
The Efficient Multiplier GF(2^(8)) is Formed by The 
NAYK Algorithm 

Muhamad Nursalman1, Arif Sasongko2 

{mnursalman@upi.edu1, asasongko@stei.itb.ac.id2} 

Department of Computer Science Education, FPMIPA, Universitas Pendidikan Indonesia1  

School of Electronics and informatics Engineering, Institut Teknologi Bandung2 

Abstract. The efficient multiplier in Finite Field is needed in its implementation in the 
cryptography field. The NAIK algorithm provides fast steps and efficient solutions in 
forming the desired multiplier. The formation of an efficient multiplier GF(2^8) will be 
formed with the NAYK algorithm without being constructed from the smallest values, but 
directly from the value 8 itself. In comparison the NAYK algorithm provides a more 
efficient solution. 

Keywords: Efficient multiplier, Finite field, GF(2^8), NAYK algorithm, Generalization 
of karatsuba algorithm 

1   Introduction 

This research developed two methods, these are the methods to reduce of sum of 
multiplication and to find solution for all formula by exhaustive search. Both the development 
of formula and algorithm that if executed one by one in the process of reducing the 
multiplication does not give better results, due to the constraints of the selection of products to 
be combined quite difficult [4], especially for large n, moreover the memory size is bounded 
and processing time is very long. But if we combine both and by utilizing the properties of 
algebra which appeared in the multiplication of polynomials in GF(2n), then both the 
development of formula and algorithm give the process much better than the research that has 
been done [3,5-9,]. In addition, when compared with the previous researches [3,5,9], the 
combination of both formula and algorithm provides a process much easier. 

2 Related Research and Theory 

2. 1 Algorithm of Karatsuba Improved by Christof Paar 

The formula in polynomial with degree (n-1) [1,2], then calculate 

 

MSCEIS 2019, October 12, Bandung, Indonesia
Copyright © 2020 EAI
DOI 10.4108/eai.12-10-2019.2296349

mailto:mnursalman@upi.edu
mailto:asasongko@itb.ac.id


 

 

 

 

𝐷𝐷(𝑗𝑗, 𝑘𝑘) = (𝑎𝑎(𝑗𝑗) + 𝑎𝑎(𝑘𝑘))(𝑏𝑏(𝑗𝑗) + 𝑏𝑏(𝑘𝑘)) 

 

and 

 

 

𝐷𝐷(𝑖𝑖) = 𝑎𝑎(𝑖𝑖)𝑏𝑏(𝑖𝑖) 
 

 Hence the polynomial formula can be calculated like below 

 

𝑐𝑐′(𝑖𝑖) = �𝐷𝐷(𝑗𝑗, 𝑘𝑘)
𝑗𝑗,𝑘𝑘

−��𝐷𝐷 �
𝑖𝑖
2
� + 𝐷𝐷(𝑘𝑘) + 𝐷𝐷(𝑗𝑗)�

𝑗𝑗,𝑘𝑘

, 

 

for i is even, 

 

𝑐𝑐′(𝑖𝑖) = �𝐷𝐷(𝑗𝑗, 𝑘𝑘)
𝑗𝑗,𝑘𝑘

−�(𝐷𝐷(𝑘𝑘) + 𝐷𝐷(𝑗𝑗))
𝑗𝑗,𝑘𝑘

, 

 

 for i is odd, and 

 

𝑐𝑐’(0) = 𝐷𝐷(0) 

 

𝑐𝑐′(2𝑛𝑛 − 2) = 𝐷𝐷(𝑛𝑛 − 1) 

 

 

Moreover, multiplier for Finite Field GF((2^n)^4) for equation n = 4,  

Paar changed it like in [2,7,10,11]. 

 

Take 



 

 

 

 

 

𝐴𝐴(𝑥𝑥) = 𝑎𝑎(0)𝑥𝑥0 + ⋯+ 𝑎𝑎(3)𝑥𝑥3;  𝐴𝐴 ∈ 𝐺𝐺𝐺𝐺((2𝑛𝑛)4);  𝑎𝑎𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(2𝑛𝑛) 

 

and  

 

𝐵𝐵(𝑥𝑥) = 𝑏𝑏(0)𝑥𝑥0 + ⋯+ 𝑏𝑏(3)𝑥𝑥3;  𝐵𝐵 ∈ 𝐺𝐺𝐺𝐺((2𝑛𝑛)4);  𝑏𝑏𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺(2𝑛𝑛) 

 

and 

 

𝐶𝐶 = 𝐴𝐴𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃 

 

 

Moreover, Paar modified it into 

 

𝑐𝑐′(3) = 𝐷𝐷(0) + 𝐷𝐷(1) 

              +𝐷𝐷(2) + 𝐷𝐷(3) 

              +𝐷𝐷(0,1) + 𝐷𝐷(0,2) 

              +𝐷𝐷(1,3) + 𝐷𝐷(2,3) 

                +(𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3)(𝑏𝑏0 + 𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3)                                                                

      

where 

 

 

𝐷𝐷(0) = 𝑎𝑎(0)𝑏𝑏(0) 

𝐷𝐷(1) = 𝑎𝑎(1)𝑏𝑏(1) 

𝐷𝐷(2) = 𝑎𝑎(2)𝑏𝑏(2) 

𝐷𝐷(3) = 𝑎𝑎(3)𝑏𝑏(3) 



 

 

 

 

𝐷𝐷(0,1) = (𝑎𝑎(0) + 𝑎𝑎(1))(𝑏𝑏(0) + 𝑏𝑏(1)) 

𝐷𝐷(0,2) = (𝑎𝑎(0) + 𝑎𝑎(2))(𝑏𝑏(0) + 𝑏𝑏(2)) 

𝐷𝐷(1,3) = (𝑎𝑎(1) + 𝑎𝑎(3))(𝑏𝑏(1) + 𝑏𝑏(3)) 

𝐷𝐷(2,3) = (𝑎𝑎(2) + 𝑎𝑎(3))(𝑏𝑏(2) + 𝑏𝑏(3)) 

𝐷𝐷(2,3) = (𝑎𝑎(2) + 𝑎𝑎(3))(𝑏𝑏(2) + 𝑏𝑏(3)) 

 

 

Now the number of multiplications has changed from ten to nine. But Paar did not explain 
the process of the reduction. But several researches [12,13] has discussed of modulo process. 
The results use to build for another multiplication for n bigger than 7 [3,7].  

2.2 Montgomery Multiplier 

Multiplier for n = 5, 6 and 7 has developed by Montgomery. For example, this is multiplier 
for n = 6 [3]. 

 

Write that 

 

𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 = (𝑎𝑎0 + 𝑎𝑎1)(𝑏𝑏0 + 𝑏𝑏1) − 𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1 

 

and 

 

(𝑎𝑎1𝑋𝑋 + 𝑎𝑎0)(𝑏𝑏1𝑋𝑋 + 𝑏𝑏0) = 𝑎𝑎1𝑏𝑏1𝑋𝑋2 + (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0)𝑋𝑋 + 𝑎𝑎0𝑏𝑏0 

 

Hence it can be written as follows 

 

(𝑎𝑎1𝑋𝑋 + 𝑎𝑎0)(𝑏𝑏1𝑋𝑋 + 𝑏𝑏0) = 𝑎𝑎1𝑏𝑏1𝑋𝑋2 + �(𝑎𝑎0 + 𝑎𝑎1)(𝑏𝑏0 + 𝑏𝑏1) − 𝑎𝑎0𝑏𝑏0 − 𝑎𝑎1𝑏𝑏1�𝑋𝑋 + 𝑎𝑎0𝑏𝑏0                                               
                                                   = 𝑎𝑎1𝑏𝑏1(𝑋𝑋2 − 𝑋𝑋) 

                                         +(𝑎𝑎0 + 𝑎𝑎1)(𝑏𝑏0 + 𝑏𝑏1)𝑋𝑋 

                                                       +𝑎𝑎0𝑏𝑏0(1 − 𝑋𝑋) 



 

 

 

 

 

Hence for n = 3, the equation is 

 

(𝑎𝑎2𝑋𝑋2 + 𝑎𝑎1𝑋𝑋 + 𝑎𝑎0)(𝑏𝑏2𝑋𝑋2 + 𝑏𝑏1𝑋𝑋 + 𝑏𝑏0) 
= 𝑎𝑎0𝑏𝑏0(𝐾𝐾 + 1 − 𝑋𝑋 − 𝑋𝑋2) 
+𝑎𝑎1𝑏𝑏1(𝐾𝐾 − 𝑋𝑋 + 𝑋𝑋2 − 𝑋𝑋3) 
+𝑎𝑎2𝑏𝑏2(𝐾𝐾 − 𝑋𝑋2 − 𝑋𝑋3 + 𝑋𝑋4) 
+(𝑎𝑎0 + 𝑎𝑎1)(𝑏𝑏0 + 𝑏𝑏1)(−𝐾𝐾 + 𝑋𝑋) 
+(𝑎𝑎0 + 𝑎𝑎2)(𝑏𝑏0 + 𝑏𝑏2)(−𝐾𝐾 + 𝑋𝑋2) 
+(𝑎𝑎1 + 𝑎𝑎2)(𝑏𝑏1 + 𝑏𝑏2)(−𝐾𝐾 + 𝑋𝑋3) 
+(𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2)(𝑏𝑏0 + 𝑏𝑏1 + 𝑏𝑏2)𝐾𝐾 

 

The multiplication number has changed from nine to six, where K = X2, and it make 
multiplier more efficient. Moreover, the formula uses to construct for the multipliers for n = 5, 
6, and 7, where the result of the big O function can be seen in [3]. The results are more efficient 
than the previous multiplier. But Montgomery called it the division-free formula, because it was 
very hard to construct for each multiplier, particularly for n = 7. 

3 Method 

3.1 Algorithm of NAYK 

Algorithm of NAYK [14] integrate the methods of development of GKA and the exhaustive 
search algorithm above, where both are mutually supportive of each other. The development of 
GKA serves to identify some joint products into a solution and which would not be the solution 
in equation C. This method reduce the number of multiplication in D matrix, then automatically 
it will cut down of the rows of the D matrix. In addition to this algorithm, not all possible 
combinations that appeared to be calculated, but through proper identification, just only a few 
equation needs to be solved. Hence this algorithm can reduce amount of equation to be solved, 
and also make it more faster. Here is how the NAYK Algorithm works. 

 

1. Determine the value of n 
2. Create a C' matrix 
3. Find the (best) solution for c’(n-2), c’(n-1), and c’(n) 
4. Identify the elements that are the solution in C' from points 2 and 3 (this is called the 

C’_solution1 matrix) 
5. Identify the elements that are not the solution in C' (this is called the C'_resolution 

matrix) 



 

 

 

 

6. Create a D matrix 
7. Create a new D matrix by means of 

D_new = D - (C’_solution1 + C’_solution) 
8. Choose the combination of elements from the elements of the C‘_solution1 matrix 

and the new D_ matrix to be the solution to the equation c‘(i), i = 0, 1, 2, ..., n-1. 
9. For each combination of elements selected then match with c‘(i), for a particular i, 

with i = 0, 1, 2, ..., n-1. 
10. Select the solution with O (n) ≤ n ^ log2 (3). 

4 Result and Discussion 

In this section, we will describe the results obtained on the steps in the above methods and 
discuss them one by one. Then the results will be compared with existing research. 

4.1 Improving Formula better than Paar Algorithm in GF(2n) 

This will show how to construct the formula better than Paar algorithm. 

 

𝑐𝑐0′ = 𝑎𝑎0𝑏𝑏0 
𝑐𝑐1′ = 𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0 
𝑐𝑐2′ = 𝑎𝑎0𝑏𝑏2 + 𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏0 
𝑐𝑐3′ = 𝑎𝑎0𝑏𝑏3 + 𝑎𝑎1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏1 + 𝑎𝑎3𝑏𝑏0 
⋮ 
𝑐𝑐𝑚𝑚−1
′ = 𝑎𝑎0𝑏𝑏𝑚𝑚−1 + 𝑎𝑎1𝑏𝑏𝑚𝑚−2 + ⋯+ 𝑎𝑎𝑚𝑚−2𝑏𝑏1 + 𝑎𝑎𝑚𝑚−1𝑏𝑏0 
𝑐𝑐𝑚𝑚′ = 𝑎𝑎1𝑏𝑏𝑚𝑚−1 + 𝑎𝑎2𝑏𝑏𝑚𝑚−2 + ⋯+ 𝑎𝑎𝑚𝑚−2𝑏𝑏2 + 𝑎𝑎𝑚𝑚−1𝑏𝑏1 
⋮ 
𝑐𝑐2𝑚𝑚−4
′ = 𝑎𝑎𝑚𝑚−3𝑏𝑏𝑚𝑚−1 + 𝑎𝑎𝑚𝑚−2𝑏𝑏𝑚𝑚−2 + 𝑎𝑎𝑚𝑚−1𝑏𝑏𝑚𝑚−3 
𝑐𝑐2𝑚𝑚−3
′ = 𝑎𝑎𝑚𝑚−2𝑏𝑏𝑚𝑚−1 + 𝑎𝑎𝑚𝑚−1𝑏𝑏𝑚𝑚−2 

                       𝑐𝑐2𝑚𝑚−2
′ = 𝑎𝑎𝑚𝑚−1𝑏𝑏𝑚𝑚−1  

 

or it can write as follows 

 

𝑐𝑐0′ = 𝑎𝑎0𝑏𝑏0 
𝑐𝑐1′ = (𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0) 
𝑐𝑐2′ = (𝑎𝑎0𝑏𝑏2 + 𝑎𝑎2𝑏𝑏0) + 𝑎𝑎1𝑏𝑏1 
𝑐𝑐3′ = (𝑎𝑎0𝑏𝑏3 + 𝑎𝑎3𝑏𝑏0) + (𝑎𝑎1𝑏𝑏2 + 𝑎𝑎2𝑏𝑏1) 
⋮

 

 



 

 

 

 

If m-1 is odd, then 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

1 0 1 1 0 1 2 2 1 2 1 / 2 2 / 2 1

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

2 2

m m m m m m m m m

m m m m m m m m m

m m

c a b a b a b a b a b a b

c a b a b a b a b a b a b

a b

− − − − − − −

− − − − − + + −

′ = + + + + + +

′ = + + + + + +

+



  

 

If m-1 is even, then 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( )
( )

1 0 1 1 0 1 2 2 1 3 2 1 2 1 2 3 2

1 2 1 2

1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2

2 4 3 1 1 3 2 2

2 3 2 1 1 2

2 2 1 1

m m m m m m m m m

m m

m m m m m m m m m

m m m m m m m

m m m m m

m m m

c a b a b a b a b a b a b

a b

c a b a b a b a b a b a b

c a b a b a b

c a b a b
c a b

− − − − − − + + −

− −

− − − − − + + −

− − − − − − −

− − − − −

− − −

′ = + + + + + +

+

′ = + + + + + +

′ = + +

′ = +

′ =






 

 

Suppose  

 

i i ia b D=  and ( )( ) ,i j i j i ja a b b D+ + = , 

 

then  

 

( )( )

( )
,

,

i j i j i j i j i i j j

i j i j

i j i j

a b a b a a b b a b a b

D D D

D D D

+ = + + − −

= − −

= − +

 

 



 

 

 

 

Then it can be written as follows 

 

( )
( ) ( )

0 0

1 0,1 0 1

2 0,2 1 0 2

3 0,3 1,2 0 3 1 2

c D
c D D D

c D D D D

c D D D D D D

′ =
′ = − −

′ = + − +

′ = + − + − +



 

 

If 1 {1,3,5,...},m − ∈  then 

 

( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( )( )

1 0, 1 1, 2 2 1, / 2 0 1 1 2

2 1 / 2

1, 1 2, 2 / 2 1 1 2 22 2, 2 2

2 2 2 2

m m m m m m m

m m

m m m m m mm m

m m

c D D D D D D D

D D

c D D D D D D D D

D D

− − − − − −

−

− − − −− +

− +

′ = + + + − + − +

− − +

′ = + + + + − + − + −

− +





 



 

 

If 1 {2,4,6,...},m − ∈  then 

 

 

 

 

( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( )

( )
( )

1 0, 1 1, 2 0 1 1 23 2, 1 2 1 2

3 2 1 2

1, 1 2, 2 1 1 2 21 2, 1 2

1 2 1 2

2 4 3, 1 2 3 1

2 3 2, 1 2 1

2 2 1      

m m m m mm m m

m m

m m m m mm m

m m

m m m m m m

m m m m m

m m

c D D D D D D D D

D D

c D D D D D D D

D D

c D D D D

c D D D
c D

− − − − −− + −

− +

− − − −− +

− +

− − − − − −

− − − − −

− −

′ = + + + + − + − + −

− +

′ = + + + − + − + −

− +

′ = + − +

′ = − +

′ =

 

 



                                                                                                                           



 

 

 

 

  

In another form it can be written as follows 

 

For 𝑚𝑚− 1 ∈ {1,3,5, . . . }, then 

 

𝐷𝐷𝑝𝑝0,𝑝𝑝1 + 𝐷𝐷𝑝𝑝2,𝑝𝑝3 + ⋯+ 𝐷𝐷𝑝𝑝𝑚𝑚−2,𝑝𝑝𝑚𝑚−1 = 𝐷𝐷𝑝𝑝(0),𝑝𝑝(1)…,𝑝𝑝(𝑚𝑚−1) − �𝐷𝐷𝑝𝑝𝑗𝑗,𝑝𝑝𝑘𝑘
𝑘𝑘−𝑗𝑗≠1
0≤𝑗𝑗<𝑘𝑘≤𝑚𝑚−1

,

 
 

where 

 

𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑗𝑗+1; 𝑝𝑝(0) < 𝑝𝑝(1) < ⋯ < 𝑝𝑝(𝑚𝑚−1); 𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑘𝑘  dan 𝑝𝑝𝑗𝑗 , 𝑝𝑝𝑘𝑘 ∈ ℕ+ ∀ 0 ≤ 𝑗𝑗 < 𝑘𝑘 ≤ 𝑚𝑚 − 1 

 

For 1 {2,4,6,...},m − ∈  then 

 

0 1 2 3 2 1 (0) (1) ( 1)

1

, , , , , , ( )
01

0 1

,
m m m j k

m

p p p p p p p p p p p p s
sk j

j k m

D D D D D D
− − −

−

=− ≠
≤ < ≤ −

+ + + = − −∑ ∑  

 

where 

 

𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑗𝑗+1; 𝑝𝑝(0) < 𝑝𝑝(1) < ⋯ < 𝑝𝑝(𝑚𝑚−1); 𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑘𝑘  dan 𝑝𝑝𝑗𝑗 , 𝑝𝑝𝑘𝑘 ∈ ℕ+ ∀ 0 ≤ 𝑗𝑗 < 𝑘𝑘 ≤ 𝑚𝑚 − 1 

 

4.2 Algorithm of Brute Force Search for Multiplier in Finite Field 

To solve efficient multiplier from the above equation, this research use algorithm of Brute 
Force Search to find the best solution for the formula n = 8. It is easy to follow the all steps of 
this algorithm from previous researcher, which is explained in [14]. 



 

 

 

 

 

With combining of improving algorithm of Paar and brute force search, then it can result 
of multiplier in finite field GF(2^8) as follows. 

 

c'(4) = D(013467)+D(0367)+D(1467)+D(01)+D(34)+D(67) 

c'(5) = D(013467)+D(012456)+D(1347)+D(0367)+D(0245)+D(124)+D(04)+D(26) 

           +D(37)+D(56) 

c'(6) = D(012456)+D(0245)+D(1246)+D(01)+D(56) 

c'(7) = D(013467)+D(0346)+D(1347)+ D(01)+ D(25)+D(6,7)  

 

for i = 1 to 3, the c'(i) is the same equation with the original, and for another c'(i), it can find 
easily with the theorem of reflection in the NAYK algorithm [14]. 

5 Conclusion 

NAYK algorithm makes it possible to find a solution for the equation C with the number 

of multiplications slightly, where the upper bound is 
log(3,2)( )O n n≤ . 

References 

[1] Cristof Paar.: “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity 
Based on Composite Fields”. IEEE Transactions on Computers (1996) 

[2] Cristof Paar, Peter Fleischmann, Peter Roelse.: “Efficient Multiplier Architectures for Galois Fields 
GF (24n)”. IEEE Transactions on Computers (1998) 

[3] Peter L. Montgomery.: “Five, Six, and Seven-Term Karatsuba Like Formulae,” IEEE Transactions 
on Computers, Vol. 54, No. 3 (2005) 

[4] Muhamad Nursalman, Arif Sasongko, Yusuf Kurniawan, Kuspriyanto.: “Improved Generalizations 
of The Karatsuba Algorithm in GF(2n)”. IEEE International Conference on Advance Informatics: 
Concepts, Theory and Applications, Bandung-Indonesia (2014) 

[5] Andre Weimerskirch and Christof Paar.: “Generalizations of the Karatsuba Algorithm for Efficient 
Implementations”. Ruhr-Universitat Bochum, Germany (2003) 

[6] Berk Sunar.: A Generalized Method for Constructing Subquadratic Complexity GF(2k) 
Multipliers”. IEEE Transactions on Computers. Vol. 53, No. 9 (2004) 



 

 

 

 

[7] Cristof Paar, Peter Fleischmann, Peter Roelse.: “Efficient Multiplier Architectures for Galois Fields 
GF (24n)”. IEEE Transactions on Computers (1998) 

[8] Daniel V. Bailey and Christof Paar.: “Efficient Arithmetic in Finite Field Extensions with 
Application in Elliptic Curve Cryptography”. Journal of Cryptology (2001) 

[9] Vinodh Gopal (Intel Corporation, USA), Satyajit Grover, Michael E. Kounavis.: “Fast 
Multiplication Techniques for Public Key Cryptography“. IEEE Symposium on Computers and 
Communications, ISCC (2008) 

[10] Sameh M. Shohdy, Ashraf B. El-Sisi, and Nabil Ismail.: “Hardware Implementation of Efficient 
Modifled Karatsuba Multiplier Used in Elliptic Curves”. International Journal of Network Security. 
Vol.11, No.3, pp.155-162 2010) 

[11] Ivan Oseledets.: “Improved n-Term Karatsuba Like Formulas in GF(2)”. IEEE Transactions on 
Computers. Vol. 60, No. 8 (2011) 

[12] Haining Fan and M. Anwar Hasan, Senior Member, IEEE.: “Comments on “Five, Six, and Seven-
Term Karatsuba Like Formulae”. IEEE Transactions on Computers. Vol. 56, No. 5 (2007) 

[13] Ivan Oseledets.: “Improved n-Term Karatsuba Like Formulas in GF(2)”. IEEE Transactions on 
Computers. Vol. 60, No. 8 (2011) 

[14] Muhamad Nursalman, Arif Sasongko, Yusuf Kurniawan, Kuspriyanto.: “Generalizations of n-
Term Karatsuba Like Formulae in GF(2n) with NAYK Algorithm”. IAENG International International 
Journal of Computer Science, 44:4, IJCS_44_4_02 (2017) 

 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vinodh%20Gopal.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Satyajit%20Grover.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Michael%20E.%20Kounavis.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4607772
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4607772
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4607772

