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Abstract. Introduced by Z. W. Birnbaum and W. Orlicz in 1931, Orlicz spaces are a 

generalization of the Lebesgue spaces. There are two kinds version of Orlicz spaces which 

are continuous Orlicz spaces denoted by 𝐿𝛷 and discrete Orlicz spaces denoted by ℓ𝛷. The 

properties of 𝐿𝛷 spaces are already known. The aim of this study is to discuss the properties 

of discrete Orlicz spaces. We will see that the properties of continuous Orlicz spaces are 

also valid in discrete Orlicz spaces. Methods in this research are by using the properties of 

Young function and Luxemburg Norm. The result of this research is to show that several 

properties of continuous Orlicz space are also valid in discrete Orlicz spaces. 
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1 Introduction  

Introduced by Z. W. Birnbaum and W. Orlicz in 1931, Orlicz spaces are a generalization 

of the Lebesgue spaces [1-4]. Many authors have discussed about Orlicz spaces [3-9]. In this 

paper, we are interested in studying the properties of discrete Orlicz spaces.  

First, let us recall the definition of the Young function. A function 𝛷: [0, ∞) → [0, ∞) is 

called Young function if 𝛷 is a convex, continuous, lim
𝑡→0

𝛷(𝑡) = 0 = 𝛷(0), and lim
𝑡→∞

𝛷(𝑡) = ∞. 

For 𝛷 is a Young function, we define 𝛷−1(𝑠) ≔ inf{𝑟 ≥ 0: 𝛷(𝑟) > 𝑠} for every 𝑠 ≥ 0. 

For 𝛷 is a Young function, the continuous Orlicz spaces 𝐿𝛷(ℝ𝑛) is set of measurable 

functions 𝑓: ℝ𝑛 → ℝ such that 

‖𝑓‖𝐿𝛷(ℝ𝑛) ≔ inf {𝑏 > 0: ∫ 𝛷 (
|𝑓(𝑥)|

𝑏
) 𝑑𝑥 ≤ 1

ℝ𝑛
}                                  (1) 

is finite [6]. Furthermore, space 𝐿𝛷(ℝ𝑛) is a Banach space [2, 10, 11]. Sometimes, other 

researchers also defined the continuous Orlicz spaces as follows: 

1 𝐿𝛷(ℝ𝑛) is a set of measurable functions 𝑓: ℝ𝑛 → ℝ such that 

∫ 𝛷(𝛼|𝑓(𝑥)|)𝑑𝑥 < ∞
ℝ𝑛

                                                      (2) 

for some 𝛼 > 0 [8, 11]. 

2 𝑳𝜱(ℝ𝒏) is a set of measurable functions 𝒇: ℝ𝒏 → ℝ such that 
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∫ 𝛷 (
|𝑓(𝑥)|

𝛼
)  𝑑𝑥

ℝ𝑛
≤ 1                                                            (3) 

for some 𝛼 > 0 [4]. 

Note that, we can prove that all definitions of continuous Orlicz spaces are equivalent. 

Furthermore, if 𝛷(𝑡) ≔ 𝑡𝑝 for some 𝑝 ≥ 1, then 𝐿𝛷(ℝ𝑛) = 𝐿𝑝(ℝ𝑛), the Lebesgue spaces of 𝑝-

the integrable functions on ℝ𝑛 [11]. So we can view the continuous Orlicz spaces as a 

generalization of the Lebesgue spaces.  

Now, we recall the definition of discrete Orlicz spaces. Let 𝛷 be a Young function. The 

discrete Orlicz spaces ℓ𝛷(ℤ𝑛) is the set of all sequences  𝑋 ≔ (𝑥𝑛): ℤ𝑛 → ℝ such that 

‖𝑋‖ℓ𝛷(ℤ𝑛) = inf {𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1} < ∞.                              (4) 

In this paper, we denote 𝐴 ≔ {𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
)∞

𝑘=1 ≤ 1}. So, we have ‖𝑋‖ℓ𝛷(ℤ𝑛) = inf 𝐴. 

Note that, if  𝛷(𝑡) = 𝑡𝑝, then we have ℓ𝛷(ℤ𝑛) = ℓ𝑝(ℤ𝑛). The discussion about Lebesgue spaces 

can be found in [12, 13].  

In 1989, Maligranda discussed the properties of Orlicz spaces [9]. Later in 2016, Masta et 

al. obtained sufficient and necessary conditions for inclusion relation between two Orlicz spaces 

and between two weak Orlicz spaces by using a different technique from Maligranda [6]. 

Moreover, they have found that two Orlicz spaces and two weak Orlicz spaces can be compared 

with respect to Young functions for any measurable set, although the Lebesgue space 𝐿𝑝 are not 

comparable with respect to the number 𝑝. Similar results about the inclusion properties of Orlicz 

spaces can be found in [14, 15]. Some properties of continuous Orlicz spaces, we gave as 

follows. 

Lemma 1.1. [2, 6] Let 𝛷 be a Young function and 𝑓 ∈ 𝐿𝛷(ℝ𝑛). If 0 < ‖𝑓‖𝐿𝛷(ℝ𝑛) < ∞, then 

∫ 𝛷 (
|𝑓(𝑥)|

‖𝑓‖𝛷(ℝ𝑛)
) 𝑑𝑥

ℝ𝑛
≤ 1.                                                      (5) 

Furthermore, ‖𝑓‖𝐿𝛷(ℝ𝑛) ≤ 1 if only if ∫ 𝛷 (
|𝑓(𝑥)|

‖𝑓‖𝛷(ℝ𝑛)
) 𝑑𝑥

ℝ𝑛 ≤ 1. 

Lemma 1.2. [2] Let 𝛷 be a Young function and 𝑓 ∈ 𝐿𝛷(ℝ𝑛). Then the following statements 

are equivalent. 

(1) ∫ 𝛷 (
|𝑓(𝑥)|

𝜖
) 𝑑𝑥

ℝ𝑛 ≤ 1 for every 𝜖 > 0. 

(2) ‖𝑓‖𝐿𝛷(ℝ𝑛) = 0.  

Lemma 1.3. [2] Let 𝛷 be a Young function and 𝑓 ∈ 𝐿𝛷(ℝ𝑛). Then the following statements 

are equivalent. 

(1) ∫ 𝛷(𝛼|𝑓(𝑥)|)𝑑𝑥
ℝ𝑛 = 0 for every 𝛼 > 0. 

(2) ‖𝑓‖𝐿𝛷(ℝ𝑛) = 0.  

Lemma 1.4. [6] Let 𝛷1, 𝛷2 be Young functions and some 𝐶 > 0. Then the following statements 

are equivalent. 

(1) 𝛷1(𝑡) ≤ 𝛷2(𝐶𝑡) for every 𝑡 > 0. 



 

 

 

 

(2) For every 𝑓 ∈ 𝐿𝛷2
(ℝ𝑛), we have 𝐿𝛷2

(ℝ𝑛) ⊆ 𝐿𝛷1
(ℝ𝑛) with ‖𝑓‖𝐿𝛷1

(ℝ𝑛) ≤

𝐶‖𝑓‖𝐿𝛷2
(ℝ𝑛). 

In this paper, we are interested in studying the properties of discrete Orlicz spaces. In 

connection with Lemmas 1.1, 1.2, 1.3, and 1.4, we shall prove the properties of discrete Orlicz 

spaces respect to Young function 𝛷. To obtain our result, we will use the properties of the Young 

function and Luxemburg Norm [2]. 

2 Results 

Now, we have already known some properties of continuous Orlicz spaces. For getting the 

result, we will apply these properties to discrete Orlicz spaces. First, we present several lemmas 

in the following. We will also prove that the mapping on discrete Orlicz spaces defines a norm 

on ℓ𝛷(ℤ𝒏). 

Lemma 2.1. If 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛) and ‖𝑋‖ℓ𝛷(ℤ𝑛) ≠ 0, then ∑ 𝛷 (
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛)
)∞

𝑘=1 ≤ 1. 

Proof. 

Let 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛) such that ‖𝑋‖ℓ𝛷(ℤ𝑛) ≠ 0 and take an arbitrary 𝜖 > 0, note that 

‖𝑋‖ℓ𝛷(ℤ𝑛) + 𝜖 is not a lower bound of the set 𝐴 ≔ {𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }, then there exists 

𝑏1 ∈ 𝐴 such that 𝑏1 ≤ ‖𝑋‖ℓ𝛷(ℤ𝑛) + 𝜖. Note that, 𝑏1 ≤ ‖𝑋‖ℓ𝛷(ℤ𝑛) + 𝜖 are equivalent to 
1

‖𝑋‖ℓ𝛷(ℤ𝑛)+𝜖
≤

1

𝑏1
. Since |𝑥𝑘| is nonnegative for every 𝑘 ∈  ℕ, we have 

|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛) + 𝜖
≤

|𝑥𝑘|

𝑏1

.                                                                 (6) 

Because 𝛷 is increasing, we have 𝛷 (
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛)+𝜖
) ≤ 𝛷 (

|𝑥𝑘|

𝑏1
) ≤ 1 for every 𝑘 ∈  ℕ. So we 

obtain equation 7. 

∑ 𝛷 (
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛) + 𝜖
)

∞

𝑘=1

≤ ∑ 𝛷 (
|𝑥𝑘|

𝑏1

)

∞

𝑘=1

≤ 1.                                           (7) 

Since the following inequality ∑ 𝛷 (
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛)+𝜖
)∞

𝑘=1 ≤ 1 is true for 𝜖 > 0, we can conclude that 

∑ 𝛷 (
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

≤ 1,                                                             (8) 

as desired. ∎ 

Lemma 2.2. Let 𝛷 be a Young function. Then the following statements are equivalent. 

(1) ∑ 𝛷(|𝑥𝑘|)∞
𝑘=1 ≤ 1.    

(2) ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 1 for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛).   

Proof. 



 

 

 

 

Suppose that (𝑎) holds, then we have ∑ 𝛷(|𝑥𝑘|)∞
𝑘=1 = ∑ 𝛷 (

|𝑥𝑘|

1
)∞

𝑘=1 ≤ 1. Therefore, 1 ∈ 𝐴 ≔

{𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }. So, ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 1. Now, suppose that (b) holds, then we have 

‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 1. Hence, we have equation 9 

|𝑥𝑘| ≤
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛)
.                                                         (9) 

Because 𝛷 is increasing, then we obtain equation 10 

∑ 𝛷(|𝑥𝑘|)

∞

𝑘=1

≤ ∑ 𝛷 (
|𝑥𝑘|

‖𝑋‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

≤ 1.                                 (10) 

Hence, we can conclude that 

∑ 𝛷(|𝑥𝑘|)

∞

𝑘=1

≤ 1. ∎                                                                (11) 

Lemma 2.3. Let 𝛷 be a Young function. Then the following statements are equivalent. 

(1) ∑ 𝛷 (
|𝑥𝑘|

𝜖
)∞

𝑘=1 ≤ 1 for every 𝜖 > 0. 

(2) ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0 for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛). 

Proof.  

Suppose that (𝑎) holds, then 𝜖 ∈ 𝐴 ≔ {𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 } for every 𝜖 > 0. Therefore, 

0 ≤ ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 𝜖 for any 𝜖 > 0. Consequently, we can conclude that ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0. Now, 

suppose that (b) holds. By contradiction, there exist 𝜖0 > 0 such that ∑ 𝛷 (
|𝑥𝑘|

𝜖0
)∞

𝑘=1 > 1, hence 

𝜖0 ∉ 𝐴. Take an arbitrary 𝑏1 ∈ 𝐴, then we have 𝑏1 ≠ 𝜖0. Therefore, ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 𝑏1. Next, we 

consider two cases. 

Case 1: if 𝑏1 < 𝜖0, then we have 
1

𝜖0
<

1

𝑏1
. Since |𝑥𝑘| is nonnegative for every 𝑘 ∈  ℕ, we have 

|𝑥𝑘|

𝜖0
<

|𝑥𝑘|

𝑏1
. Hence, we have equation 12 

∑ 𝛷 (
|𝑥𝑘|

𝜖0

)

∞

𝑘=1

< ∑ 𝛷 (
|𝑥𝑘|

𝑏1

)

∞

𝑘=1

≤ ∑ 𝛷 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1.                                (12) 

Observe equation 13, 

∑ 𝛷 (
|𝑥𝑘|

𝜖0

)

∞

𝑘=1

≤ ∑ 𝛷 (
|𝑥𝑘|

𝑏1

) ≤ 1

∞

𝑘=1

.                                          (13) 

Hence, we have ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 1. This contradicts with the fact that ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0. 



 

 

 

 

Case 2: if 𝑏1 > 𝜖0, then we have ‖𝑋‖ℓ𝛷(ℤ𝑛) ≥ 𝜖0 > 0 or we can see that 0 < ‖𝑋‖ℓ𝛷(ℤ𝑛). This 

contradicts with the fact that ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0. 

From case 1 and 2, we conclude that ∑ 𝛷 (
|𝑥𝑘|

𝜖
)∞

𝑘=1 ≤ 1 for every 𝜖 > 0. ∎ 

Lemma 2.4. Let 𝛷 be a Young function. Then the following statements are equivalent. 

(1) ∑ 𝛷(𝛼|𝑥𝑘|)∞
𝑘=1 = 0 for every 𝛼 > 0. 

(2) ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0 for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛). 

Proof. 

Suppose that (a) holds. Then ∑ 𝛷(𝛼|𝑥𝑘|)∞
𝑘=1 = 0 ≤ 1, then ∑ 𝛷 (

|𝑥𝑘|
1

𝛼

)∞
𝑘=1 = 0 ≤ 1. Hence, we 

can obtain 0 ≤ ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤
1

𝛼 
 for any 𝛼 > 0. So we can conclude that ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0. Now, 

suppose that (𝑏) holds. Observe that ∑ 𝛷(𝛼|𝑥𝑘|)∞
𝑘=1 = ∑ 𝛷 (𝜖

𝛼|𝑥𝑘|

𝜖
)∞

𝑘=1 . Because 𝛷 is a convex 

function, we have  

∑ 𝛷 (𝜖
𝛼|𝑥𝑘|

𝜖
)

∞

𝑘=1

≤ 𝜖 ∑ 𝛷 (
𝛼|𝑥𝑘|

𝜖
)

∞

𝑘=1

 

                             = 𝜖 ∑ 𝛷 (
|𝑥𝑘|

𝜖
𝛼

)

∞

𝑘=1

 

               ≤ 𝜖.   

Therefore, 0 ≤ ∑ 𝛷(𝛼|𝑥𝑘|)∞
𝑘=1 ≤ 𝜖. So, we can conclude that ∑ 𝛷(𝛼|𝑥𝑘|)∞

𝑘=1 = 0. ∎ 

Theorem 2.5. Let 𝛷 be a Young function. The mapping ‖ ∙ ‖ℓ𝛷(ℤ𝑛) defines a norm on ℓ𝛷(ℤ𝑛). 

Proof. 

Since ‖𝑋‖ℓ𝛷(ℤ𝑛) = inf {𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }, by definition of infimum, we have 

‖𝑋‖ℓ𝛷(ℤ𝑛) ≥ 0. Now, we will prove that ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0 if and only if 𝑋 = 0 for every 𝑋 ≔

𝑥𝑘 ∈ ℓ𝛷(ℤ𝑛) and 𝑘 ∈ ℕ. If 𝑋 = 0, then 𝑥𝑘 = 0 for every 𝑘 ∈ ℕ. Now, take an arbitrary 𝑏 > 0. 

So, we have 
|𝑥𝑘|

𝑏
= 0.  Because 𝛷 is increasing, we have 𝛷 (

|𝑥𝑘|

𝑏
) = 𝛷(0) = 0. Hence, 

∑ 𝛷 (
|𝑥𝑘|

𝑏
)∞

𝑘=1 = 0. By the definition of norm, we have ‖𝑋‖ℓ𝛷(ℤ𝑛) ≤ 𝑏 for every 𝑏 ≥ 0. 

Consequently, we have ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0. Now, let ‖𝑋‖ℓ𝛷(ℤ𝑛) = 0. By Lemma 2.4, we have 

∑ 𝛷(𝛼|𝑥𝑘|)∞
𝑘=1 = 0 for 𝛼 > 0. Since 𝛷 is a non-negative function, then 𝛷(𝛼|𝑥𝑘|) = 0, for 

every 𝑘 ∈ ℕ. We know that 𝛷(𝛼|𝑥𝑘|) = 0 when 𝛼|𝑥𝑘| = 0. Since 𝛼 > 0, then 𝑥𝑘 = 0 for every 

𝑘 ∈ ℕ. So we can conclude that 𝑋 = 0. Now, we will prove that ‖𝛼𝑋‖ℓ𝛷(ℤ𝑛) = |𝛼|‖𝑋‖ℓ𝛷(ℤ𝑛) 

for every 𝑋 ≔ 𝑥𝑘 ∈ ℓ𝛷(ℤ𝑛), 𝑘 ∈ ℕ, and 𝛼 ∈ ℝ. We consider two cases. 

Case 1: for 𝛼 ≠ 0 (setting 𝑐 =
𝑏

|𝛼|
). Observe equation 15. 

‖𝛼𝑋‖ℓ𝛷(ℤ𝑛) = inf {𝑏 > 0: ∑ 𝛷 (
|𝛼𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }  



 

 

 

 

                       = inf {𝑏 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑏
|𝛼|

) ≤ 1∞
𝑘=1 }  

                       = inf {𝑐|𝛼| > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑐
) ≤ 1∞

𝑘=1 }     

                       = |𝛼| inf {𝑐 > 0: ∑ 𝛷 (
|𝑥𝑘|

𝑐
) ≤ 1∞

𝑘=1 }  

                                      = |𝛼|‖𝑋‖ℓ𝛷(ℤ𝑛).                                                                            (15) 

Case 2: for 𝛼 = 0. Observe that for every 𝑋 ≔ 𝑥𝑘 ∈ ℓ𝛷(ℤ𝑛), we have equation 16 

‖𝛼𝑋‖ℓ𝛷(ℤ𝑛) = ‖0‖ℓ𝛷(ℤ𝑛) = 0 = 0‖𝑋‖ℓ𝛷(ℤ𝑛) = 𝛼‖𝑋‖ℓ𝛷(ℤ𝑛).                               (16) 

Hence, from case 1 and 2, we can conclude that ‖𝛼𝑋‖ℓ𝛷(ℤ𝑛) = |𝛼|‖𝑋‖ℓ𝛷(ℤ𝑛) for every 𝑋 ≔

𝑥𝑘 ∈ ℓ𝛷(ℤ𝑛), 𝑘 ∈ ℕ, and 𝛼 ∈ ℝ. 

Next, we will prove that ‖𝑋1 + 𝑋2‖ℓ𝛷(ℤ𝑛) ≤ ‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛), for every 𝑋1, 𝑋2 ∈

ℓ𝛷(ℤ𝑛) with 𝑋1 ≔ 𝑥𝑘1
, 𝑋2 ≔ 𝑥𝑘2

, and 𝑘 ∈ ℕ. 

Let 𝑋1, 𝑋2 ∈ ℓ𝛷(ℤ𝑛) with 𝑋1 ≔ 𝑥𝑘1
, 𝑋2 ≔ 𝑥𝑘2

 for every 𝑘 ∈ ℕ. So, we have 

∑ 𝛷 (
|𝑥𝑘1

+ 𝑥𝑘2
|

ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

 

≤ ∑ 𝛷 (
|𝑥𝑘1

| + |𝑥𝑘2
|

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

 

 

= ∑ 𝛷 (
|𝑥𝑘1

|

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
+

|𝑥𝑘2
|

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

 

= ∑ 𝛷 (
‖𝑥1‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)

|𝑥𝑘1
|

‖𝑋1‖ℓ𝛷(ℤ𝑛)
+

‖𝑥2‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)

|𝑥𝑘2
|

‖𝑋2‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

 

≤
‖𝑋1‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
∑ 𝛷 (

|𝑥𝑘1
|

‖𝑋1‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

+
‖𝑋2‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
∑ 𝛷 (

|𝑥𝑘2
|

‖𝑋2‖ℓ𝛷(ℤ𝑛)
)

∞

𝑘=1

 

≤
‖𝑋1‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
+

‖𝑋2‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
 

=
‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)

‖𝑋1‖ℓ𝛷(ℤ𝑛) + ‖𝑋2‖ℓ𝛷(ℤ𝑛)
 

= 1.  

By definition of ‖𝑋1 + 𝑋2‖ℓ𝛷(ℤ𝑛) for every 𝑋1, 𝑋2 ∈ ℓ𝛷(ℤ𝑛) with 𝑋1 ≔ 𝑥𝑘1
, 𝑋2 ≔ 𝑥𝑘2

, and 𝑘 ∈

ℕ, we have equation 17 



 

 

 

 

‖𝑥1 + 𝑥2‖ℓ𝛷(ℤ𝑛) ≤ ‖𝑥1‖ℓ𝛷(ℤ𝑛) + ‖𝑥2‖ℓ𝛷(ℤ𝑛).                                      (17) 

So, the mapping ‖ ∙ ‖ℓ𝛷(ℤ𝑛) defines a norm on ℓ𝛷(ℤ𝑛). ∎  

Theorem 2.6. Let 𝛷1, 𝛷2 be Young functions. If 𝛷1(𝑡) ≤ 𝐶𝛷2(𝑡) for every t > 0 and some 

𝐶 > 0, then ‖𝑋‖ℓ𝛷1(ℤ𝑛) ≤ 𝑚𝑎𝑥{1, 𝐶} ‖𝑋‖ℓ𝛷2(ℤ𝑛) for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛). 

Proof. 

Let 𝐴1 ≔ {𝑏 > 0: ∑ 𝛷1 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 } and 𝐴2 ≔ {𝑏 > 0: ∑ 𝛷2 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }. Hence, we have  

‖𝑋‖ℓ𝛷1
(ℤ𝑛) = inf 𝐴1 and ‖𝑋‖ℓ𝛷2

(ℤ𝑛) = inf 𝐴2. Because 𝛷1 (
|𝑥𝑘|

𝑏
) ≤ 𝐶𝛷2 (

|𝑥𝑘|

𝑏
) is true for every 

𝑘 ∈ ℕ, then we have equation 18 

∑ 𝛷1 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 𝐶 ∑ 𝛷2 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

.                                         (18) 

Now, we consider two cases. 

Case 1: for 0 < 𝐶 ≤ 1. Observe equation 19 

∑ 𝛷1 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ ∑ 𝛷2 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1.                                         (19) 

Since 𝑏 ∈ 𝐴2 implies 𝑏 ∈ 𝐴1, so we have 𝐴2 ⊆ 𝐴1. Thus, inf 𝐴1 ≤ inf 𝐴2. So, we have 

‖𝑋‖ℓ𝛷1
(ℤ𝑛) ≤ ‖𝑋‖ℓ𝛷2

(ℤ𝑛). 

Case 2: for 𝐶 > 1. Observe equation 20 

∑ 𝛷1 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 𝐶 ∑ 𝛷2 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

.                                       (20) 

Therefore to be equation 21 

∑ 𝛷1 (

1
𝐶

|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤
1

𝐶
∑ 𝛷1 (

|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ ∑ 𝛷2 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1.                   (21) 

Note that for 𝑏 ∈ 𝐴2 imply to equation 22 

∑ 𝛷1 (

1
𝐶

|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1.                                               (22) 



 

 

 

 

Now, let 𝐴3 ≔ {𝑏 > 0: ∑ 𝛷1 (
1

𝐶
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }. Hence, 𝑏 ∈ 𝐴2 implies 𝑏 ∈ 𝐴3. Because inf 𝐴3 ≤

inf 𝐴2, we have ‖
1

𝐶
𝑋‖

ℓ𝛷1
(ℤ𝑛)

≤ ‖𝑋‖ℓ𝛷2
(ℤ𝑛). Because 𝑐 > 1, we have 

1

𝐶
‖𝑋‖ℓ𝛷1

(ℤ𝑛) ≤

‖𝑋‖ℓ𝛷2
(ℤ𝑛). Consequently, we have ‖𝑋‖ℓ𝛷1

(ℤ𝑛) ≤ 𝐶‖𝑋‖ℓ𝛷2
(ℤ𝑛). 

So, we can conclude that for 𝐶 > 0, if 𝛷1 (
|𝑥𝑘|

𝑏
) ≤ 𝐶𝛷2 (

|𝑥𝑘|

𝑏
), then we have ‖𝑋‖ℓ𝛷1

(ℤ𝑛) ≤

𝐷‖𝑋‖ℓ𝛷2
(ℤ𝑛), with 𝐷 ≔ max{1, 𝐶} for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛). ∎ 

Theorem 2.7. Let 𝛷1, 𝛷2 be Young functions. If 𝛷1(𝑡) ≤ 𝛷2(𝐶𝑡) for every 𝑡 > 0 and some 

𝐶 > 0, then ‖𝑋‖ℓ𝛷1(ℤ𝑛) ≤ 𝐶‖𝑋‖ℓ𝛷2(ℤ𝑛) for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛). 

Proof. 

Let 𝐴1 ≔ {𝑏 > 0: ∑ 𝛷1 (
|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 } and 𝐴2 ≔ {𝑏 > 0: ∑ 𝛷2 (
𝐶|𝑥𝑘|

𝑏
) ≤ 1∞

𝑘=1 }. Hence, we 

have ‖𝑋‖ℓ𝛷1
(ℤ𝑛) = inf 𝐴1 and ‖𝐶𝑋‖ℓ𝛷2

(ℤ𝑛) = inf 𝐴2. Because 𝛷1 (
|𝑥𝑘|

𝑏
) ≤ 𝛷2 (

𝐶|𝑥𝑘|

𝑏
) is true for 

every 𝑘 ∈ ℕ, then we have equation 23 

∑ 𝛷1 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ ∑ 𝛷2 (
𝐶|𝑥𝑘|

𝑏
)

∞

𝑘=1

.                                       (23) 

If 𝑏 ∈ 𝐴2, then we have equation 24 

∑ 𝛷1 (
|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ ∑ 𝛷2 (
𝐶|𝑥𝑘|

𝑏
)

∞

𝑘=1

≤ 1,                                  (24) 

which implies 𝑏 ∈ 𝐴1. So we have 𝐴2 ⊆ 𝐴1. Thus, inf 𝐴1 ≤ inf 𝐴2. So, we have ‖𝑋‖ℓ𝛷1
(ℤ𝑛) ≤

‖𝐶𝑋‖ℓ𝛷2
(ℤ𝑛). Since 𝐶 is an arbitrary positive real number, we can conclude that ‖𝑋‖ℓ𝛷1

(ℤ𝑛) ≤

‖𝐶𝑋‖ℓ𝛷2
(ℤ𝑛) = 𝐶‖𝑋‖ℓ𝛷2

(ℤ𝑛) for every 𝑋 ≔ (𝑥𝑘) ∈ ℓ𝛷(ℤ𝑛) Furthermore, we have ℓ𝛷2
(ℤ𝑛) ⊆

ℓ𝛷1
(ℤ𝑛). ∎ 

Remark.  

Theorems 2.6 and 2.7 are often called as the sufficient condition for inclusion properties of 

discrete Orlicz spaces. Analog results for other properties of Orlicz spaces can be found in [1, 

5, 6, 8, 12, 14, 15, 16]. 

3 Conclusion 

We have shown the properties of discrete Orlicz spaces. The discrete Orlicz spaces are a 

generalization of 𝒑-summable sequence spaces in [11]. From Lemmas 2.1, 2.2, 2.3, 2.4, and 

Theorem 2.5, we can see that several properties of continuous Orlicz spaces are also true for 

discrete Orlicz spaces. In the proof of our results, we used the properties of Young function and 

Luxemburg norm in discrete Orlicz spaces. Furthermore, we also obtain sufficient conditions 

for the inclusion properties of discrete Orlicz spaces as presented in Theorems 2.6 and 2.7. 
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