used to solve the 

problem. In the field of wave run up, data of laboratory experiment of Synolakis as described in 
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detail in [6] are often used as a benchamrk test. The experimental data for several time 𝑡 are 

available online in [9]. 

According to our knowledge, numerical study in modelling the merged case is still few 

especially using staggered conservative scheme and shallow water equations. Therefore, in this 

study, we model the each case as well as the merged case using shallow water equations. Further, 

we solve the equations numerically using staggered conservative scheme. Purpose of this study 

is to develop model for investigating the reduction of wave run up due to existence of 

embankment and vegetation. To validate our numerical code in describing the wave run up, 

comparison between our numerical results and the data of Synolakis is carried out. 

Outline of the article is as follows. Elaboration of numerical model including the governing 

equations and staggered conservative scheme will be given in Section 2. In Section 3, results 

and discussions of our numerical experiment will be presented. The section consists of three 

subsection; validation of the numerical code, run up reduction due to vegetation, and run up 

reduction due to embankment merged with vegetation. This article will be closed with some 

conclusions that will be given in Section 4. 

2   Numerical model 

In this section, elaboration of the numerical model (governing equations and the staggered 

conservative scheme) will be given. 

2.1   Governing equations 

Propagation of waves can be modelled using Shallow Water Equations (SWE). Consider 

the following equations 

ℎ𝑡 + (ℎ𝑢)𝑥 = 0         (1) 

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑔ℎ𝑥 = 0           (2) 

Note that Equation (1) is derived from the mass conservation and Equation (2) comes from 

the momentum conservation. Further, notation ℎ(𝑥, 𝑡) denotes the water level in which 

ℎ(𝑥, 𝑡) = 𝜂(𝑥, 𝑡) + 𝑑(𝑥) where 𝜂(𝑥, 𝑡) and 𝑑(𝑥) represent the surface elevation and the seabed, 

respectively. Notation 𝑢(𝑥, 𝑡) is the depth averaged horizontal velocity. Whereas notation 𝑡, 𝑥, 
and 𝑔 denote time, position, and gravitational force, respectively. 

In this article, the vegetation is considered as a friction term by adding Manning friction to 

the governing equations directly. Following Aditya in [1] and Gunawan [10], the Manning 

friction 𝑆𝑓 is given in Equation (3). Influence of the shoreline is cosidered in the bottom 

topography 𝑑(𝑥). 

 

𝑆𝑓 =
𝜇2𝑢|𝑢|

ℎ4/3⁄          (3) 

 

Notation µ in the Equation (3) represents Manning’s roughness coefficient.  



 

 

 

 

2.2   Staggered conservative scheme 

Here the staggered conservative scheme is used to solve the governing equations. The 

explanation of the method is described in detail in [11], [12], and [13]. In the method, the 

computational domain (time and space) is discretized into finite numbers of grids (cells) with 

constant length. The time interval [0, 𝑇] is divided into a finite number of cells 𝑁𝑡 with length 

Δ𝑡. Whereas the spatial domain Ω = [0, 𝐿] is discretized into a finite number of grids 𝑁𝑥 with 

length Δ𝑥. Further, the water level is defined in the full grid and the velocity is defined in half 

grid. See Figure 1 as an illustration. 

 

 
Fig. 1. Illustration of the staggered scheme discretization. 

 

The discretizations and definitions lead to the following equation  

ℎ𝑖
𝑛+1 = ℎ𝑖

𝑛 − (Δ𝑡
Δ𝑥⁄ )(ℎ𝑖+1/2

𝑛   𝑢𝑖+1/2
𝑛 − ℎ𝑖−1/2

𝑛   𝑢𝑖−1/2
𝑛 )   (4) 

 

Since the water level, ℎ is defined in the full grid so values of ℎ𝑖+1/2
𝑛  and ℎ𝑖−1/2

𝑛  do not exist. 

Here approximation of the missing values is needed. To solve the problem, the first-order 

upwind scheme is used. The upwind scheme can be written in the Equation (5). 

ℎ𝑖+1/2 =  {
ℎ𝑖 𝑖𝑓 𝑢𝑖+1/2 ≥ 0

ℎ𝑖+1 𝑖𝑓 𝑢𝑖+1/2 < 0
     (5) 

 
Fig. 2. Illustration of the non-linear approach. 

 

 

It is important to choose the right scheme to approximate the non-linear term 𝑢𝑢𝑥 in 

Equation (2). The choice is needed in order to describe run-up phenomena correctly (see Figure 

2 as an illustration). In this article, an approximation based on momentum conservation is 

chosen instead of the first-order upwind scheme. Therefore, we modify the nonlinear term 𝑢𝑢𝑥 

as follows 



 

 

 

 

𝑢 𝜕𝑢
𝜕𝑥⁄ = (1

ℎ⁄ ) (𝜕(ℎ𝑢2)
𝜕𝑥

⁄ − 𝑢 𝜕(ℎ𝑢)
𝜕𝑥

⁄ ) = (1
ℎ⁄ ) (

𝜕(𝑞𝑢)
𝜕𝑥

⁄ − 𝑢
𝜕𝑞

𝜕𝑥
⁄ )  

Applying the staggered method to Equation (2) leads to the following staggered discretization 

𝑢𝑖+1/2
𝑛+1 = 𝑢𝑖+1/2

𝑛 − (Δ𝑡
(Δ𝑥 𝐻𝑖+1/2

𝑛 )⁄ ) (𝑄𝑖+1
𝑛   𝑢𝑖+1

𝑛 − 𝑄𝑖
𝑛  𝑢𝑖

𝑛 −   𝑢𝑖+1/2
𝑛 (𝑄𝑖+1

𝑛 − 𝑄𝑖
𝑛))  (6) 

where  

𝐻𝑖+1/2
𝑛 =

(ℎ𝑖+1
𝑛 + ℎ𝑖

𝑛)
2

⁄ , 𝑄𝑖
𝑛 =

(𝑞𝑖+1/2
𝑛 + 𝑞𝑖−1/2

𝑛 )
2

⁄ , 𝑞𝑖+1/2
𝑛 =ℎ𝑖+1/2

𝑛   𝑢𝑖+1/2
𝑛    (7) 

Due to the definition of the velocity 𝑢 that is defined in the half grid so values of   𝑢𝑖+1
𝑛  

and  𝑢𝑖
𝑛 do not exist too. Here the first-order upwind scheme is also used 

𝑢𝑖 =  {
𝑢𝑖−1/2 𝑖𝑓 𝑄𝑖 ≥ 0

𝑢𝑖+1/2 𝑖𝑓 𝑄𝑖 < 0
      (8) 

Following another research in [1], discretization of the Manning friction term (see Equation (3) 

is written as  

𝑆𝑓𝑖+1/2

𝑛 =
𝜇2𝑢𝑖+1/2

𝑛+1 |𝑢𝑖+1/2
𝑛 |

(ℎ𝑖+1/2
𝑛+1 )

4/3⁄         (9) 

3   Numerical results and discussions 

Detail of numerical experiments will be elaborated in this section. Three kinds of numerical 

simulations are conducted. The first one is conducted to show the performance of our numerical 

code in describing run upon a simple beach. Here, the numerical results are compared with the 

experimental data of Synolakis provided in [9]. The second simulation is carried out to see the 

reduction of run-up on the simple beach due to the existence of vegetation. Whereas the last 

numerical experiment is provided to investigate the influence of vegetation and embankment on 

the reduction of wave run-up. 

3.1   Validation of the numerical code 

To validate our numerical code in wave propagation and wave run-up on the simple beach, 

comparison with data of laboratory experiments of Synolakis is conducted. In this numerical 

simulation, the set up of initial wave, flow velocity, and bathymetry of the beach are chosen as 

described in [6] and [8]. Further, in the simulation, ratio of amplitude H and constant depth d is 

taken as 
𝐻

𝑑
= 0.0185. Values of the other parameters are time step 𝛥𝑡 = 0.000845, width of the 

grid ∆x = 0.02777, and computational domain Ω = [−10,70]. The results of the comparison 

are presented in Figure 3.  



 

 

 

 

Figure 3 shows the comparison of results of the numerical simulation and data of the 

laboratory experiment of Synolakis. Initial data of the simulation are given in Figure 3 (a).  The 

wave propagates (Figure 3 (b)) to the shoreline and reaches the shoreline (Figure 3 (c)).  Figure 

3 (b) and Figure 3 (c) show that the numerical results are in good agreement with the 

experimental data in describing wave propagation until the shoreline. Figure 3 (d) – Figure 3 

(f) shows that the numerical solution is comparable with the data in the depiction of the wave 

run-up. 

 

  

  

  
Fig. 3. Comparison between the numerical result (line) and experimental data of Synolakis [9] (dotted 

line) at time t = 0t0 (𝒂), 30t0 (𝒃), 40t0 (𝒄), 50t0 (𝒅), 60t0 (𝒆), 70t0 (𝒇) where 𝑡0 = √𝑔/𝑑. 

 

3.2   Run up reduction due to the vegetation 

The simulation is conducted to see the influence of vegetation on the reduction of wave 

run-up. Note that, in this simulation values of all parameters, initial wave, initial flow velocity, 

and bathymetry are set to be the same as the previous simulation. The vegetation is placed in 

area 0 ≤ 𝑥 ≤ 2. In the program, the vegetation is seen as Manning friction with a value of 

constant 𝜇𝑓 = 0.04. The constant value is arbitrary chosen. The results of the simulation are 

given in Figure 4. 

Figure 4 shows a comparison of numerical results of vegetation case in which the 

vegetation exists and normal cases in which there is not any vegetation or embankment. Figure 

4 (a) shows that the vegetation does not give influence yet.  The influence of the vegetation is 



 

 

 

 

starting to exist in Figure 4 (b). In Figure 4 (c), the value of the run-up of the vegetation case 

is lower than the normal case. The run-up height of the normal case and the vegetation case are 

0.063963 and 0.05323, respectively. It means that there is a reduction 16.78 % of run-up height 

due to the existence of the vegetation. 

 

  

  

 

 

Fig. 4. Comparison between the numerical result of vegetation case (red line) and normal case (green 

line) at time t = 30t0 (𝒂), 40t0 (𝒃), 50t0 (𝒄), 60t0 (𝒅), 70t0 (𝒆) where 𝑡0 = √𝑔/𝑑. 

3.2   Run up reduction due to the vegetation and embankment 

The numerical experiment is conducted to see the influence of vegetation merged with an 

embankment in describing wave propagation and wave run-up phenomena.  Set up of the 

simulation is the same as the previous simulation. Further, the embankment is added to the 

topography using equation  

 

𝑑(𝑥) = −0.19𝑥 − 0.14𝑥2 − 0.036𝑥3,         (2) 

 

where -2≤ 𝑥 ≤ 0. In the merged case, both vegetation and embankment are added to the 

simulation. The location and constant value of Manning friction are the same as the previous 

simulation. Whereas the embankment is created with the Equation (2). The results of the 

simulation are given in Figure 5. 

Figure 5 presented a comparison between the results of the embankment case and the 

merged case. It is clearly seen in Figure 5 (c) that the results of the cases are different. Run up 



 

 

 

 

of the merged case is lower than the embankment case. Run-up the height of the merged case 

and the embankment case are 0.070763 and 0.075111, respectively. Therefore there is a 

reduction of run-up height about   5.79 % respect to the embankment case. In Figure 5 (d) and 

Figure 5 (e), the amplitude of the reflection wave of the merged case is lower. 

 

  

  

 

 

Fig. 5. Comparison between numerical result of vegetation case (reed line), embankment case (blue 

line), and merged case (purple line) at time t = 30t0 (𝒂), 40t0 (𝒃), 50t0 (𝒄), 60t0 (𝒅), 70t0 (𝒆) where 

𝑡0 = √𝑔/𝑑. 

4   Conclusions 

The numerical model for investigating the effectiveness of embankment and vegetation on 

the reduction of the wave run-up has been elaborated. The model based on shallow water 

equations solved numerically using the staggered conservative scheme. The Manning friction is 

used to describe the influence of vegetation. To validate our numerical code in describing wave 

run-up phenomena, comparison with experimental data of Synolakis has been conducted. The 

results show that numerical results are in good agreement with the data. From the second 

numerical experiment, the existence of the vegetation can reduce 16.78 % of run-up height 

respect to the normal case. Whereas from the third simulation, the existence of the vegetation 

and embankment can reduce 5.79 % of run-up height respect to the embankment case. 

 



 

 

 

 

Acknowledgments. The authors acknowledge Riset Internal Politeknik Negeri Indramayu for 

funding this research. 

 

 

References 

 
[1] Adytia, D., Husrin, S., & Latifah, A. L. (2019).: Dissipation of Solitary Wave Due To Mangrove 

Forest: A Numerical Study by Using Non-Dispersive Wave Model. Indonesian Journal of Marine 

Sciences/Ilmu Kelautan, 24(1). 

[2] Gunawan, P. H. (2016, February).: Simulation of wave mitigation by coastal vegetation using 

smoothed particle hydrodynamics method. In Journal of Physics: Conference Series (Vol. 693, No. 1, 

p. 012013). IOP Publishing. 

[3] Altomare, C., Suzuki, T., Chen, X., Verwaest, T., & Kortenhaus, A. (2016).: Wave overtopping of 

sea dikes with very shallow foreshores. Coastal Engineering, 116, 236-257. 

[4] Suzuki, T., Altomare, C., Veale, W., Verwaest, T., Trouw, K., Troch, P., & Zijlema, M. (2017).: 

Efficient and robust wave overtopping estimation for impermeable coastal structures in shallow 

foreshores using SWASH. Coastal Engineering, 122, 108-123. 

[5] Fiedler, J. W., Smit, P. B., Brodie, K. L., McNinch, J., & Guza, R. T. (2018).: Numerical modeling 

of wave runup on steep and mildly sloping natural beaches. Coastal Engineering, 131, 106-113. 

[6] Synolakis, Costas Emmanuel.: The runup of solitary waves. Journal of Fluid Mechanics. Vol. 185, 

pp 523-545 (1987) 

[7] Adytia, D., Pudjaprasetya, S. R., & Tarwidi, D. (2019).: Modeling of wave run-up by using 

staggered grid scheme implementation in 1D Boussinesq model. Computational Geosciences, 1-19. 

[8] Iryanto, & Pudjaprasetya, S. R. (2017).: A Coupled Model for Wave Run-up Simulation. East Asian 

Journal on Applied Mathematics, 7(4), 728-740. 

[9] The NOAA Center for Tsunami Research.: Solitary wave on a canonical beach, 

http://nctr.pmel.noaa.gov/benchmark/Laboratory/Laboratory_CanonicalBathymetry/index.html, 

accessed on 10 September 2019. 

[10] Gunawan, P. H., & Lhébrard, X. (2015).: Hydrostatic relaxation scheme for the 1D shallow water-

Exner equations in bedload transport. Computers & Fluids, 121, 44-50.  

[11] S. R. Pudjaprasetya and I. Magdalena.: “Momentum conservative schemes for shallow water 

flows,” East Asian Journal on Applied Mathematics, vol. 4, pp. 152–165, 005 2014. 

[12] G. S. Stelling and S. A. Duinmeijer.: “A staggered conservative scheme for every froude number 

in rapidly varied shallow water flows,” International Journal for Numerical Methods in Fluids, vol. 43, 

no. 12, pp. 1329–1354, 2003. 

[13] G. Stelling and M. Zijlema.: “An accurate and efficient finite-difference algorithm for non-

hydrostatic free-surface flow with application to wave propagation,” International Journal for 

Numerical Methods in Fluids, vol. 43, no. 1, pp. 1–23, 2003. 


