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Abstract. Mathematical modeling is a tool used for the mechanism of strategy in 

controlling epidemics. In this paper, a basic model for bird flu epidemic is developed. 

Vaccination treatment of bird flu is a common method used to control disease. The bird flu 

model is reformulated by taking into account vaccination. Those models are system of 

ordinary differential equations. Stability of both the models are discussed and associated 

with the threshold number stating population is free of bird flu virus or infected. Numerical 

solutions are given on phase plane to confirm the analytical results. 
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1   Introduction 

Bird flu or avian influenza is a disease transmitted from birds to humans. Two types of 

avian influenza viruses, namely H5N1 and H7N9. The virus is an influenza virus that attacks 

both wild birds and poultry farm, such as chicken, duck, geese, or other birds. If it is given the 

opportunity to infect together with influenza viruses in humans, then infectious diseases in 

humans will emerge and it begin spreading from human to human. Moreover, bird flu is 

transmitted through direct contact with infected birds or contaminated environment. 

Transmission of the bird flu virus is difficult to prevent. But it can be prevented by avoiding 

contact with surfaces contaminated with wild birds or domestic birds faeces. Another way of its 

prevention is by vaccination. Vaccination is one of commonly used method against infectious 

disease. Vaccination is very important to control the spread of bird flu. The level of vaccination 

against an individual determines the level of population immunity and the possibility of an 

epidemic occur. 

A number of mathematical models discussing the spread of bird flu have been previous 

studied. Mathematical models for simulating the process of bird flu infection have been 

discussed and analyzed [1-4]. Stability analysis of susceptible populations with vaccination in 

the SIR model is Discussed [5]. Analysis of the model associated with varying vaccination 

strategies for the Avian Flu virus (H5N1) on chicken populations is studied [6]. A transmission 

model of the Avian influenza disease was developed and analyzed by optimization vaccination 

and medical treatment [7]. A bird flu model with vaccination considering constant population 

is analyzed [8]. 

In this study, two types of epidemic models of the spread of bird flu are analyzed, that are 

model without vaccination and model with vaccination. Those model are expressed in the form 

of an ordinary differential equation. The models are developed based on the basic SIR 
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(Susceptible Infected Recovered) model. Behaviour of the bird flu epidemic will be known 

when vaccination policies are implemented by analyzing the model. 

2   Methods 

First, some facts and assumptions from various related literature are studied and completed 

to develop the model. Second, the basic SIR model is reformulated with and without 

vaccination. Critical points and their stability of those model are analyzed. Threshold number 

corresponded with the equilibrium point are determined. Last section, numerical simulations for 

solution of the model with some parameter value are given. 

3   Mathematical Models 

The spread of bird flu in the population is divided into three groups, that are susceptible 

(healthy individuals but can be infected), infected (sick individuals infected by a virus), and 

removed (healed and die individuals). The model is developed under the following some 

assumptions: 

 The system is an open system. 

 All newborn individuals are into the susceptible group. 

 There is no infected individual becoming susceptible again 

 An individual can leave the infected group by being infected, and it can leave can the 

infected group by removing. 

 The death rate is equal for all individuals in the three groups. 

 Vaccination is given to all newborn individuals. 

Base on those assumptions, the bird flu epidemic model without vaccination leads to the 

following system of Equation (1) 

𝑑𝑆

𝑑𝑡
=  µ −  𝛽𝑆𝐼 −  𝜏𝑆,  

𝑑𝐼

𝑑𝑡
=  𝛽𝑆𝐼 − 𝜏𝐼 −  𝛾𝐼,  

𝑑𝑅

𝑑𝑡
=  𝛾𝐼 − 𝜏𝑅,        (1) 

Where S is the number of susceptible individuals, I is the number of infected individuals, 

and R is the number of removed individuals. Parameter µ is the birth rate, β is the contact rate 

of virus transmission, and 𝜏 is the death rate, and 𝛾 is the recovery rate. All parameters are 

positive constant. 

The first two equations of the system (1) is 

𝑑𝑆

𝑑𝑡
=  µ −  𝛽𝑆 −  𝜏𝑆,  

𝑑𝐼

𝑑𝑡
=  𝛽𝑆𝐼 − 𝜏𝐼 −  𝛾𝐼,       (2) 



 

 

 

 

Domain of the system (2) in Equation (2) is defined by Ψ1 = {D1∈R2 | D1 = (S, I), where S 

≥ 0 and I ≥ 0}. The transmission of bird flu virus in the population can be inhibited by giving 

vaccinations to all newborn individuals. In this paper, we assumed that all newborn individuals 

are vaccinated with vaccination rate between 0 ˂ ρ ˂ 1. Base on this assumption, the system (2) 

becomes to the following system of Equations (3) 

𝑑𝑆

𝑑𝑡
= (1 − 𝜌)µ − 𝛽𝑆𝐼 −  𝜏𝑆,  

𝑑𝐼

𝑑𝑡
=  𝛽𝑆𝐼 − 𝜏𝐼 −  𝛾𝐼,           (3) 

Where parameter ρ is the vaccination rate. Stability of the system (2) and (3) will be 

discussed in the next following section. 

4   Stability Analysis 

4.1   Model without vaccination 

There are two equilibrium points of the system (2) that correspond with two states  

- Bird flu-free state, E0 = (
µ

𝜏
, 0). 

- Endemic state, E1 = (𝑆0, 𝐼0), where S1 = 
𝜏+ 𝛾

𝛽
, and I1 = 

µ𝛽− 𝜏(𝜏+𝛾)

𝛽(𝜏+𝛾)
. 

Define threshold number is as like Equation (4) 

𝑅0 =  
µ𝛽

𝜏(𝜏+𝛾)
       (4) 

The endemic equilibrium E1 exists if and only if R0 > 1. 

Theorem 1. The bird flu-free equilibrium point E0 of the system (2) is locally 

asymptotically stable if only if R0 ˂ 1, and other is unstable. 

Proof. Jacobian matrix at E0 is like in Equation (5). 

J(E0) = [
−𝜏 −

µβ

𝜏

0
µ𝛽− 𝜏(𝜏+𝛾)

𝜏

]      (5) 

Eigenvalues of J(E0) are –𝜏 and 
µ𝛽− 𝜏(𝜏+𝛾)

𝜏
. All eigenvalues are negative if and only if R0˂1. 

It means that the bird flufree equilibrium point E0 is asymptotically stable. This proves Theorem 

1. 

Theorem 2. The endemic equilibrium point E1 of the system (2) is locally asymptotically 

stable if only if R0 > 1, and other is unstable. 

Proof. Jacobian matrix at E1 is Equation (6). 



 

 

 

 

J(E1) = [
−

µ𝛽

𝜏+𝛾
−𝜏 − 𝛾

µ𝛽− 𝜏(𝜏+𝛾)

𝜏+𝛾
0

]        (6) 

The characteristic equation of J(E0) is Equation (7). 

𝜆2 + (
µ𝛽

𝜏+𝛾
) λ + (µ𝛽 −  𝜏2 −  𝜏𝛾)     (7) 

Eigenvalues of J(E1) are Equation (8). 

𝜆1,2 =  
−

µ𝛽

𝜏+𝛾
 ± √𝐷0

2
  

=  
1

2
(−𝜏𝑅0 ± √𝐷0)       (8) 

Where D = (𝜏R0)2 – 4(µβ – (𝜏+𝛾)). Eigenvalues λ1 and λ2 depend on value of under the 

square root. If D0 > 0, then there are two negative real eigenvalues with condition √𝐷0 must be 

smaller than 𝜏R0. If D0 < 0, then there are complex eigenvalues with the real part is negative, 

-𝜏R0. All eigenvalues are negative if only if R0 > 1 . It means that the endemic equilibrium point 

E1 is asymptotically stable. This proves Theorem 2. 

4.2   Model with vaccination 

There are two equilibrium points of the system (3) that correspond with two states 

- Bird flu-free state, Ev0 = (
(1−𝜌)µ

𝜏
, 0). 

- Endemic state, Ev1 = (Sv,Iv), where Sv = 
𝜏+ 𝛾

𝛽
, and Iv = 

(1−𝜌)µ𝛽− 𝜏(𝜏+𝛾)

𝛽(𝜏+𝛾)
. 

Define threshold number is as like Equation (9) 

Rv = 
(1−𝜌)µ𝛽

𝜏(𝜏+𝛾)
= (1 − 𝜌)𝑅0      (9) 

The endemic equilibrium Ev1 exists if and only if Rv > 1. 

Theorem 3. The bird flu-free equilibrium point Ev0 of the system (3) is locally 

asymptotically stable if only if Rv < 1, and other is unstable. 

Proof. Jacobian matrix at Ev0 is Equation (10). 

J(Ev0) = [
−𝜏 −

µ𝛽(1− 𝜌)

𝜏

0
µ𝛽(1− 𝜌)− 𝜏(𝜏+𝛾)

𝜏

]    (10) 

Eigenvalues of J(Ev0) are – 𝜏 and 
µ𝛽(1−𝜌)− 𝜏(𝜏+𝛾)

𝜏
. All eigenvalues are negative if and only 

if Rv < 1. It means that the bird flu-free equilibrium point Ev0 is asymptotically stable. This 

proves Theorem 3. 



 

 

 

 

Theorem 4. The endemic equilibrium point Ev1 of the system (3) is locally asymptotically 

stable if only if Rv > 1, and other is unstable. 

Proof. Jacobian matrix at Ev1 is Equation (11). 

J(Ev1) = [
−

µ𝛽(1− 𝜌)

𝜏+ 𝛾
−𝜏 − 𝛾

µ𝛽(1− 𝜌)− 𝜏(𝜏+𝛾)

𝜏+𝛾
0

]    (11) 

The characteristic equation of J(Ev1) is Equation (12) 

𝜆2 + (
µ𝛽(1−𝜌)

𝜏+𝛾
) λ + (µ𝛽(1 − 𝜌) −  𝜏2 −  𝜏𝛾)   (12) 

Eigenvalues of J(Ev1) are Equation (13) 

𝜆1,2 =  
−

µ𝛽 (1−𝜌)

𝜏+𝛾
 ± √𝐷v

2
  

=  
1

2
(−𝜏𝑅v ± √𝐷v)    (13) 

Where Dv = (𝜏R0)2 – 4(µβ(1-ρ) – 𝜏(𝜏+𝛾)). Eigenvalues λ1 and λ2 depend on value of under 

the square root. If Dv > 0, then there are two negative real eigenvalues with condition √𝐷𝑣  must 

be smaller than 𝜏Rv . If Dv < 0, then there are complex eigenvalues with the real part is negative, 

-𝜏Rv. All eigenvalues are negative if only if Rv > 1. It means that the endemic equilibrium point 

Ev1 is asymptotically stable. This proves Theorem 4. 

5   Numerical Solutions 

The analytical results will be discussed by taking a numerical examples. By letting the 

parameters µ = 0.5, 𝜏 = 0.3, β = 1.98, 𝛾 = 0.5 and ρ = 0.6, graphic solutions and portrait phase 

of the system (2) and the system (3) are given. Figure 1 and Figure 2 show table that the 

endemic equilibrium point is stable. The susceptible and infected populations will survive in the 

same time and the trajectory will approach the endemic equilibrium point. Figure 3 and Figure 

4 show that the effect of vaccination can be seen on the bird flu-free equilibrium point and 

endemic equilibrium point. The susceptible population has decreased by vaccinating with 

vaccination rate ρ.  



 

 

 

 

    
       Fig. 1. Solutions of the system (2).             Fig. 3. Solutions of the system (3). 

 

  

         Fig. 2. Portrait phase of the system (2).      Fig. 4. Portrait phase of the system (3). 

6   Conclusion 

In this paper we study epidemic models of infectious diseases, bird flu. The two epidemic 

models, without and with vaccination, are compared. The characteristics of those models given 

the stability associated with the thresholds number. It can be conclude that vaccination more 

effective to inhibiting the transmission of the bird flu virus effectively than without vaccination. 
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