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Abstract. In this paper, we will introduce some basic properties about convex function 

and quasiconvex fucnction on ℝ. Some comparison between properties of convex function 

and quasiconvex function will be presented also. Our results are quasiconvex function can 

be represented as monotone function either or at most as two combination of monotone 

functions, as consequences it is discontinuous mostly at countable points, and it is not 

differentiable at zero measure set only.  However the results are still fundamental, but we 

will learn as clear as we can. 
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1   Introduction 

Functional analysis is a branch of analysis in which among others are discussed about 

functions, function spaces, sequences, sequence spaces, series, convergence, metrics spaces, 

normed spaces, Hilbert spaces, operators, and general topology. 

In relation to the function space, researchers have drawn a lot of attention to study further, 

including the continuous function space ],[ baC and integrable function space ],[ baLp
are 

complete classical spaces, discussed by [1-2]. Other findings about the row space and function 

space put forward [3-7]. 

Specifically [4],[5] conducted a study related to the convex function in the Euclid space ℝ 

whose formation was motivated by a domain in the form of intervals at ℝ, then extended in sub-

sets in convex and linear convex sub norms in ℝ. Furthermore, it will be examined more deeply 

about the properties that apply to the convex function space and quasi-convex space. 

1.1   Research Methodology  

In study of convex and quasiconvex functions, we want to see the shape of convex and 

quasiconvex function as clear as we want. By surveying at locally points such as extreme points, 

we will get some unique properties. Some supporting theories related to locally points is 

presented below. 

   

Definition 1.  Let function f on ℝ ,  𝑥, 𝑦 ∈ ℝ and x < y.  We say that f is increasing if it satisfies 

the  
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inequalities 𝑓(𝑥) ≤ 𝑓(𝑦)  and f is descreasing if it satisfies the inequalities 𝑓(𝑥) ≥ 𝑓(𝑦). 

 

Definition 2. Let 𝐴 ⊆ ℝ and function 𝑓: 𝐴 → ℝ. Point 𝑥 ∈ 𝐴 is said to be a local minimum point 

if there is a Neighborhood 𝑁𝜖(𝑥) = (𝑥 − 𝜖, 𝑥 + 𝜖) such that  

𝑓(𝑥) ≤ 𝑓(𝑦) 

for every 𝑦 ∈ 𝑁𝜖(𝑥) ∩ 𝐴. 

 

Theorem 3 (Nested Intervals).  If 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛], 𝑛 ∈ ℕ is a nested sequence of closed bounded 

intervals, then there exist a number 𝑠 ∈  ℝ  such that 𝑠 ∈  𝐼𝑛  for all 𝑛 ∈ ℕ. 

 

Theorem 4(Mean Value Theorem). If function f continuouss on [𝑎, 𝑏]  and differentiable on 

(𝑎, 𝑏), than exis c in  (𝑎, 𝑏) such that    

𝑓′(𝑐) =  
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
. 

Theorem 5 (Taylor). Let  𝑛 ∈ ℕ, 𝐼 = [𝑎, 𝑏], 𝑎𝑛𝑑  𝑓: 𝐼 → ℝ  such that 𝑓, 𝑓′, 𝑓′′, … , 𝑓𝑛  

continuous on I and 𝑓𝑛+1 exist  on (𝑎, 𝑏). If 𝑥0 ∈ 𝐼  than  any  𝑥 ∈ 𝐼 there is  c between  x and  

𝑥0 such that  

𝑓(𝑥) = 𝑓(𝑥0) +  𝑓 ;(𝑥0)(𝑥 − 𝑥0) + 
𝑓′′(𝑥0)

2!
(𝑥 − 𝑥0)2 + ⋯ +

𝑓𝑛(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛

+ 
𝑓𝑛+1(𝑥0)

(𝑛 + 1)!
(𝑥 − 𝑥0)𝑛+1 

2   Result and Discussion 

2.1   Convex Function 

Definition 1. ( Convex function [1]). Function 𝑓 ∶ 𝐼 → ℝ is  convex  if 

   ( (1 ) ) ( ) (1 ) ( )f x y f x f y         

For any ,x y I , 𝛌∊ (0,1).  

Examples : 

1. 𝑓(𝑥) =  |𝑥| on ( , )   is convex. 

2. ( ) sing x x on 
 ,0

, is strictly convex.  

 

Definition 2.  Let  𝑓 ∶ 𝐼 → ℝ. Epigraf of function f is defined as 

    

𝑒𝑝𝑖(𝑓) = {(𝑥, 𝑦): 𝑥 𝜖 𝐼, 𝑦 ≥ 𝑓(𝑥)} 

 

Theorem 3.   Function f is convex if only if  𝑒𝑝𝑖(𝑓) is convex set  

Proof (⇐) Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑒𝑝𝑖(𝑓) . Since 𝑒𝑝𝑖(𝑓) is convex then  

𝛼(𝑥1, 𝑦1) + (1 − 𝛼)(𝑥2, 𝑦2) = (𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝛼𝑦1 + (1 − 𝛼)𝑦2) ∈ 𝑒𝑝𝑖(𝑓) for every 𝛼 ∈
[0,1].  



 

 

 

 

Let 𝑦1 = 𝑓(𝑥1) and 𝑦2 = 𝑓(𝑥2). The choice of 𝑦1 and 𝑦2 is valid since 

(𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)) ∈ 𝑒𝑝𝑖(𝑓). Then, 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2) ≥ 𝑓(𝛼(𝑥1) +  (1 −

𝛼)(𝑥2)).  

(⇒) Let f is a convex function, then 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦 ≤ 𝛼𝑓(𝑥)(1 − 𝛼)𝑓(𝑦)  for each 0 <  𝛼 <
1.  

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝑒𝑝𝑖(𝑓), then 𝑓(𝑥1)  ≤ 𝑦1 and 𝑓(𝑥2) ≤ 𝑦2, therefore for every 𝛼 ∈ [0,1] 
we have  

   𝛼𝑓(𝑥1)  ≤ 𝛼𝑦1 and (1 − 𝛼)𝑓(𝑥2) ≤ (1 − 𝛼)𝑦2 

According to f convergence, then 𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤  𝛼𝑦1 +  (1 − 𝛼)𝑦2. Therefore,  

(𝛼𝑥1 + (1 − 𝛼)𝑥2, 𝛼𝑦1 + (1 − 𝛼)𝑦2) ∈ 𝑒𝑝𝑖(𝑓). 

 

Theorem 4.  If function f is convex on open interval I then f  is continuous on I. 

Proof. Let 𝑥 ∈ 𝐼. We can choose 𝑁𝜖(𝑥) = (𝑥 − 𝜖, 𝑥 + 𝜖) such that 𝑁𝜖(𝑥) is proper subset of 𝐼. 

Since 𝑓 is convex then  

𝑔𝑥(𝑦) =
|𝑓(𝑦) − 𝑓(𝑥)|

|𝑦 − 𝑥|
 

is bounded on 𝑁𝜖

2
(𝑥). Let 𝑀𝜖 be the bound. So that |𝑓(𝑦) − 𝑓(𝑥)| ≤ 𝑀𝜖|𝑦 − 𝑥| for every 𝑦 ∈

𝑁𝜖

2
(𝑥). By taking limit 𝑦 → 𝑥, we have lim

y→x
|𝑓(𝑦) − 𝑓(𝑥)| = 0. 

 

Theorem 5. Every local minimum of convex function is a global minimum. 

Proof. Suppose that interval 𝐼 is the domain of convex function 𝑓. Let 𝑥 be local minimum. 

Then, there exist a neighborhood 𝑁𝜖(𝑥) = (𝑥 − 𝜖, 𝑥 + 𝜖) such that  

𝑓(𝑥) ≤ 𝑓(𝑦) 

for every 𝑦 ∈ 𝑁𝜖(𝑥) ∩ 𝐼. Let 𝑧 ∈ 𝐼 be any points outside of 𝑁𝜖(𝑥). Then there exist 𝑤 ∈ 𝑁𝜖(𝑥) ∩
𝐼 such that 𝑤 is between 𝑧 and 𝑥, thus 𝑤 = 𝛼𝑥 + (1 − 𝛼)𝑧 for some 𝛼 ∈ (0,1). Since 𝑓 is 

convex, then   

𝑓(𝑥) ≤ 𝑓(𝑤) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑧). 
Thus we have 𝑓(𝑥) ≤ 𝑓(𝑧). 

 

Theorem 6. Convex function  𝑓 ∶ 𝐼 → ℝ  has one-side partial derivative on 𝑖𝑛𝑡(𝐼). 

Proof. Since function f is convex, then for each 𝑥 ∈ 𝑖𝑛𝑡(𝐼) with 𝑦 <  𝑧 we have   
𝑓(𝑧) − 𝑓(𝑥)

𝑧 − 𝑥
 ≥

𝑓(𝑦) − 𝑓(𝑥)

𝑦 − 𝑥
 

This shows that the function 𝑔𝑥(𝑤) defined as 

𝑔𝑥(𝑤) =  
𝑓(𝑤) − 𝑓(𝑥)

𝑤 − 𝑥
 

is monotone on 𝑖𝑛𝑡(𝐼). Since monotone functions always have one side limit, then we have 

lim
𝑤→𝑥−

𝑔𝑥(𝑤)  and lim
𝑤→𝑥+

𝑔𝑥(𝑤) exists.                                                                                                                                     

 

Theorem 7. Let  𝑓 ∈ 𝐶2, then  f  convex on  ℝ  if only if  𝑓′′  ≥ 0. 

Proof. (⇒) Since f  is convex and 𝑓 ∈ 𝐶2 then 𝑓′ is increasing, therefore 𝑓′′  is non-negative. 

(⇐) Let 𝑥1, 𝑥2 be interior points of the domain of 𝑓, 𝑥1 ≠ 𝑥2. Suppose that 𝑡 ∈ (0,1) and 𝑥0 =
(1 − 𝑡)𝑥1 + 𝑡𝑥2 . By Taylor Theorem, there exists 𝑐1 between 𝑥0 and 𝑥1 such that  

𝑓(𝑥1) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥1 − 𝑥0) +  
𝑓′′(𝑐1)

2!
(𝑥1 − 𝑥0)2, 



 

 

 

 

and there exists 𝑐2 between 𝑥0 and 𝑥2 such that  

𝑓(𝑥2) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥2 − 𝑥0) +  
𝑓′′(𝑐2)

2!
(𝑥2 − 𝑥0)2 

Since 𝑓′′ is non-negative, then  

𝑅 =  
1

2
(1 − 𝑡)𝑓′′(𝑐1)(𝑥1 − 𝑥0)2 + 

1

2
𝑡𝑓′′(𝑐2) (𝑥2 − 𝑥0)2 

is non-negative. Therefore, 

(1 − 𝑡)𝑓(𝑥1) + 𝑡𝑓(𝑥2) ≥ 𝑓(𝑥0) + 𝑓′(𝑥0)((1 − 𝑡)(𝑥1 − 𝑥0) + 𝑡(𝑥2 − 𝑥0))                     

     ≥ 𝑓(𝑥0) + 𝑓′(𝑥0)((1 − 𝑡)𝑥1 + 𝑡𝑥2 − 𝑥0) 

     = 𝑓(𝑥0)                                                              

                                     = 𝑓((1 − 𝑡)𝑥1 + 𝑡𝑥2) 

 

Theorem 8.  Suppose that function f is continuous and differntiable  on ℝ, then  f is convex  on  

ℝ  if only if  

𝑓(𝑦) − 𝑓(𝑥) ≥ 𝑓′(𝑥)(𝑦 − 𝑥) 

For every 𝑥, 𝑦 ∈ ℝ. 

Proof. (⇒) Since 𝑓 is convex, we have 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) +  (1 − 𝛼)𝑓(𝑦). By mean 

value theorem, there exists 𝑐 between 𝑥 and 𝑦 such that 

𝑓′(𝑐) =  
𝑓(𝑦) − 𝑓(𝑥)

𝑦 − 𝑥
. 

Without loss of generality, let 𝑥 < 𝑐 < 𝑦.  Since 𝑓 is convex, we have 𝑓′(𝑐) ≥ 𝑓′(𝑥), therefore

  
𝑓(𝑦) − 𝑓(𝑥)

𝑦 − 𝑥
 ≥ 𝑓′(𝑥) or 𝑓(𝑦) − 𝑓(𝑥) ≥ 𝑓′(𝑥)(𝑦 − 𝑥). 

(⇐) Suppose that 𝑓(𝑦) − 𝑓(𝑥) ≥ 𝑓′(𝑥)(𝑦 − 𝑥). For every 𝑧 between 𝑥 and 𝑦, we have  

𝑓(𝑥) − 𝑓(𝑧) ≥ 𝑓′(𝑧)(𝑥 − 𝑧) 

and 

𝑓(𝑦) − 𝑓(𝑧) ≥ 𝑓′(𝑧)(𝑦 − 𝑧). 
Therefore,   

𝛼𝑓(𝑥) − 𝛼𝑓(𝑧) ≥ 𝛼𝑓′(𝑧)(𝑥 − 𝑧) 

and  

(1 − 𝛼)𝑓(𝑦) − (1 − 𝛼)𝑓(𝑧) ≥ (1 − 𝛼)𝑓′(𝑧)(𝑦 − 𝑧). 
As consequences, we have 

𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) − 𝑓(𝑧) ≥ 𝑓′(𝑧)(𝛼(𝑥 − 𝑧) + (1 − 𝛼)(𝑦 − 𝑧)) 

or 

𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ≥ 𝑓(𝑧) + 𝑓′(𝑧)(𝛼𝑥 + (1 − 𝛼)𝑦 − 𝑧) 

 

Choose 𝑧 =  𝛼𝑥 + (1 − 𝛼)𝑦  with 0 < 𝛼 < 1, then we have 

 

𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ≥  𝑓(𝑧) 

𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ≥ 𝑓( 𝛼𝑥 + (1 − 𝛼)𝑦).   
Therefore, f is a convex function 

 

2.2   Quasi-convex function 

 

Definition 9.  Real-valued function f on interval I is said to be quasi-convex if 
𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ max {𝑓(𝑥), 𝑓(𝑦)} 



 

 

 

 

For every 𝑥, 𝑦 ∈ 𝐼 and 𝛼 ∈ [0,1]. 
 

Theorem 10. Every local minimum of quasiconvex function 𝑓 is a global minimum or 

f is constant on a neighborhood 

  
Proof: Assume that 𝑥 be a local minimum but it is not constant on a neighborhood. Then there 

exists neighborhood 𝑁𝜖(𝑥) = (𝑥 − 𝜖, 𝑥 + 𝜖) such that  

𝑓(𝑥) < 𝑓(𝑦) 

for every 𝑦 ∈ 𝑁𝜖(𝑥). Otherwise, if there exists 𝑦 ≠ 𝑥 such that 𝑓(𝑥) = 𝑓(𝑦), then by 

quasiconvexity of 𝑓 we have 𝑓(𝑧) = 𝑓(𝑥) for every 𝑧 between 𝑥 and 𝑦, contradiction with 

assumption. 

Let 𝑤 is any point outside of 𝑁𝜖(𝑥), then we should have  

𝑓(𝑥) < 𝑓(𝑤). 
Otherwise, we have 𝑦 ∈ 𝑁𝜖(𝑥) such that 𝑓(𝑥) < 𝑓(𝑦) and 𝑓(𝑦) > 𝑓(𝑤), contradiction with 𝑓 

is quasiconvex. 

 

Theorem 11. Let   f quasi-convex on I,  then  𝑥 ∈  𝐼0 is a global minimum point if only if   f is 

decreasing  on (−∞, 𝑥] ∩ 𝐼  and increasing  on 𝐼 ∩ [𝑥, ∞).   

 

Proof: (⟹) Let 𝑥1, 𝑥2 ∈ (−∞, 𝑥] ∩ 𝐼   with 𝑥1 < 𝑥2 . Then, 𝑥2 =  𝛼𝑥1 + (1 − 𝛼)𝑥  which 𝛼 =

 
𝑥− 𝑥2

𝑥− 𝑥1
.  

 

Therefore,  

𝑓(𝑥2) ≤ max{𝑓(𝑥1), 𝑓(𝑥)} = 𝑓(𝑥1).  
Similarly for 𝑥1, 𝑥2 ∈  𝐼 ∩ [𝑥, ∞). 

 

(⟸)Since 𝑓(𝑦) ≥ 𝑓(𝑥)  for 𝑦 ≤ 𝑥 and 𝑦 ≥  𝑥, then 𝑥 is global minimum. 

  

Corollary 12. Let f  quasi-convex on  I  then  𝑥 ∈  𝐼0 is local minimum if only if  there  is  a  

neighborhood 𝑉(𝑥)  such that  f is decreasing on  (−∞, 𝑥] ∩ 𝑉(𝑥)  and increasing on 𝑉(𝑥)  ∩
[𝑥, ∞). 

 

Theorem 13. If f quasi-convex on  interval I, then f is monotone either or  there is  𝑡 ∈ 𝑖𝑛𝑡(𝐼) 

such that f is decreasing on (−∞, 𝑡] ∩ 𝐼  and increasing on  𝐼 ∩ [𝑡, ∞). 

 

Proof. Assume that function f is not monotone. Define 

  

𝑚 = 𝑖𝑛𝑓 {𝛼: |𝐿𝛼| > 0} 

with |𝐿𝛼|  is lebesgue measure of 𝐿𝛼. First, in case of f is bounded below, then there is 𝑀 such 

that 𝑓(𝑥) >  𝑀  for every 𝑥 ∈ 𝐼. Since  𝐿𝑀 = ∅ , thus |𝑚| < ∞. According to infimum 

properties, there is a sequence (𝑎𝑛 ) such that 𝑎𝑛 → 𝑚. By monotonic properties of 𝐿𝛼, we have 

𝐻 =  ⋂ 𝐿𝛼
̅̅ ̅ =  ⋂ 𝐿𝑎𝑛

̅̅ ̅̅̅

∞

𝑛=1𝛼>𝑚

. 

According to Nested Interval Theorem, we have 𝐻 ≠ ∅. 

For cases of f is not bounded below, then 𝐿𝛼 ≠ ∅  for each 𝛼. Then  



 

 

 

 

𝐻 =  ⋂ 𝐿𝛼
̅̅ ̅ =  ⋂ 𝐿−𝑛

̅̅ ̅̅ ̅

∞

𝑛=1𝛼∈ℝ

. 

 

Since quasiconvex function f is not monotone, then there are 𝑥1 , 𝑥2, 𝑥3  with 𝑥1  < 𝑥2 <
 𝑥3 such that 𝑓(𝑥1) > 𝑓( 𝑥2)  and (𝑥3) > 𝑓( 𝑥2) . Consequently, 𝐻 ⊆  𝐿𝑓(𝑥2) ⊂ ( 𝑥1, 𝑥3) ⊆

𝑖𝑛𝑡(𝐼). Thus 𝐻 is a bounded set. Therefore, 𝐿𝛼
̅̅ ̅ 𝑜𝑟 𝐿−𝑛

̅̅ ̅̅ ̅̅  are closed bounded interval for 𝑛 large 

enough. According to Nested Interval Theorem, 𝐻 ≠ ∅. 

 

Let 𝑡 ∈ 𝐻. Since 𝐻 ⊂  𝑖𝑛𝑡(𝐼), then 𝐼 ∩ (−∞, 𝑡) and 𝐼 ∩ (𝑡, ∞) are not empty. Take any 

𝑥, 𝑦 ∈  𝐼 with 𝑥 <  𝑦 <  𝑡. According to definition of 𝐻, we have  𝑡 ∈ �̅�𝑓(𝑥). Since 𝐿𝑓(𝑥) is an 

interval, thus �̅�𝑓(𝑥) is also an interval. Therefore, 𝑦 ∈ (𝑥, 𝑡) ⊆ 𝑖𝑛𝑡(𝐿𝑓(𝑥)). This shows that f is 

decreasing on I ∩(−∞,t). Similarly, 𝑓 is increasing on 𝐼 ∩ (𝑡, ∞).  

 

Next, by quasiconvexity of 𝑓, we have 𝑓 is decreasing on 𝐼 ∩ (−∞, 𝑡] and increasing on 

𝐼 ∩ [𝑡, ∞). Otherwise, there exists 𝑥1  ∈  𝐼 ∩ (−∞, 𝑡] and  𝑥2  ∈  𝐼 ∩ [𝑡, ∞) such that  𝑓(𝑡) >
𝑓(𝑥1)  and   𝑓(𝑡) > 𝑓(𝑥2), contradiction. 

                               

Theorem 5 stated that convex functions can be decomposed at most into two monotonous 

functions. According to Lebesgue theorem, the function is discontinuous only on countable set 

and not differentiable only on zero measure set.  

 

Corollary 14. If  f quasi-convex then  f only discontinuous on  countable set  and not 

differentiable on zero measure set. 

 

Corollary 15. Suppose that f is quasiconvex function, then f has one sided derivatives for every 

points. 

 

Proof. By Theorem 13, we have 𝑓 is at most can be decomposed as two monotone functions. 

Since monotone function always have one sided derivatives, as well as 𝑓. 

3   Conclusion 

According to definition of convex and quasi-convex functions on ℝ, several theorems have 

been acquired that can be seen in the Table 1. 

Table 1.  Theorems of convex and quasi-convex function on R. 

Convex Quasi-convex 

Every local minimum is a global minimum  Every local minimum is a global minimum 

or f is constant in an neighborhood 

f is convex if and only if 𝒆𝒑𝒊(𝒇) is convex set f is quasiconvex if and only if level set 𝐿𝛼 is 

convex set for every 𝛼 

f countinuous everywhere on interior of its domain 𝑓 continuous almost everywhere. 

Specifically, f is not continuous at countably 

many points only. 
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Has one sided derivatives at any points 

 

Has one sided derivatives at any points 

 

If function f is continuous and differentiated in ℝ, f 

is convex in ℝ if and only if  

𝒇(𝒙) − 𝒇(𝒚) ≥ 𝒇′(𝒙)(𝒚 − 𝒙) 

 

  f is quasi-convex on  interval I if only if f is 

monotone or  there is  𝑡 ∈ 𝐼 such that f is 

decreasing   on (−∞, 𝑥] ∩ 𝐼  and increasing 

on  𝐼 ∩ [𝑥, ∞).   

 

 Assume 𝒇 ∈ 𝑪𝟐, therefore f is convex if and only 

if 𝒇′′  ≥ 𝟎 

Lef 𝑓 ∈ 𝐶2, if 𝑓′′ ≥ 0 then f is quasiconvex 

 

Differentiable almost everywhere Differentiable almost everywhere 


