
Bayesian Inference for Statistics Recurrent Stochastic
Volatility

Weihang Qiu*

* Corresponding author. Email: 3262975029@qq.com

Jinan University Birmingham University Joint College, Jinan University, Guangzhou, 511436, China

Abstract. Stochastic volatility model is an important model for studying financial time
series. Due to the very complex volatility of financial markets, it is particularly important
to analyze the characteristics of non-linearity and long memory. Moreover, the traditional
stochastic volatility model does not explain the self-dependence in statistical sense,
which will affect the model's capture of volatility effect.In this paper, a statistical recur-
rence volatility model is established. The cyclic neural network is used to model the time
series so as to draw the long dependence at the moment, thus overcoming the limitation
that the traditional random model can only explain the short dependence, and the nonlin-
ear transformation is used to replace the logarithmic transformation of the traditional
random model. We combine in-depth learning with stock volatility to simulate five inter-
national stock index data sets: Swiss stock index SWX, French market index CAC, and
Singapore stock market index STI. In addition, SMC and particle MCMC are used to per-
form Bayesian inference on this parameter state space model. Compared with the other
three traditional models, the Statistics Recurrence Stock Volatility model is superior to
SV, NSV and LMSV in describing the complex fluctuation effect, and provides better
off-sample prediction.In order to better combine RNN and SV models, we use a special
type of RNN model, namely the Statistical Cyclic Unit (SRU) structure, which can cap-
ture the complex wave effects ignored by the traditional SV model while retaining the
basic components of the SV model. This combination enables the SR-SV model to
achieve flexible and excellent prediction performance by using in-depth learning, and
fills up the weakness of neural network in explanation.

Keywords: Stochastic Volatility, cyclic neural network, nonlinearity, long memory.

1 Introduction

Volatility plays a significant role in financial transactions, such as option pricing and stock
markets. Volatility is used to calculate the value at risk (VaR) of a portfolio, which is the vari-
ance of the return. However, unlike securities prices, fluctuations cannot be directly observed.
Therefore, it is usually measured as the statistical fluctuation of the earnings from the market
index, and then uses various statistical methods to measure the volatility of the earnings series.
Classical academic methods include ARCH (autoregressive conditional heteroscedasticity),
GARCH (generalized ARCH), TGARCH (threshold GARCH), EGACH (index GARCH), etc.
These models can describe heteroscedasticity well, but they cannot explain the leverage effect
of financial volatility, namely asymmetry. Moreover, GARCH models are essentially a linear
expression of certainty, and cannot effectively describe the random oscillation of volatility. In
the SV model, additional random terms are added by methods such as MCMC. Compared

BDEDM 2024, January 12-14, Ningbo, People's Republic of China
Copyright © 2024 EAI
DOI 10.4108/eai.12-1-2024.2347143

with other models, the stochastic volatility model can model volatility as a stochastic process
rather than a deterministic process. This allows us to obtain an approximate distribution of
volatility for each time in the series and provides confidence for the forecast. However, Myron
and Bruce used R/S analysis to study the price and return rate data of 200 stocks and con-
firmed that most of the price variables have the characteristics of long-term dependence.
Huang and others found that there is long-term memory of absolute price movements in the
stock and option markets. However, in the traditional time series modeling, the SV model
represents a rapid decay process in geometric series, which is slower than the autocorrelation
decay of the time series and cannot capture the long dependence well [1].

In order to solve this problem, Breidt, Crato and deLima proposed the Long Memory Stochas-
tic Volatility (LMSV) model. They first proposed the ARFIMA model [2,3] based on the frac-
tional difference noise (FDN) model, and then combined it with the SV model. The model is
widely used to simulate the strong persistence and long memory in economic time series.
However, since the ARFIMA model is linear and cannot describe the nonlinear transition, Yu,
Yang and Zhang have introduced a series of nonlinear SV(N-SV) models. In the original
lognormal SV model, the logarithmic fluctuation obeys the AR (1) process, and the smoothing
function of the allowed fluctuation obeys the AR (1) process. From the final result, the nonlin-
ear CARCH (1,1) model is generalized for random fluctuation, that is, the Box-Cox power
function is used instead of the logarithmic function. Yu, Yang and Zhang have simulated the
data of currency exchange and option pricing and the empirical results show that the N-SV
model is feasible, but the choice of the model is very complicated. In this paper, we will dis-
cuss the out-of-sample prediction performance of LMSV and N-SV models and compare them
with the model in this paper [4,5].

In order to characterize the long memory and nonlinear wave effects, this paper chooses RNN
model which is famous for solving these problems. Cyclic neural network is a kind of neural
network which takes sequence data as input, recurs in the evolution direction of sequence and
all nodes are connected in chain. This is a powerful nonparametric tool and a key feature is the
use of a feedback connection that allows the output of the network to be fed back into the
network as an input to the next time step. This feedback loop enables the network to simulate
the dependencies between different elements in the input sequence, while the artificial neural
network can contain non-linearity and all variables. However, Makridakis, Spiliotis and As-
simakopoulos note that the accuracy of machine learning models is generally lower than statis-
tical models widely studied in financial time series literature (such as ARMA and ARIMA).
Therefore, the use of traditional RNN is neglected, among which LongShort-
TermMemorynetworks (LSTM) is a common recurrent neural network. LSTM solves the
problem of long-term dependence in RNN. However, the internal work of lstm may be diffi-
cult to explain, and the performance of lstm is highly dependent on the choice of super-
parameters, such as the number of hidden units, learning rate and number of layers, which
makes it challenging to find the optimal configuration.

Therefore, we need to develop volatility models based on RNN. These models not only have
the ability of RNN to produce accurate forecasts, but also capture the volatility effect as well
as AR(1) process in SV model, so that the models have interpretable and meaningful in-
sample analysis.

In order to better combine the SV model with the RNN model, we use the Statistical Cyclic
Unit (SRU) structure, which is a cyclic neural network (RNN) structure, introduced by Lei and
Zhang in a paper in 2017. It is designed to be efficient and fast by minimizing the number of
operations required to update the status. It has proven to perform well on a range of tasks,
including language modeling, machine translation and speech recognition.

This combination enables the SR-SV model to not only enhance the strong interpretability of
the fluctuation effect, but also add a strong prediction ability. The SR-SV model belongs to the
parametric state space model, and its Bayesian inference can use the latest sequential Monte
Carlo (SMC) and particle MCMC literature.

2 The traditional three models

2.1 SV model

Set is a series of revenue. Then the sv model isa = {at, t = 1，…，T}

z୲ = μ + ϕ(z୲ିଵ − μ) + ϵ୲
 , ϵ୲

 ∼ N (0, σଶ), t = 2, . . . , T,

zଵ ∼ N ቀμ, మ

ଵ ି మ ቁ (1)

y୲ = e
భ
మ౪ϵ୲

୷, ϵ୲
୷ ∼ N (0, 1), t = 1, 2, . . . , T. (2)

The stochastic volatility (SV) model presented consists of two equations that describe the
evolution of two variables: z୲ and y୲ . The variable z୲ represents the log volatility process. It
follows an autoregressive AR(1) model, which means its value at time t depends on its previ-
ous value, z୲ିଵ, and is influenced by a mean parameter μ. The persistence parameter φ con-
trols the influence of the previous value on the current value, ensuring the process remains
stationary. The equation also includes a random error term ϵ୲

, which captures the unpredicta-
ble component of z୲ . The variable y୲ represents the observed data, and it is related to z୲
through an exponential transformation. The value of y୲ at time t is determined by the exponen-
tial of half the value of z୲, multiplied by a random error term ϵ୲

୷. The error term ϵ୲
୷ follows a

standard normal distribution. The model assumes that the persistence parameter φ lies between
-1 and 1 to maintain stationarity of both the z and y processes. This range ensures that the
influence of past values does not grow too large or diminish too quickly. It assumes that the
log volatility process z୲ exhibits persistence, meaning that past values strongly influence cur-
rent values. This persistence parameter φ is often close to 1 in financial data, indicating a
strong auto-dependence. Overall, the SV model provides a framework for modeling the evolu-
tion of z୲ and the relationship between z୲ and y୲. It assumes an autoregressive structure for z୲
and incorporates randomness through error terms. However, the SV model's assumption of an
AR(1) process may not capture more complex dynamics in the log volatility process, such as
long-term memory or nonlinear auto-dependence. Therefore, it is suggested to combine the
SV model's structure with techniques from recurrent neural network (RNN) time series model-
ing to create a more flexible prior distribution for z୲. This flexible prior would allow for cap-
turing more intricate dynamics beyond the limitations of the SV model.

2.2 NSV model

Yu,Yang,and Zhang proposed a class of nonlinear SV(N-SV) models, the core of which is that
the use of Box-Cox-like changes to z୲ can reduce the unobservable error and the correlation of
prediction variables to a certain extent. We introduce a parameter δ to measure the degree of
nonlinearity, and then estimate the parameter through the data itself to determine the form of
data transformation that should be taken, which can cause a stable transformation of variance
for continuous dependent variable unsatisfiednormal distributionThe variance is no longer
dependent on the mean. Using a transformation, equation becomes

z୲ = μ + ϕ(z୲ିଵ − μ) + ϵ୲
 , ϵ୲

 ∼ N (0, σଶ), t = 2, . . . , T,

zଵ ∼ N ቀμ, మ

ଵ ି మ ቁ (3)

y୲ = (1 + δz୲)ଵ/(ଶஔ)ϵ୲
୷ , ϵ୲

୷ ∼ N (0, 1), t = 1, 2, . . . , T, (4)

According to model As, therefore, SV model NSV is a special case. δ → 0，(1 +
 δz୲)ଵ/(ଶஔ) → e

భ
మ౪ .

2.3 LMSV model

Breidt, Crato and deLima used ARFIMA(p,d,q) process on z୲ to capture the long memory self-
dependence exhibited in financial time series. Their LMSV model was written：

(1 − B)ୢ Φ(B)z୲ = Θ(B)η୲, η୲ ∼ N (0, σ
ଶ), (5)

y୲ = σ୲ϵ୲ , σ୲ = κ , ϵ୲ ∼ N (0, 1),

t = 1, 2, . . . , T, (6)

where Φ(B) = 1 − ϕଵB − ϕଶBଶ −··· − φ୮B୮, Φ(B) = 1 + θଵB + θଶBଶ +··· + θ୯B୯

and B is the backshift operator, that is, Bୱ X୲t ∶= X୲ିୱ, and the fractional integral parameter d
is within (0.5, 0.5).

3 SRU model

Modeling time series data includes analyzing and predicting patterns and trends over time.
The classic ARIMA (autoregressive integrated moving average) model uses a combination of
autoregressive, differential and moving average terms to model the data. The rnn may incorpo-
rate information from previous time steps into the input sequence by using hidden states, each
of which is recursively updated in the RNN as the network processes the sequence as a func-
tion of the previous hidden state and the input of the current time step. This cyclic update
mechanism allows the RNN to retain memory of previously seen inputs. By learning to update
hidden states based on input sequences, RNN can implicitly model the dynamics of data and
capture time dependencies that are difficult to capture using other machine learning models.

Our goal is to find the density of z୲, so we have to model the density for a given sequence x୲ .
A priori p (z୲ |x୲, Dଵ:୲ିଵ), where {D୲=(x୲,z୲), t=1,2,...} is the time series data of a period of
time series has dependency, so a group of hidden units ht needs to feed itself by using the lag
value h୲ିଵ of its previous time step by using RNN. While RNN allows hidden units to connect

to their previous time step value, enabling the network to describe memory. The mathematical
expression of the traditional RNN model (Elman1990) is

h୲ = Ψ(w୶x୲ + w୦h୲ିଵ + b), η୲ = β + βଵh୲,

z୲| η୲ ∼ p(z୲| η୲). (7)

The model parameters include w୶, w୦, β, βଵ;

Ψ(x) is inartificial neural network On the neurons of the brainfunction, responsible for map-
ping the inputs of neurons to the outputs, can be increasedNeural network model The nonline-
ar, common sigmoid function, tanh(z) function and ReLU function.

The network consists of interconnected layers of nodes (neurons) that transform input data
into useful representations and ultimately produce the desired outputs. We can find the map-
ping between input and output through training. P(z୲| η୲) depends on the mapping we find. If
z୲ is continuous, then p(z୲| η୲) is a Gaussian density of mean η୲. We believe that the neural
network initially did not have any memory, i.e.hଵ was 0. Equation (7) suggests that the hidden
state at time t is the output of a composite function

h୲ = f (x୲, f(x୲ିଵ, . . . , f(xଵ, h))) , where

f(x୲, h୲ିଵ) ∶= Ψ(w୶x୲ + w୦h୲ିଵ + b), (8)

When the gradient propagates in multiple layers of the depth neural network, the gradient
becomes too small and the gradient disappears, which makes it difficult for the network to
learn meaningful features. This problem is especially evident in the cyclic neural network,
where gradients must propagate through many time steps. On the other hand, when the gradi-
ent becomes too large, there will be an explosive gradient problem, resulting in unstable train-
ing and numerical overflow error. This can happen in deep networks with large weights,
where gradients grow exponentially as they propagate through the network.

In this paper, the weight is larger, the gradient of ht relative to the model parameters may ex-
plode or disappear, which makes the learning efficiency of the traditional RNN model in long
time series very low. So we will use the statistical cyclic unit (SRU) to overcome the above
problem, the SRU structure can be written as

r୲ = Ψ(w୦h୲ିଵ + b୰), (9a)

φ୲ = (w୰r୲ + w୶x୲ + b), (9b)

h୲
(୨) = α୨h୲ିଵ

(୨) + (1 − α୨)φ୲, j = 1, . . . , m;

h୲ = (h୲
(ଵ), . . . , h୲

(୫)) , (9c)

Where α=(αଵ,..., α୫)∈(0,1) is a vector of average weights, rt and T help to calculate the hid-
den state ht, and the rest are model parameters. We simply record the function structure in
(9a)-(9c) as h୲ = SRU (x୲, h୲ିଵ).SRU is a cyclic neural network with a cyclic layer and a gat-
ing mechanism that allows it to selectively forget or remember information from previous time
steps. While the moving average structure involves taking a sliding window of an input se-
quence and calculating an average of the values in that window. This creates a smooth version
of the input sequence that can be used for various tasks such as anomaly detection or signal
processing. By combining the moving average structure with the SRU elements, we can create

a circular neural network that utilizes both techniques. The input sequence is first smoothed
using a moving average structure and then the SRU element is input to capture the time de-
pendency between the smoothed values. In general, this approach is very useful for capturing
both short-term and long-term patterns in the input sequence.

4 SRSV model

The combination of SV and SRU models provides a flexible modeling approach that captures
a wide range of dynamic patterns in the data. In this technique, the SV model can capture the
overall volatility structure of the data, and the SRU structure is used to capture the long-term
memory and nonlinear self-dependence that are not considered in the basic SV model, which
can more accurately represent the underlying data generation process.

The mathematical expression of that combine model is:

r୲ = Ψ(w୦h୲ିଵ + b୰), t = 2, . . . , T, (10a)

φ୲ = Ψ(w୰r୲ + wη୲ିଵ − 1 + wz୲ିଵ + b), t = 2, . . . , T, (10b)

h୲ = αh୲ିଵ + (1 − α)φ୲, t = 2, . . . , T, hଵ = 0, (10c)

η୲ = β + βଵh୲ + ϵ୲
, ϵ୲

 iid
∼ N (0, σଶ), t = 1, 2, . . . , T, (10d)

z୲ = η୲ + ϕz୲ିଵ, t = 1, . . . , T, (10e)

y୲ = e
ଵ
ଶ౪ ϵ୲

୷ , ϵ୲
୷ iid

∼ N (0, 1), t = 1, 2, . . . , T, (10f)

In this technique, the initial value of the fluctuation process is set to z, which is the logarithm
of the data variance, and the initial value of the SRU hidden state hଵ is set to 0 according to
the previous discussion. The SR-SV model combines the advantages of the SRU and SV mod-
els. Firstly, the logarithmic volatility at time t in (10e) can be written as

z୲ = β + βଵSRU(η୲ିଵ, z୲ିଵ, h୲ିଵ) + ϕz୲ିଵ + ϵ୲
 . (11)

Therefore, the parameter βଵ better represents the influence in the potential fluctuation process
Z, and makes up for the shortcoming that the AR(1) process can only capture the short-term
linear influence.

In the traditional stochastic volatility (SV) model, the process volatility is modeled as a stable
stochastic process. However, in many practical applications, the volatility of the data can ex-
hibit erratic behavior, such as sudden peaks or changes in volatility over time. In this case
equation (11) needs to be converted to

z୲ = β + βଵॉ(η୲ିଵ, wz୲ିଵ, h୲ିଵ) + ϕz୲ିଵ + ϵ୲
 , (12)

In the context of stochastic volatility (SV) model, the volatility process Z is usually modeled
as a function of its previous value ௧ିଵ}. One way to model this dependence is through theݖ
weight parameter -௭, which determines how strongly the previous value of Z affects the curݓ
rent value of Z .. So here ௭ represents the volatility, the value ofݓ -௭ will affect the dependenݓ
cy between ௧, and ifݖ ,௭ is missingݓ ௧ only depends linearly onݖ -௧ିଵ. The function N(x) repreݖ

sents a non-linear transformation of a given input x and is generally used to introduce non-
linear dependencies between variables in the model. In the SV model, the function N(x) can be
used to model the nonlinear dependence between the fluctuation process z and other variables
in the model.

Secondly, SRU model has several super parameters, including hidden size, exit rate and scale
parameter α. Specifying alpha values in advance may limit the model's flexibility to capture
complex time dependencies in the data. In some cases, it may be difficult to know a priori
which α values are optimal for a given data set. Also, summary statistics obtained by setting
the scale. alpha. to a value specified in advance may be difficult to interpret and may not be
able to clearly understand the basic patterns in the data.

In order to solve these problems, we can learn the parameter α in the SRU model from the
data, usually through a process called back propagation. Back propagation is an optimization
algorithm that uses gradient descent iteration to update the model parameters based on the
error between the predicted output and the real output. Alpha controls the weight assigned to
the previous hidden state when calculating a new hidden state. The higher the value of α, the
higher the weight of the previous hidden state, and the lower the value of α, the lower the
weight of the previous hidden state. By adjusting the value of α, the SRU model can learn
different time dependencies in the captured data.

Third, neural networks are highly flexible models with many parameters that are easily over-
fitted, which occurs when the model becomes too complex and begins to fit the noise in the
data rather than the underlying pattern. Therefore, we inject noise to regularize the SR-SV
model to prevent over-fitting. The noise injection is accomplished by allowing the previous
fluctuation state ௧ିଵ and the previous noise signal. eta. T-1 as inputs to the SRU layer in theݖ
network. The idea behind the noise injection is to add random disturbances to the input data,
which helps to prevent the network from memorizing the training data and over-fitting.

Finally, in the SR-SV model, the parameter acts as a scaling factor for the variance of theߚ
observed variable ௧. More specifically, the parameter τ can be defined asݕ ߬ = ݁ఉ/ଶ,ݕ௧ can
be expressed as: ௧ݕ = ߬ ݁

భ
మ௭ ߳௧

௬,Where -௧ is hidden and represents the logarithm of the volatilݖ
ity process.

Intuitively, τ controls the overall scale of the volatility process, which determines the uncer-
tainty and change level of the observed data. By adjusting τ, the model can explain different
levels of volatility and capture changes in data over time. Please note that in the SR-SV mod-
el, is not estimated directly, but is inferred from other parameters of the model during theߚ
training process. The value of τ can be used to explain the results of the model and to predict
future observations.

5 Bayesian inference

Bayesian estimation and inference of SR-SV model involves estimating the posterior distribu-
tion of model parameters given the observed data. This usually uses SMC or Markov Chain
Monte Carlo (MCMC) methods. For Bayesian estimation and inference of SR-SV model, the
choice between SMC and MCMC methods depends on the specific requirements and con-

straints of the analysis, and may involve a trade-off between efficiency and accuracy. In gen-
eral, SMC method may be more suitable for exploratory analysis and large-scale simulation,
while MCMC method may be more suitable for rigorous reasoning and decision-making [6].

The likelihood function of the SR-SV model is:(ݕଵ:்|ߠ) = ∫ ቀݕଵ：௧ቚݖଵ:் , ቁߠ ்:ଵݖ݀(ߠ|்:ଵݖ)

Where p(ݕଵ：௧|ݖଵ:், θ) is the likelihood of the observed value given the potential state and
parameter, and p(ݖଵ:்|θ) is the joint distribution of the potential states given the parameter.

(ଵ：௧ݕ) = is the vector of 11 parametersߠ.is the marginal likelihoodߠ݀(ߠ)(ߠ|ଵ：௧ݕ) ௵∫
of the SR-SV model, the SR-SV model is a state-space model that consists of a measurement
equation and a state transition equation. In the measurement equation, the observed value at
time t, denoted as -௧, is assumed to follow a normal distribution with mean zero and variݕ
ance ݁ ௭ The term ݁௭ represents the measurement error at time t.and the state transition equa-
tion is

ଵ:௧ିଵݖ|௧ݖ , ℎ௧ ∼ 1−ݐݖ߶) ܰ + ߚ + ଵℎ௧ߚ ,(ଶߪ , ≤ ݐ 2,

ଵݖ ∼ .(ଶߪ ,0ߚ) ܰ (13)

However, SMC method is generally more effective and scalable than MCMC method for state
space models of nonlinear and non-Gaussian models. The SMC method also provides a meth-
od for estimating the likelihood function, which is usually difficult to handle for nonlinear
state space models and can be used for model selection and comparison. Once the posterior
distribution is estimated using SMC, we can use it to make predictions and extrapolate model
parameters.

5.1 SMC calculation of 5.1SRU-SV model

The density-adjusted sequential Monte Carlo (D-T-SMC) sampler is a variant of the sequential
Monte Carlo (SMC) method. It is specially designed for Bayesian inference that the likelihood
function is difficult to calculate, but can be sampled from a priori and a posteriori distribu-
tions. It uses a series of intermediate distributions, which are harmonic versions of posterior
distributions, which makes it more efficient in exploring posterior distributions. The D-T-
SMC method first samples M weighted particles ൛ ܹ

 , ߠ
ൟ

ୀଵ

ெ
from the sample distribution

such as a priori p(θ). Then, the particle traverses a series of k intermediate distributions ,(ߠ)ߨ
and the final distribution is the posterior distribution π (θ). The goal is to estimate the (ߠ)ߨ
posterior distribution by combining the weighted particles from each intermediate distribution.

(ߠ)ߨ ∶= ∝ (ݐ：1ݕ|ߠ)ߨ ,ߠ|ݐ：1ݕ)̂ ,(ߠ) ݇ߛ(ݑ (14)

Where U is the auxiliary variable and γk is the normalization constant with integral of (ߠ)ߨ
being 1.

The DT-SMC method performs three main steps for each intermediate distribution:Weighting:
the particle set ൛ ܹିଵ

 , ିଵߠ
 ൟ

ୀଵ

ெ
 in the previous intermediate distribution (ߠ)ିଵߨ is re-

weighted to approximate the target distribution Resampling: The resampling step is.(ߠ)ߨ
performed to avoid particle degeneracy, which occurs when some particles have very low
weights and others have very high weights. In the DT-SMC method, a resampling step is per-

formed when the effective sample size (ESS) is below a preset threshold. In the resampling
step, substitutions are made from the current set of particles to sample m new sets of particles
with a probability proportional to their weights.

Markov Mobility: The Markov Mobility step updates particles using a Markov kernel that
aims to move the particles to a target distribution. Markov kernels can be chosen in different
ways depending on the problem at hand. For example, the Pseudo-marginal Metropolis-
Hastings (PMMH) algorithm can be used to estimate the unbiased likelihood in a Markov
moving step.

The DT-SMC method iterates through these steps until the target distribution π(θ) is=(ߠ)ߨ
reached, and then generates a final estimate based on the weighted particle set of the last in-
termediate distribution.

When using the state space model for Bayesian inference, the likelihood function is usually
difficult to handle, and the PMMH (Particle Marginal Metropolis-Hastings) method can be
traditionally used. However, this method is computationally inefficient and the quality of the
proposal distribution may be poor, which may lead to low acceptance rates and slow conver-
gence of the Markov chain. The PMMH method may not be applicable to our model with
high-dimensional parameter space or model with high likelihood nonlinearity or multi-modes
[7].

In order to solve this problem, Deligiannidis, Doucet and Pitt proposed a new method called
Pseudo-edge Markov Chain Monte Carlo Algorithm (CPM). This method uses the Met-
Hastings step and the pseudo-edge step, and introduces a set of auxiliary random variables to
estimate the likelihood ratio in the MH acceptance probability. Specifically, the CPM method
introduces a small perturbation to generate a new likelihood estimate, which is proportional to
the difference between the current estimate and the previous estimate, which enables the algo-
rithm to converge to the true likelihood value more quickly. This introduces the correlation
between the auxiliary variables and the proposed parameters, which helps to reduce the vari-
ance of the likelihood ratio estimator and improve the mixing of Markov chains.

In addition, the DT-SMC method provides marginal likelihood estimation as a by-product of
the algorithm. This is because the method involves calculating the normalized constant of the
posterior distribution, which is proportional to the marginal likelihood. Marginal likelihood is
the probability of observing data under a given model, integrating all possible values of model
parameters. It can be used to compare the relative goodness of fit of different models, taking
into account the complexity of the models and assessing the overall quality of the reasoning
performed by the algorithm.

5.2 Model selection of marginal likelihood

According to the above discussion, the DT-SMC method provides an unbiased estimate of the
marginal likelihood as a by-product of the particle filtering process. Suppose we have two
models ଵandܯ ଶwith parametersܯ ଵ andߠ ଶ, respectively. The marginal likelihood of the twoߠ
models is:

(ଵܯ|ݕ) = ∫ ,ଵߠ|ݕ) ଵߠ݀(ଵܯ|ଵߠ)(ଵܯ

(ଵܯ|ݕ) = ∫ ,ଶߠ|ݕ) ଶߠ݀(ଶܯ|ଶߠ)(ଶܯ

Where p(y|ߠ, m) is the likelihood function of the model and p(ߠ|M) is the prior distribution of
the parameters. The ratio of the marginal likelihood of the two models is called the Bayesian
factor: B(ܯଵ,ܯଶ)=p(y|ܯଵ)/p(y|ܯଶ)

If B(ܯଵ,ܯଶ)>1, the ଵmodel is better than theܯ ଶ model. The larger the Bayesian factor, theܯ
stronger the evidence supporting .ଵ [8]ܯ

6 Performance assessment

Table 1. Prior distribution of the parameters.

SR-SV SV N-SV
Parameter Prior Parameter Prior Parameter Prior

 N(0,0,1) μ N(0,25) μ N(0,25)
 +

Beta(20,1.5) ϕ + 1

2
Beta(20,1.5) ϕ + 1

2
Beta(20,1.5)

ો IG(2.5,0.25) σଶ IG(2.5,0.25) σଶ IG(2.5,0.25)
 IG(2.5,1) δ N(0,0,1)
હ Beta(2,2)

,ܐ܅ ,܅ િ܅ N(0,0,1)
,ܚ܊ ܊ N(0,0,1)

ܢ܅ IG(2.5,1)
We use DT-SMC sampler to perform bayesian inference on SV, N-SV and SR-SV models.
Different from GARCH, LMSV model has no explicit state space representation and its likeli-
hood function is difficult to analyze. Therefore, the frequency domain estimation method is
often used to estimate the model parameters. We now motivate the prior choices in Table 2.
We follow Yu, Y ang, and Zhan g and kim, shephard d, andchib to set the same a priori, i.e.
Beta distribution. Table 1 shows the prior distribution of the parameters in the three models.

The three models here are SV, N-SV and SR-SV The persistence parameter φ is specific to
these models. In all models, the parameter ଶ is inverse prior, but the prior selection of otherߪ
parameters is different. In the SR-SV model, the beta0 value of intercept is , and the normalߚ
prior has a small square variance, because a small value of - is often observed in the experiߚ
mental results. The parameters ଵߚ and ௭ݓ in the SR-SV model have a unimodal posterior
distribution under the inverse prior condition. For other SRU parameters, the normal prior
with zero mean and small square variance proposed by RNN is used. The empirical results
show that these parameters tend to be very small.

Table 2. Forecast scores used to measure off-sample performance.

Score Definition Score Definition
PPS −T୲ୣୱ୲

ିଵ logp(y୲|yଵ:୲ିଵ, θ)
ୈ౪౩౪

MSEଵ T୲ୣୱ୲
ିଵ (σ୲ − σෝ୲)ଶ

ୈ౪౩౪

QLIKE T୲ୣୱ୲
ିଵ (log൫σෝ୲

ଶ൯ + σ୲
ଶσෝ୲

ିଶ

ୈ౪౩౪

) MSEଶ T୲ୣୱ୲
ିଵ (σ୲

ଶ − σෝ୲
ଶ)ଶ

ୈ౪౩౪

RଶLOG T୲ୣୱ୲
ିଵ ൣlog(σ୲

ଶσෝ୲
ିଶ)൧

ଶ

ୈ౪౩౪

MSEଵ T୲ୣୱ୲
ିଵ |σ୲ − σෝ୲|

ୈ౪౩౪

MSEଶ T୲ୣୱ୲
ିଵ หσ୲

ଶ − σෝ୲
ଶห

ୈ౪౩౪

.

Table 2 lists the forecast scores used to measure off-sample performance. In this assessment,
the estimated posterior mean of the in-sample data is compared to the out-of-sample data us-
ing one-step prediction. Our goal is to see if the model can predict well future data not used in
the model fit. The smaller the forecast score, the better the forecast performance for the out-of-
sample data.

6.1 Simulator investigation

In this paper, a time series of T=3000 observations is generated, which is recorded as three
simulation models of SIMI, SIMII and SIMIII (see Table 4). Model 1 is a GARCH (1,1) mod-
el [9], while Model 2 is an extension of GARCH(1,1), and Model 3 is a FIGARCH(1,d,1)
model. The first 2,000 observations for each dataset are used for model estimation and the last
1,000 observations are used for off-sample analysis. Table 3 introduces the simulation model
of the three experiments [10].

Table 3. Simulation: Data generating process.

Data Model Parameter
EXP I σ୲

ଶ = μ + αy୲ିଵ
ଶ + βσ୲ିଵ

ଶ , t = 2, … , T σ୲
ଶ = 0.1, μ = 0.1

y୲ = σ୲ϵ୲ , ϵ୲~N(0,1), t = 1, … , T α = 0.07, β = 0.92
EXP II

h୲ = μ + α
(y୲ିଵ

ଶ)ஔ − 1
δ + βh୲ିଵ, t = 2, … , T

hଵ = 0.1, β = 0.1

y୲ = (1 + δh୲)
ଵ

ଶஔϵ୲, ϵ୲~N(0,1), t = 1, … , T α = 0.15, β = 0.82, δ = 0.9

EXP III σ୲
ଶ = μ + ൣ1 − βΒ − (1 − ϕΒ)(1 − Β)ୢ൧y୲

ଶ + βσ୲ିଵ
ଶ , t

= 2, … , T
σ୲

ଶ = 0.1, μ = 0.01

y୲ = σ୲ϵ୲ , ϵ୲~N(0,1), t = 1, … , T ϕ = 0.01, β = 0.5, d = 0.62

Table 4. Posterior means of the parameters with the posterior standard deviations in brackets.

μ ϕ σଶ α β βଵ w Mar. llh
EXP I SV 2.147

(0.229)
0.938
(0.005)

0.021
(0.004)

-5100.7
(0.136)

SR
− SV

0.986
(0.022)

0.027
(0.006)

0.520
0.169()

0.037
(0.029)

0.392
(0.227)

0.225
(0.262)

-5099.9
(0.308)

EXP II SV 1.057
(0.129)

0.969
(0.010)

0.038
(0.005)

-4060.4
(0.158)

SR
− SV

0.798
(0.105)

0.056
(0.011)

0.541
(0.146)

0.037
(0.043)

0.432
(0.199)

0.503
(0.267)

-4057.6
(0.298)

EXP III SV 0.155
(0.341)

0.968
(0.007)

0.050
(0.006)

-3147.0
(0.201)

SR
− SV

0.894
(0.027)

0.045
(0.012)

0.609
(0.261)

-0.105
(0.052)

0.343
(0.131)

0.315
(0.098)

-3144.3
(0.324)

Table 4 shows the posterior estimates of the SV and SR-SV model parameters, and the last
column shows the marginal likelihood estimates. We summarize the estimation results and
conclusions of the SV and SR-SV model fitting simulation data (SIMI, SIMII and SIMIII).
From the estimation results, we can draw the following conclusions: in SIMII and SIMIII, the
distance between the estimated posterior mean value of ଵߚ and ௭ݓ and zero exceeds two
standard deviations, indicating that there is volatility effect rather than linearity in volatility
dynamics, while in SIMI, the distance between -ଵand zero is less than two standard deviaߚ
tions, indicating that only simple linearity effect can be detected in volatility dynamics of this

data set. For SIMI,SV and SR-SV models are very suitable. If the real data generation process
has no other effect in volatility dynamics than short memory linear self-dependence, SR-SV
model is close to SV model. For SIMII and Simiii, the additional neural network structure of
the SR-SV model effectively captures the volatility effects ignored by the basic SV model.

Table 5 reports the predicted performance scores for the SV and SR-SV models with Monte
Carlo standard error. The SR-SV model outperforms the SV model in all forecast scores for
SIMII and SIMI3, and the SR-SV model outperforms the SV model in all scores except the
PPS score for SIMI, which demonstrates the impressive off-sample forecast capability of the
SR-SV model.

Table 5. Simulation: Forecast performance of the SR-SV and SV models.

PPS MSE1 MSE2 MAE1 MAE2 QLIKE R2LOG COUNT
EXP I SV 3.510

(0.001)
1.010
(0.003)

0.995
(0.003)

0.980
(0.002)

0.920
(0.004)

0.994
(0.001)

0.993
(0.004)

one

SR − SV 3.490
(0.000)

0.955
(0.002)

0.865
(0.003)

0.765
(0.001)

0.710
(0.002)

1.030
(0.001)

0.880
(0.003)

six

EXP II SV 2.340
(0.000)

0.475
(0.000)

0.710
(0.001)

0.775
(0.001)

0.825
(0.001)

0.775
(0.001)

1.070
(0.001)

0

SR − SV 2.330
(0.000)

0.225
(0.002)

0.445
(0.003)

0.485
(0.002)

0.585
(0.000)

0.530
(0.003)

0.880
(0.003)

seven

EXP III SV 1.670
(0.001)

0.990
(0.004)

1.020
(0.004)

0.920
(0.003)

0.975
(0.003)

0.945
(0.004)

0.710
(0.004)

0

SR − SV 1.660
(0.000)

0.780
(0.004)

0.805
(0.003)

0.640
(0.002)

0.725
(0.003)

0.685
(0.003)

0.465
(0.002)

seven

7 Stock forecast

This section studies and analyses stock market data for different indices, including CAC,SWX
and STI. The data are derived from the realized pool and the analysis is based on a revenue
reduction process, calculated using the adjusted closing price. The analysis is divided into in-
sample and out-of-sample parts, of which the first 2,000 returns are used for in-sample analy-
sis and the remaining 1,000 returns are used for out-of-sample analysis. Table 6 provides de-
scriptive statistics on the degradation benefits of the CAC, SWX and STI datasets. Descriptive
statistics include minimum, maximum, standard deviation, skewness, and kurtosis, which are
calculated based on the return value of each dataset.

Table 6. Descriptive statistics for the demeaned returns of the CAC, SWX and STI datasets.

Min Max Std Skew Kurtosis Vn(10) Vin(20) Vin(30)
CAC -7.434 9.987 1.265 0.113 10.964 3.229 2.503 2.148

2.460 1.928 1.672
SW
X

-11.619 12.153 1.185 0.306 17.0547 3.937 3.033 2.590
2.567 2.091 1.846

STI -7.218 6.660 1.130 -0.323 7.386 3.785 2.979 2.578
3.021 2.456 2.168

The table 6 shows the test statistics for the long memory modified R/S test of lag Q performed

by Lo on the absolute and squared gains for each data set. This test is used to determine
whether the return has a long-term memory, which means that the autocorrelation of the return
persists over time. The value of Vn(q) indicates the degree of long memory, and the greater
the value, the stronger the evidence of long memory. From the table 6, we can see that all data
sets show evidence of long memory, as indicated by the significant asterisk. Different data sets
have different Vn(q) values, SWX data set has the highest Vn(q) value and CAC data set has
the lowest Vn(q) value, which indicates that SWX data set has the strongest long-memory
evidence among the three data sets. The analysis shows that there is volatility clustering effect
in financial data. This study uses different realized volatility measures, including realized
variance (RV), double power variance (BV), median realized volatility (MedRV) and realized
kernel variance (RKV), to evaluate the prediction performance of a given data set.

7.1 Sample analysis

Table 7. Applications: Posterior means of the parameters with the posterior standard deviations in brack-
ets.

μ ϕ σଶ δ α β βଵ w Mar. llh
CAC SV -1.030 0.985 0.035 -2869.3

0.236 0.004 0.006 -0.167
N − SV -0.135 0.973 0.034 -0.195 -2870.4

0.218 0.005 0.006 0.082 0.228
SR − SV 0.868 0.061 0.609 -0.122 -0.406 -0.393 -2866.8

0.056 0.018 0.196 0.059 0.197 0.151 0.297
SWX SV -0.208 0.983 0.024 -2688.0

0.317 0.004 0.004 0.182
N − SV -0.369 0.981 0.024 -0.245 -2687.0

0.267 0.003 0.007 0.078 0.211
SR − SV 0.827 0.051 0.787 -0.199 0.532 0.384 -2683.8

0.059 0.024 0.134 0.081 0.258 0.137 0.334
STI SV -0.216 0.975 0.041 -2789.1

0.234 0.007 0.010 0.229
N − SV -0.220 0.977 0.042 -0.195 -2789.3

0.261 0.006 0.007 0.086 0.237
SR − SV 0.847 0.091 0.783 -0.183 0.445 0.359 -2786.2

0.081 0.047 0.249 0.197 0.334 0.326 0.407

According to Table 7, the analysis was conducted on the fitting of SV, N-SV, and SR-SV
models to three datasets. The results indicate that the SR-SV model provides a better fit to the
data compared to the SV and N-SV models, as evidenced by higher log-marginal likelihood
values and Bayes factors exceeding eଶ.ଷ in all cases.

The SR-SV model captures more general volatility effects, such as nonlinearity and long-
memory auto-dependence, as indicated by the posterior means of the nonlinearity long-
memory parameter (βଵ), fractional integration parameter (d), and the nonlinear parameter
(w). These parameters are all significantly different from zero, suggesting strong evidence of
long-memory dependence and more general serial dependence in the volatility dynamics of
the datasets.

Furthermore, the SR-SV model exhibits a moving average weight parameter (α) with modes
close to 1, indicating its ability to capture short-term dependence on volatility. This feature is
similar to the results observed in previous simulations.

It is important to note that the persistence parameter (φ) in the SR-SV model is consistently
smaller than the persistence parameters in the SV and N-SV models. This is attributed to the
significance of the parameter (w) in the SR-SV model, which reduces the linear effect of past
volatility on current volatility. This finding contrasts with the scenario where no volatility
effects are present, resulting in similar persistence parameters between the SV and SR-SV
models.

Overall, the SR-SV model demonstrates a superior data fit compared to the SV and N-SV
models. It effectively captures mean regression behavior, exhibits strong volatility persistence,
incorporates a moving average component that captures short-term dependence on volatility,
and detects more general serial dependence beyond linear relationships. The estimation results
also indicate the presence of a more general fluctuation effect, supported by the long memory
parameter and fractional integral parameter exceeding two standard deviations from zero.

In conclusion, the SR-SV model offers a comprehensive and suitable approach for analyzing
the datasets, surpassing the SV and N-SV models in terms of data fit and capturing a broader
range of dynamics in volatility. Table 8 shows a model diagnosis of filtered log volatility and
residuals for various stock market indices (CAC, SWX, and STI) using different volatility
models (SV, N-SV, LMSV, and SR-SV).

Table 8. Applications: Model diagnostics of the filtered log volatility and residualܜෝ .ܡ

Filtered volatility Residualϵ୲ෝ ୷

Mean Std Kurtosis Skew Std Kurtosis Skew LB − ϵ୲ෝ
CAC SV 1.542 1.952 24.709 4.116 0.998 2.849 -0.214 0.981

N − SV 1.602 2.313 38.798 5.195 0.985 2.772 -0.211 0.973
LMSV 1.431 1.684 13.965 2.936 1.005 3.632 -0.162 0.901

SR − SV 1.342 1.572 26.615 4.229 0.994 2.852 -0.206 0.965
SWX SV 1.353 2.108 56.192 6.245 0.971 2.830 -0.039 0.166

N − SV 1.422 3.179 182.195 11.563 0.971 2.804 -0.027 0.232
LMSV 1.286 1.656 22.736 3.798 1.006 4.016 -0.027 0.327

SR − SV 1.114 1.673 51.864 5.938 0.983 2.798 -0.051 0.136
STI SV 1.429 1.565 13.586 2.859 0.988 2.737 -0.119 1.03

N − SV 1.496 1.881 22.185 3.722 0.987 2.705 -0.113 1.106
LMSV 1.292 1.458 11.899 2.662 1.004 3.585 -0.054 1.109

SR − SV 1.172 1.164 13.401 2.733 0.991 2.731 -0.134 1.107

The "Filtered Volatility" column provides the average, standard deviation, kurtosis and skew-
ness of the filtered logarithmic volatility for each model and index. The Residual column pro-
vides the same statistics for the residuals of the corresponding model. The "lb -p Value" col-
umn shows the P value of the Ljung-Box test with 10 lags, which tests for the presence or
absence of autocorrelation in the residuals.

On the whole, based on these diagnostic measures, the model seems to perform quite well
without obvious signs of irregularity or inappropriateness. LMSV models generally show the
lowest kurtosis and skewness values of filtered volatility and residuals, indicating a more
symmetrical and peak distribution. The SR-SV model generally shows the lowest lb -p value,
indicating the best fit for the data in terms of residual autocorrelation.

7.2 Off-sample analysis

Table 9. Applications: Summary statistics on the one-step-ahead out-of-sample forecast conditional
variancesand residual . ોܜෝ ܜෝ .܋

eight Filtered volatility Forecast residualϵ୲ෝ ୷

Mean Std Kurtosis Skew Std Kurtosis Skew LB
− ϵ୲ෝ

CAC SV 1.083 0.590 3.047 0.729 0.998 4.016 -0.329 0.653
N − SV 1.086 0.598 3.527 0.912 0.993 3.989 -0.337 0.660
LMSV 1.097 0.626 3.530 0.898 1.003 3.994 -0.305 0.578

SR − SV 0.957 0.468 3.322 0.898 1.035 3.886 -0.323 0.598
SWX SV 0.781 0.496 13.284 2.715 0.990 4.171 0.042 0.424

N − SV 0.776 0.524 22.141 3.665 0.989 4.116 0.027 0.413
LMSV 0.867 0.503 9.332 2.003 0.936 4.283 0.063 0.327

SR − SV 0.618 0.343 15.776 3.015 1.099 3.943 -0.015 0.407
STI SV 1.027 0.663 4.463 1.111 0.933 3.874 -0.633 0.849

N − SV 1.029 0.689 5.346 1.391 0.935 3.699 -0.629 0.801
LMSV 1.118 0.675 6.119 1.563 0.941 3.940 -0.555 0.772

SR − SV 0.846 0.466 4.271 1.032 0.965 3.458 -0.562 0.724
For each index, four different volatility models are considered: SV,N-SV,LMSV and SR-SV.
Filtered volatility and forecast residuals for mean, standard deviation, kurtosis and skewness
are reported. In addition, the LBp values of 10 lagging Ljung-Box tests are also provided in
Table 9.

In general, the average filtered volatility and forecast residual error are different between dif-
ferent models and indices. However, the standard deviation of the prediction residual error is
usually low, which indicates that the model can capture most of the changes in the data. The
kurtosis and skewness of the forecast residual error are also different between different models
and indexes, which indicates that the model can capture different aspects of the data volatility
structure. The LBp value of the residuals is usually high, indicating that the model can capture
the autocorrelation structure in the data.

The marginal likelihood estimation shows that the SR-SV model is more suitable for the in-
sample data of five exponential data sets than the SV and N-SV models. The use of noise in-
jection regularization in the SR-SV model helps to prevent known over-fitting problems, and
the forecast volatility and forecast residuals that are one step ahead of the meaner SV and N-
SV models appear to perform well. In all five index data sets, the SR-SV model is one step
ahead of the others in predicting the mean and standard deviation of volatility. SR-SV forecast
is usually more conservative in low volatility period, and the forecast interval usually has a
smaller band than other models.

Table 10 provides performance indicators for different models, predicting the Standard &
Poor's 500 Index (SPX) one step ahead using different implementation measures. These indi-
cators include PPS (symbolic forecast probability), MSE1 and MSE2 (mean squared error of
original and excess returns), MAE1 and MAE2 (mean absolute error of original and excess
returns), QLIKE (quasi-log likelihood), R2LOG (log r squared) and Count (number of times
the model has the lowest or best forecast score). The models include benchmark SV model,
non-singular value (N-SV) model, local median SV(LMSV) model, generalized power volatil-

ity (GP-Vol) model and stochastic horizontal stochastic volatility (SR-SV) model.

Table 10. SPX data: One-step-ahead forecast performance of the SR-SV and benchmark models using
different realized measures, with the Monte Carlo standard errors in brackets.

five PPS MSEଵ MSEଶ MAEଵ MAEଶ QLIKE Rଶ Count
BV SV 1.234 0.111 1.543 0.265 0.456 0.404 0.777 0

0.002 0.001 0.003 0.002 0.002 0.002 0.003
N − SV 1.223 0.123 1.537 0.246 0.435 0.403 0.780 0

0.001 0.001 0.003 0.002 0.002 0.002 0.004
LMSV 0.138 1.547 0.292 0.497 0.443 0.922 0

GP − VOL 0.194 1.746 0.339 0.609 0.599 1.205 0
SR − SV 1.229 0.100 1.532 0.190 0.323 0.301 0.520 8

0.002 0.000 0.003 0.000 0.002 0.003 0.000
MedRV SV 0.117 0.834 0.259 0.421 0.362 0.920 0

0.000 0.002 0.001 0.000 0.001 0.003
N − SV 0.117 0.830 0.260 0.421 0.362 0.924 0

0.000 0.002 0.001 0.000 0.001 0.004
LMSV 0.143 0.918 0.300 0.496 0.362 0.924 0

GP − VOL 0.196 1.370 0.339 0.600 0.575 1.447 0
SR − SV 0.104 0.826 0.238 0.391 0.311 0.762 0

0.000 0.002 0.000 0.000 0.001 0.001
RKV SV .0144 0.833 0.256 0.418 0.364 0.914 0

0.001 0.000 0.000 0.001 0.000 0.002
N − SV 0.143 0.831 0.256 0.419 0.362 0.915 0

0.001 0.002 0.000 0.000 0.000 0.001
LMSV 0.140 0.902 0.288 0.474 0.402 1.099 0

GP − VOL 0.180 1.035 0.315 0.547 0.499 1.259 0
SR − SV 0.143 0.821 0.238 0.386 0.346 0.807 6

0.000 0.001 0.000 0.000 0.000 0.001
RV SV 0.128 1.862 0.246 0.421 0.332 0.796 0

0.000 0.002 0.001 0.002 0.000 0.002
N − SV 0.128 1.861 0.247 0.422 0.330 0.799 0

0.000 0.002 0.001 0.001 0.001 0.003
GP − VOL 0149 1.947 0.282 0.483 0.386 0.982 0

LMSV 0.191 2.044 0.318 0.570 0.487 1.188 0
SR − SV 0.137 1.859 0.224 0.381 0.317 0.691 six

0.000 0.001 0.000 0.000 0.001 0.000
In general, the SR-SV model outperforms the benchmark SV model and other models in most
performance indicators. The SR-SV model has the highest PPS value, the lowest MSE1 and
MSE2 values, and the lowest MAE1 and MAE2 values. In most cases, it also has the highest
QLIKE and R2LOG values. The N-SV model and the LMSV model also show good perfor-
mance in some cases, while the GP-Vol model has been underperforming. The results show
that the proposed SR-SV model can predict the SPX index better than the benchmark SV
model and other existing models. The results also highlight the importance of using appropri-
ate implemented measures for volatility forecasting, as different measures can result in differ-
ent model performance. Judging from the out-of-sample prediction performance, the SR-SV
model is always better than all other models on all data sets, further proving that it does not
over-fit the data. The performance of SV and N-SV models is mixed, and no one model al-
ways performs better than the other. The predictions of LMSV and GP-Vol models have been
the least accurate.

8 Conclusion

In this paper, a new volatility modeling and forecasting method is proposed, which combines
the statistical cycle unit structure in machine learning with the stochastic volatility model in
financial econometrics. The resulting SR-SV model proved to be an efficient model for vola-
tility modeling and forecasting, and was able to capture various volatility effects ignored by
the SV benchmark model. However, the SR-SV model still has many deficiencies that need to
be further explored: the SR-SV model needs to estimate many parameters, including the
weights and deviations of the recurrent neural network and the super-parameters of the sto-
chastic volatility model. Estimates may require significant calculations and may require care-
ful adjustments to the optimization algorithm. The SR-SV model is a model that requires a
large amount of data, which means that it needs a large amount of training data to accurately
understand the potential fluctuations. If the training data is limited or noisy, the model may
perform poorly. The SR-SV model assumes that the potential volatility dynamics can be mod-
eled using a stochastic volatility model and that the time series of earnings and volatility are
linearly correlated. These assumptions may not hold true in all cases, especially in markets
with complex nonlinear dynamics.

References

[1] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the vari-
ance of United Kingdom inflation. Econometrica, 50(4), 987-1008. doi: 10.2307/1912773
[2] Harvey, A. C., & Chakravarty, T. (2008). Beta-t-(N-SV) models for financial time series. Jour-
nal of Business & Economic Statistics, 26(3), 349-360. doi: 10.1198/073500107000000406
[3] Kim, C. J., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and
comparison with ARCH models. Review of Economic Studies, 65(3), 361-393. doi: 10.1111/1467-
937x.00044
[4] Wu, F., Ding, S., & Zhu, X. (2019) . Large-scale language modeling with maximal mini-batch
backpropagation through transposed recurrent connections. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers) (pp. 2393-2403).
[5] Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of
Financial Econometrics, 7(2), 174-196. doi: 10.1093/jjfinec/nbn004
[6] Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods (2nd ed.). Springer Sci-
ence & Business Media.
[7] Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods
for Bayesian filtering. Statistics and Computing, 10(3), 197-208. doi: 10.1023/A:1008935410038
[8] Singh, S. S., & Doucet, A. (2017). A general framework for sequential Monte Carlo sampling
using determinantal point processes. Journal of Machine Learning Research, 18(98), 1-36.
[9] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3), 307-327.
[10] Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized au-
toregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3-30.

