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Abstract: This study applies complex network theory to financial systems, using a SEIR
model to analyze risk spread and the effect of rescue strategies. Key findings include
identifying epidemic thresholds that indicate contagion risk and demonstrating that policy
interventions can lower this risk. Both homogeneous and heterogeneous networks are
examined, showing consistent thresholds. Analysis reveals that stronger rescue efforts lead
to lower contagion risk. The model is tested against real data from Chinese and American
stock markets, confirming the theory and highlighting how various parameters affect risk
distribution. The research supports the development of early warning systems and
regulatory improvements for financial stability.
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1 Introduction

In the rapidly integrating global economy, the intricate web of financial interconnections
presents abundant opportunities alongside potential risks. Complex network theory, with its
nodes and edges representing the multifaceted interactions within financial systems, offers a
powerful lens for scrutinizing these relationships and the propagation of risk. This approach has
become increasingly prevalent, depicting market correlations and dynamics with clarity and
providing insights into economic development and risk management. As financial crises have
demonstrated, the transmission of risk can lead to widespread "mutual loss" across institutions,
elevating financial risk prevention to a policy imperative. Addressing the challenges of latent
risks within the financial sector requires a nuanced understanding of the system's dynamics.
This paper adopts a network perspective, enhancing classic contagion models with a modified
SEIR framework for financial risk transmission. By examining both homogeneous and
heterogeneous networks, it delves into the equilibria's stability and the basic reproduction
number. Supported by simulations on empirical and synthetic networks, the research offers
theoretical and practical contributions, culminating in a comprehensive summary of findings
and their implications for financial stability and policy guidance [1].
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2 Literature Review

The merger of big data and network science has reshaped our understanding of financial risk
contagion, using complex network theory to unveil the tightly-knit web of stock, foreign
exchange, and futures markets, and how their topology critically impacts financial stability [2].
These networks exhibit scale-free and small-world characteristics, suggesting both the central
influence of major institutions and the swift transmission of crises. By adopting epidemiological
models like SIR and SIRS, researchers track crisis spread through the financial system,
accounting for bank interactions and resilience variations, and highlighting the dual nature of
network connectivity in risk management [3]. Empirical studies confirm that bank size and
interconnectivity are pivotal in risk propagation, enhancing our grasp of financial networks
under duress and guiding systemic risk mitigation tactics [4].

3 SEIR model construction and theoretical analysis

In exploring the propagation of financial risks within networks, analogies to infectious disease
models, like the SEIR framework, provide insightful perspectives. Scholars have delineated four
discrete states reflecting the risk status of entities within a financial network: Susceptible (S),
representing stable entities vulnerable to risks emanating from their high-risk connections;
Exposed (E), entities that have encountered risk and, while non-contagious at this juncture,
might redistribute their risk burden through network interactions; Infectious (I), entities in high-
risk conditions with the capacity to adversely affect associated entities; and Removed (R),
entities that have, through superior risk identification and management, insulated themselves
from the risk contagion for a transient period [5].

The dynamism of financial network is captured by the transition probabilities among these states.
A susceptible entity becomes exposed or infectious upon risk exposure, with probabilities αλ
and (1−αλ), respectively. Exposed entities either revert to the susceptible state at a rate βϕ,
following risk mitigation through internal competencies or external assistance, or progress to
the infectious state with a complementary probability (1−βϕ). Infectious entities, subsequent to
adopting remedial measures, transition to the removed state with probability γ—commonly
assumed to be unity, reflecting a full recovery. Removed entities can, however, relapse into
susceptibility at a rate δ due to waning immunity or changing factors [6].

The model's parameters are thus: α, the proportion of susceptible entities becoming exposed
upon risk contagion; β, the recovery rate of exposed entities; λ, the probability of contagion
between susceptible and infectious entities; ϕ, the average rate of transition from exposed to
susceptible state, an inverse function of the latency period; γ, the recovery rate transitioning
infectious entities to removed status; δ, the proportion of the removed reverting to susceptibility
[7].

By adopting this epidemiological paradigm, we advance our understanding of systemic risk
within financial ecosystems, endorsing both homogeneity and heterogeneity across network
structures. Such an approach invites further interdisciplinary research to refine these models and,
crucially, embeds them within the more expansive tapestry of behavioral finance, institutional
reactions, and evolving regulatory landscapes that continue to shape the risk profiles of financial
networks globally.



Figure 1. SEIR risk communication model.

3.1. SEIR model based on homogeneous network

In the context of financial risk contagion, the SEIR model on a homogeneous network serves as
a framework to simulate and analyze the spread of financial crises. A homogeneous network
assumes that financial entities are connected in a similar fashion—having an equal probability
of interacting with or transferring risk to each other.

In the SEIR model in Figure1, entities within the network are categorized into four distinct states:

S(t): Susceptible entities that are operating normally without exposure to risk but could
potentially be exposed. E(t): Exposed entities that have been exposed to the risk but are not yet
manifesting symptoms. I(t): Infectious entities that are currently experiencing risk symptoms
and are capable of transmitting risk to other entities. R(t): Removed entities that have recovered
from the risk state and are no longer transmitting risk. The transitions between these states can
be described by a set of differential equations, which form the basis of the SEIR model. Here's
an example of a simplified set of equations for the SEIR model:

(ݐ)ܵ݀
ݐ݀ = (ݐ)ܫ(ݐ)ܵߚ−

(ݐ)ܧ݀
ݐ݀ = (ݐ)ܫ(ݐ)ܵߚ − (ݐ)ܧߪ

(ݐ)ܫ݀
ݐ݀ = (ݐ)ܧߪ − (ݐ)ܫߛ

(ݐ)ܴ݀
ݐ݀ = (ݐ)ܫߛ

Where:

β is the effective contact rate, representing the rate at which susceptible entities become exposed.
σ is the rate at which exposed entities become infectious. γ is the recovery rate at which
infectious entities become removed.

Additional parameters can be introduced into the model to simulate the nuances of financial
networks, such as the connectivity of the network, the strength of interactions between entities,
and the impacts of market dynamics and regulatory policies.



Numerical simulations of these equations can demonstrate how financial risk propagates
through the network under various conditions. Such modeling helps to understand the dynamics
of risk transmission under different market conditions and policy interventions and provides
theoretical support for financial regulation and risk management strategies.

3.2. SEIR model based on heterogeneous network

Considering the scale-free characteristics of real-world financial networks, where some entities
(nodes) have a significantly higher number of connections (degrees), we can adapt the SEIR
model to account for the heterogeneity in node degrees. In a scale-free network, the probability
that a node connects to

k other nodes follow a power-law distribution, which means that most nodes have few
connections, while a few nodes have many connections (hubs) [8].

To model the financial risk contagion in such a heterogeneous network, we classify the entities
based on their degree k. Let Sk (t), Ek (t), Ik (t), Rk (t) represent the relative densities of normal,
exposed, infectious, and removed entities with degree k at time t, respectively. For each degree
k, the densities satisfy the conservation equation:

ܵ௞(ݐ) + (ݐ)௞ܧ + (ݐ)௞ܫ + ܴ௞(ݐ) = 1

The dynamical equations for the financial risk contagion in a heterogeneous network can then
be formulated as follows:

݀ܵ௞(ݐ)
ݐ݀ = ෍(ݐ)௞ܵ௞ߚ− ܲ

௞ᇲ
(݇ᇱ|݇)ܫ௞ᇲ(ݐ)

(ݐ)௞ܧ݀
ݐ݀ = ෍(ݐ)௞ܵ௞ߚ ܲ

௞ᇲ
(݇ᇱ|݇)ܫ௞ᇲ(ݐ)− (ݐ)௞ܧ௄ߪ

(ݐ)௞ܫ݀
ݐ݀ = −(ݐ)௞ܧ௄ߪ (ݐ)௞ܧ௄ߛ

ܴ݀௞(ݐ)
ݐ݀ = (ݐ)௞ܫ௄ߛ

βk represents the effective contact rate for nodes of degree k. σk is the rate at which exposed
nodes of degree k become infectious. γk is the recovery rate for infectious nodes of degree k. P
(k'∣k) is the conditional probability that a node of degree k is connected to a node of degree k’

These equations consider the heterogeneity of the network by incorporating the degree-based
classification of nodes. They allow us to explore how financial risk contagion spreads across
nodes with different levels of connectivity and how hubs can disproportionately influence the
overall dynamics of the system.

By solving these equations numerically, we can analyze the behavior of the system over time
and identify critical thresholds or tipping points where a small change in the system's parameters
could lead to a large-scale financial crisis. This heterogeneous network approach provides a
more realistic representation of financial systems and can inform more effective risk
management and mitigation strategies.



4 Simulation

The dataset utilized for this study is derived from the Wind database, with a collection date of
August 10, 2021. It encompasses daily closing price data for financial stocks from the Shanghai
and Shenzhen stock markets and the United States stock market for the years 2008, 2018, and
2020. To ensure the quality and completeness of the data, financial institutions with substantial
missing data were omitted from the dataset [9]. The final dataset includes data for 52 institutions
over 246 effective trading days in 2008, 94 institutions over 243 effective trading days in 2018,
and 116 institutions over 243 effective trading days in 2020 from the Shanghai and Shenzhen
stock markets. For the US stock market, the data comprises 445 institutions over 238 effective
trading days in 2008, 651 institutions over 235 effective trading days in 2018, and 52 institutions
over 779 effective trading days in 2020. The daily closing price data was processed as follows:
for stock i on trading day t, the price return rate ri (t) was calculated using the natural logarithm
of the closing price Pi (t), such that ri (t) = In Pi (t) - In Pi (t-1). This formula calculates the log
return, capturing the percentage change in price between consecutive days, which is commonly
used in financial analysis due to its desirable statistical properties.

The below figure2 shows that over the past three years, the presence of financial institutions
within the Shanghai and Shenzhen markets has been significantly lower compared to the density
of such entities in the U.S. stock market. Concurrently, interconnectivity among the existing
financial institutions in these Chinese markets has intensified, leading to a more rapid
dissemination of risks throughout the financial network [10].

Figure 2. Structure diagram of various financial networks.

5 Conclusion

In summary, this study enhances my understanding of financial risk contagion by using complex
network theory and adapting the SEIR model to finance. It identifies key thresholds in both
uniform and diverse financial networks that signal risk spread potential. The study finds that
prompt policy interventions can effectively reduce systemic risk, as highlighted by the inverse
relationship between rescue measures and the basic reproduction number. Practical tests using



data from Chinese and American stock markets validate the model's relevance. This research
illustrates how financial entities are interlinked and their differential impacts on network
stability, thus informing the speed and reach of risk contagion. The study proposes a
comprehensive framework for forecasting and managing financial risks, suggesting improved
risk monitoring and regulatory policies for safeguarding global financial health. Incorporating
this advanced network analysis into risk management could better equip us to avert financial
crises and safeguard economic systems worldwide.
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