EAI Endorsed Transactions

on Future Internet Research Article EALLEU

Reassessing Android Malware Analysis: From Apps
to IoT System Modelling

Abraham Rodriguez-Mota!”, Ponciano Jorge Escamilla-Ambrosio?, Jassim Happa®, Eleazar
Aguirre-Anaya?

Hnstituto Politécnico Nacional, Escuela Superior de Ingenieria Mecanica y Eléctrica, Unidad Zacatenco, Av. IPN
S/N C.P. 07738, Mexico City, Mexico

2Instituto Politécnico Nacional, Centro de Investigacién en Computacién, Mexico

3University of Oxford, Department of Computer Science, UK

Abstract

Applications based on the Internet of Things (IoT) are increasingly vulnerable to disruption from cyber
attacks. Developers and researchers attempt to prevent the growth of such disruption models, mitigate and
limit their impact. This requires the understanding and characterization of things and the technologies that
empower the IoT. Futhermore, tools to evaluate, analyze and detect security threats in IoT devices are strongly
required. This paper presents a web tool, named GARMDROID, aimed to help IoT software developers

and integrators to evaluate IoT security threats based on the visualization of Android application hardware
requests. This procedure is based on the static analysis of permissions requested by Android applications.
A mapping from the malware analysis data obtained to a SysML block definition diagram is also briefly
described. This mapping shows how data can be used to model IoT systems under different proposals such as
Model Integrated Mechatronics (MIM) and UML4IoT.

Received on 23 November 2016; accepted on 21 September 2017; published on 15 January 2018

Keywords: Internet of Things, Android, Security Threats.

Copyright © 2018 Abraham Rodriguez-Mota et al., licensed to EAL This is an open access article distributed under the
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.12-1-2018.153565

1. Introduction

The Internet of Things (IoT) promises to extend “any-
where, anyhow, anytime” computing to “anything, any-
one any service”. Therefore, the IoT envisions a future
where each person and thing has a locatable, address-
able, and readable counterpart on the Internet. Such
highly-distributed nature and use of fragile technolo-
gies, such as limited-function embedded devices in
public areas, create weak links that malicious entities
can exploit [1]. Consequently, a number of different
factors may arise and lead to different types of security
exposures, among them consistently defects, bugs and
logical flaws are causes of commonly exploited software
vulnerabilities [2]. Therefore, the challenge is to prevent
the growth of such models or at least to mitigate and
limit their impact.

*Corresponding author. Email: armesimez@gmail.ipn.mx

2 EAI

Traditional IoT protection mechanisms, such as
lightweight cryptography, secure protocols, and privacy
assurance are not enough. In this sense, research must
be oriented to analyze current security protocols and
mechanisms, and decide whether such approaches are
worth integrating into the IoT as is or if adaptation
or entirely new designs will better accomplish security
goals. Since attacks could involve various layers of the
device infrastructure, they could include applications
running on smartphones or tables, cloud services
(firmware included), and network service stacks on
WiFi modules (as well as the firmware and application
layer on the host processor) [1].

In IoT mobile applications, new vulnerabilities
continue to emerge as IoT becomes a more attractive
target. In terms of the nature of mobile devices, their
vulnerability surface share attributes with traditional
client/server and Web applications. However the type
of information that is trusted on mobile devices
creates some unique attack vectors as well. For

EAI Endorsed Transactions on

1 Future Internet

082017 - 01 2018 | Volume 3 | Issue 10 | e3

http://creativecommons.org/licenses/by/3.0/
mailto:<armesimez@gmail.ipn.mx>

A. Rodriguez-Mota, et al.

example, privacy violation weaknesses occurring on
mobile devices can lead to the disclosure of location,
sensitive images, and data entered from the keyboard or
displayed on the screen and other personal information
[2].

Taking into account that in recent years Android OS
has become one of the principal sharers in the global
mobile devices market [3], our research has focused
on the analysis and detection of security threats in
Android applications. This paper presents a subset of
functionalities of an Android malware hybrid analysis
and detection software system, called GARMDROID,
currently under development. Although GARMDROID
has a bigger aim, oriented to integrate static and
dynamic malware analysis, since static analysis is
usually the first approach to malware analysis, we focus
this discussion on the capabilities of GARMDROID
to provide quick feedback to developers producing
a visualization of app’s permissions and features
requirements. As discussed later on, this visualization
results very handy in the identification of potential
threats or bad designed software. This system has been
named GARMDROID as a result of the fusion of the
words GARM and Android (in Norse mythology, Garm
is a dog described as a blood stained watchdog that
guards Hel’s gate [4]).

2. Android Overview

An Android device can have a wide variety of sensors.
Android’s sensing capabilities are derived from the
available hardware on Android devices and from
creative use of it. A capability may use values directly
from hardware that can measure physical quantities or
it may use hardware that the user typically interacts
with, such as the camera and microphone. A capability
may even use a combination of hardware and server-
based processing, such as speech recognition. Whatever
the source, the resulting data can inform an application
(app) about the device’s state and the environment in
which it resides [5].

In any app, acquiring sensor data requires similar
code. Each kind of data requires different boilerplate.
In many cases, is not trivial to initialize the API and
acquire the data. Once an app can initialize and acquire
sensor data, it needs to utilize the APIs to collect the
data while the app is running. Data can be collected in
different ways depending on how an app uses it. For
example, location tracking is a common use of location
sensors, in this case some apps need to persistently
track location while an app performs other tasks. In
the case of speech recognition, such app needs to have
other components besides actually running the speech
recognizer. An app also needs to allow the user to
activate speech and mediate turn taking between when
the user can speak and when the app is listening [5].

2 EAI

In this sense, a <uses-feature> element contained in
an AndroidManifest.xml file, declares a single software
feature that is used by an application. The purpose
of declaring these elements is to inform any external
entity of the set of hardware and software features on
which an application depends. The element offers a
required attribute that lets developers specify whether
the application requires and cannot function without
the declared feature, or whether it prefers to have
the feature but can function without it. Because
feature support can vary across Android devices, the
declaration of these elements serves an important role
in letting an application describe the device-variable
features that it uses [6].

Declaring features is for informational purposes only.
The Android system itself does not check for matching
features support on the device before installing an
application. However, other services (such as Google
Play) or applications may check the declarations in
the application as part of handling or interacting with
the application. When a user searches or browses
for applications using the Google Play application,
the service compares the features needed by each
application with the features available on the user’s
device. If all of an application’s required features are
present on the device, Google Play allows the user to
see the application and potentially download it. If any
required feature is not supported by the device, Google
Play filters the application so that it is not visible to the
user and not available for download [6].

An explicitly declared feature is one that an applica-
tions declares in a <uses-feature> element. The feature
declaration can include an android:required=[“true” |
“false”] attribute (if the code is being compiled against
function API level 5 or higher), which lets the developer
specify whether the application absolutely requires the
feature and cannot function properly without it, or
whether the application prefers to use the feature if
available, but it is designed to run without it. In general,
if an application is designed to run on Android 1.6
and earlier versions, the android:required attribute is not
available in the API and Google Play assumes that any
and all feature declarations are required [6].

An implicit feature is one that an application
requires in order to function properly, but which is not
declared in the manifest file. Strictly speaking, every
application should always declare all features that it
uses or requires, so the absence of a declaration for a
feature used by an application should be considered
an error. However, as a safeguard for users and
developers, Google Play looks for implicit features in
each application and sets up filters for those features,
just as it would do for an explicitly declared feature.
Google Play attempts to discover an application’s
implied feature requirements by examining other

EAI Endorsed Transactions on
Future Internet
082017 - 01 2018 | Volume 3 | Issue 10 | e3

Reassessing Android Malware Analysis: From Apps to loT System Modelling

elements declared in the manifest file, specifically,
<uses-permission> elements[6].

If an application requests hardware-related permis-
sions, Google Play assumes that the application uses the
underlying hardware features and therefore requires
those features, even though there might be no corre-
sponding features declarations. For such permissions,
Google Play adds the underlying hardware features to
the metadata that it stores for the application and sets
up filters for them [6].

3. Android Threats

The way people experience and interact with devices
is changing. More and more gadgets and devices
are being added to the IoT ecosystem everyday. The
interconnection between these gadgets and devices
has the potential to create remarkable, new user
experiences [7]. However, novel technology can lead to
exposures, as the implications of new technologies can
sometimes be difficult to guess and avenues of attack
can be unexpected until observed in practice [2].

Mobile application vulnerabilities continue to evolve
as Android devices become attractive targets. Mobile
devices contain sensors and actuators of types not
historically common in personal computers or servers,
which collect and transmit private information about
the user of the device. The list of sensors that can
reveal sensitive information include cameras, micro-
phones, accelerometers, gravity sensors, rotational vec-
tor sensors, gyroscopes, magnetometer, Global Position-
ing System (GPS) sensors, Near-Field Communication
(NFC), light sensors, M7 tracking chips, barometers,
thermometers, pedometers, heart-rate monitors, and
fingerprint sensors [2].

Privacy-violation weaknesses occurring on mobile
devices can lead to the disclosure of location, sensitive
images, data entered from the keyboard or displayed
on the screen and other personal information. While
smartphones can be used for viewing, manipulating,
and storing local data, these devices also allow
users to interact with a world of interconnected
resources from the convenience of their hands. Through
communication protocols, both sensitive and benign
data is shared between remote services in different
devices [2]. In the context of Android, privacy violation
weaknesses can be related to a set of security risks,
Figure 1 presents 10 of the biggest Android security
risks.

Additionally, it must also be considered that insecure
deployment combines various configurations, settings,
and states that result in unnecessary weaknesses.
For mobile applications this may include not using
technologies of content protection such as PlayReady
DRM, not checking to determine if the application

2 EAI

Intusive + Durng nstallation users
AVIOL Androids Applcaions nead o seriously revisw
: permission requasts
Fepackagzd ‘
Fli sswords + Sometimes used to
ey pe EEE LG imolant Android Troans
+ Lackof Naked D
rardma(eﬂ—'—’ EEINER Ancroid Mahvare
encryption
+ Phishing vzriant .
+ Useslextio i SHShng Fale Antitfalvare « Urlke 05, Andioid does
Lsers notyet offer native Mobile
Device Wanagemert (MDM)
Unsafe surfing Lack of Viskilty to enab'e third-party device
andControl management

+ Previous Android
versians shovn
browser
vulnerahilties
Figure 1. Android Security Risks, based on [8].

is running on a compromised device, or exhibiting
properties that may indicate malicious intent [2].

3.1. Android Malware Analysis

Malware analysis is a process in which the malware
is taken apart for studying its code structure,
operation and functionality. It is conducted with
specific objectives which include: to understand the
vulnerability that was exploited, to study the severity
of the attack and counteracting measures, to penetrate
into the compromised data in order to investigate
its origin and to obtain information about other
compromised machines [9]. Detection techniques for
Android malware use statically extracted data from
the manifest file or from Android API function calls,
as well as dynamically obtained information from
network traffic and system call tracing [10]. Most of
current systems used to detect malicious code are
largely based on syntactic signatures and employ static
analysis techniques. Static analysis techniques can be
evaded by malware applications using techniques such
as polymorphism and metamorphism, since syntactic
signatures are ignorant of semantics of instructions
[11].

4. GARMDROID

GARMDROID is based on the capabilities provided by
the Android SDK tool set, specifically the Android Asset
Packaging Tool (AAPT) which is contained as part of
the platform tools set. In this implementation clients can
upload malware samples and request analysis via a Web
interface. Figure 2a presents a general representation of
the Web system.

During analysis, once an android application file
(.apk) has been uploaded by a user, GARMDROID uses
a set of bash and python scripts to command AAPT to
extract the contents of the app’s AndroidManifest.xml
file and to filter out the important strings. In this case,
as shown in Figure 2b, the system’s software stack
includes Java at the bottom layer as it is required

EAI Endorsed Transactions on
Future Internet
082017 - 01 2018 | Volume 3 | Issue 10 | e3

A. Rodriguez-Mota, et al.

‘ Webbroreer ‘

WabBrowse ‘ | WebBrowser |

R R R
HTTR v HTP v HTFFTl'

L1
—0~—{ #nache HTTP Sewver |

% ot

A Fins
#dein |.\l |“"“""“ cﬁﬁ:ﬁ?rpﬁ;ﬁ Python Script || BASH Script | Python Script
Android Tools
|:] (Android Asset Packaging Tool)
|
al b

Figure 2. System representation, a) Web system and b) software
stack.

to run the AAPT. Python and Bash programming is
on top of the AAPT layer since a set of python and
bash scripts are used to filter out permissions and
feature-request strings from the AAPT output. Further
processing, based on the characteristics of implicit
features and explicit features declarations provided by
Android, helps GARMDROID to deduce the set of
requested hardware features related to the app’s specific
set of permissions requests. This association between
permissions and requests with hardware features is
performed also by a python script. Finally, PHP scripts
are employed to obtain the web visual representation of
the data via HTML and SVG elements. GARMDROID is
available at www.garmdroid.org.

Figure 3 shows the main page of the system from
where users can upload files and see the results after
file processing. Once the application file is processed
the tool displays the name, mime type, size and
md5 hash value of the file. Additionally, permissions
and features are identified and displayed. In the case
of permissions, Figure 4a, it has been selected to
visualize the requested permissions as a matrix of
dots where permissions requested by the application
under analysis are indicated as red dots. Features
have been represented as icons in order to facilitate
visualization: Audio, Bluetooth, Camera, Infrared,
Location, Microphone, NFC, Sensors (Accelerometer,
Barometer, Compass, Gyroscope, Light, Proximity, Step
Counter, Step Detector), Screen, Telephony, Television,
Touchscreen, USB and WiFi, see Figure 4b.

5. Results

In this section a set of results obtained after processing
a group of Android applications using GARMDROID
is presented. Our results take form of five different

O EAI

GARMdroid: Android Malware Analysis Platform

Static Analysis
iroid

Ay

Ssletlaﬁte @
Felnc | Femssns || Festres | Savies ndReceiers
Home
Semes ¢ T
B .
Aoithms

Figure 3. GARMDROID welcome page.

Static Analys s

‘HI!'\ £

O i
m v Lo o

M030EE

e

T e

Fﬂ
= T
SOC0000CGI00! DDOODCOOOGDOGO ¢

VEBl®

Figure 4. a) Permissions tab, additionally to the dot matrix
representation, in which hovering over a circle provides the full
permission name, a textbox element at the bottom of the tab also
displays the identified permissions; b)Features tab, representing
hardware features as icons which change its background color to
red if they are requested by the file under analysis.

al

case scenarios (apps). In each case GARMDROID
presents an inference of the set of hardware features
requested by the app under analysis, plus the set
of permissions requests. These cases serve a two-fold
purpose: to demonstrate GARMDROID operation and
direct the discussion towards observations which can
lead to identify security threats in IoT-oriented Android
applications. In brief, the five cases presented and
conclusions drawn can be summarize as follow:

1. Hardware-Test app: granting high volume of
permissions and access to hardware features may
increase security risks.

2. Lighting app: inconsistency between app’s func-
tionality and hardware features requests must
raise security concerns.

3. IR remote control apps: excessive hardware
feature requests may imply security risks.

EAI Endorsed Transactions on
Future Internet
082017 - 01 2018 | Volume 3 | Issue 10 | e3

Reassessing Android Malware Analysis: From Apps to loT System Modelling

GARMdroid: Android Malware Analysis Platform

Static Analysis

Figure 5. Features requests for a selected Hardware-Test
application.

4. Gyroscope app: little or no hardware features
requests may signify a security problem.

5. Hardware-Test app: problems inferring hardware
features requests may imply security risk or app
design problems.

In this description it has to be assumed that
applications have been analyzed using VirusTotal [12],
and in all cases where identified as benign, unless
otherwise stated. Moreover, detailed information such
as application name and hash values have been omitted
on purpose to avoid misleading users from using
such applications, since the provided results are only
demonstrative and further analysis might be required
to properly identify some of the applications as
malware or bad software design samples.

Firstly, a Hardware-Test application was analyzed,
see Figure 5. As it can be observed the analysis shows
that this application requests access to Accelerometer,
Audio, Barometer, Bluetooth, Camera, Compass, Gyro-
scope, Light, Location, Microphone, NFC, Proximity,
Screen, Telephony, Touchscreen, USB and WiFi. In this
case, results mainly demonstrate GARMDROID’s capa-
bility to infer requested hardware features, but it is
also interesting to observe that even though it is not
identified as being malicious, it is easy to visualize that
there is a high risk in allowing this kind of access to
any application, due to the big number of hardware
elements that are requested.

Secondly, Figure 6 shows the features requested by an
allegedly lighting app. The results may raise suspicion
since the application requests not only access to the
camera (assuming that the lighting functionality is
provided by using the camera flash functionality) but
to Location and WiFi features as well.

Thirdly, a couple of Infrared Remote Control apps
were analyzed, see Figure 7. In this case we observed
that there is a big difference between the set of features
requested which may be a reason to promote a further

2 EAI

GARMdroid: Android Malware Analysis Platform

Static Analysis
droid
e e5 and Receners

selectafile

Figure 6. Features requested by a lighting app.

Stakic Analyss Static Analysis

m Stecafle m

gecliecs
JE
BatE

[B @

L0 $OK08
Aol LAl
rEsye

Figure 7. Comparison between features-requests by two different
Remote-Control Infrared apps.

!

analysis over the application requesting more than the
IR feature (Bluetooth and WiFi).

The following case, see Figure 17, presents an
application advertised as capable to provide gyroscope
data. Interestingly, none permission was requested and
only the touch screen request is made. At this stage
there was no evidence to determine whether these
characteristics are related to a security threat or a
poor design, but provides a strong reason to think that
further analysis is required.

As our final case, a Hardware-Test app is presented
which requested features but not following the Android
specification (Upper case text was used where the
specification indicates lower case). This case was
detected as a result of a further analysis of the
app after observing that no features were indicated
on the GAMDROID features tab. Although more
information would be required to determine whether
the application represents a threat or not, there is an
indication of a bad software design. Figure 9 illustrates
these results.

Finally, after analyzing four IoT oriented apps
samples (home automation type) results were compared
with those obtained from analyzing 369 Fakelnstaller
Android malware samples, see Figures 10. In this

EAI Endorsed Transactions on
Future Internet
082017 - 01 2018 | Volume 3 | Issue 10 | e3

A. Rodriguez-Mota, et al.

Static Analysis

' 0000000000000000000000000
*0000000000000000000000000
*0000000000000000000000000

OOOOOOOOOOOOOOOOOOOOOOOOO
g OOOOOOOOOOOO

i @ﬂ@*@®@

8888888888888888888888888 Ti0 .Q) A

Bete

S0000000000000000000000 B
Figure 8. Gyroscope application which does not request any

SRBRA0000000000000000000
“0000000000000000000000000
permission but request the touch screen feature only.

Static Analysis ekl | rcan =
Pemiss skt ¢ Pemiscrs et

m Selecta fie
een

* 0000000000000008000008000
*00000000000000000000000Q0
! OOOOOOOOOOOOOOOOOOOOOOOOO

®w®$@@@
2008008
! El‘-’ill’@

#0000000000000000000000000
“0000000000000000000000000
*0000000000000000000000000
*0000000000000000000000000
#0000000000000000000@00000

*0000000000000000000000000

Figure 9. Hardware-Test app with anomalous feature-request
declarations.

respect, although the selected IoT samples set is small,
after comparing the results it can be observed that a
request for telephony hardware is not a common feature
for home automation apps. From the point of view of
developers it can be assumed as a good indication that
further analysis is required.

5.1. Physical loT Objects Modelling from Malware
Static Analysis Data

GARMDROID provides a mechanism to identify
general characteristics of Android powered devices.
On a first approach, it has been set an operational
scheme where objects participating on an IoT system
implementation can be characterized by reviewing
static analysis data extracted using GARMDROID from
a set of Android applications. This scheme is broadly
illustrated in Figure 11.

Observing the proposed scheme, see Figure 11, there
can be identified 6 major processes, numbered from 1
to 6 in the figure. At first, the analysis starts from an
IoT Solution system implemented as a set of different

2 EAI

loT Fakelnstaller

Nurmber of app fles

"_ocation” “NFC Touchscreen” “Camera’ "Screen"

Cam “Toushscreert
"Camera® “Microphoae" “Screer” “WiFT "Bluetoath” *Locarion” “Telephony" i

Figure 10. Features requested by loT Android Samples (home
automation type) and applications identified as Fakelnstaller
malware.

r’l\ loT Selution
- - 4
I‘l ' |'| I'I

Android

Security Advisor
Applications

' (]
W
Visual System
Representation

Visual Grammar Translator

(U

Hardware
Features

(3)

\2)
Real
Devices

Figure 11. Conceptual representation of the system general
architecture.

Android applications. These applications are entered
to GARMDROID which infers the hardware features
requested by the application from the static information
contained in the application’s AndroidManifest file.
These features, together with information about the
Android OS and Java version numbers, are used to
create objects profiles that match the applications
requirements, this step is labeled as number two in
the figure. The objects profiles are used to identify real
devices already known by the system (stored on a data
base), this is step 3. During step number 4, the objects
profile identified are handed in to the Visual Grammar
Translator which task is to construct a model from

EAI Endorsed Transactions on

6 Future Internet

082017 - 01 2018 | Volume 3 | Issue 10 | e3

Reassessing Android Malware Analysis: From Apps to loT System Modelling

the given objects models. Once the model is obtained
there is a further step, labeled as number 5, where the
model is analyzed from the security point of view base
on the hardware and services requirements previously
identified. Finally, the output from the Security Advisor
block is joined with the real devices profiles identified
during step 3 and are feed into the Implementation
Advisor which aims to provide a system specification
considering the best security practices.

The heterogeneous nature of the IoT current
development stage represents a big challenge for
modelling and designing initiatives as there is little
consensus between technology providers. In this sense,
since the achievement of the proposed representation
process described above, see Figure 11, requires a
representation of the devices of the system, as a first
approach, it has been decided to represent the devices,
according to the features requested, using the System
Modeling Language (SysML) Block Definition Diagram
(BDD) notation [14]. SysML BDD has been selected
taking into account the growing adoption of SysML
for modelling mechatronic systems and its relationship
with other IoT modelling initiatives, such as the Model
Integrated Mechatronic (MIM) [15], 3+1 SysML View-
Model [16] and UMLA4IoT [17] approaches.

SysML can be adopted for the system modelling
process related to the Model Integrated Mechatronics
(MIM) [16]. MIM is a new paradigm that applies
domain-specific modeling languages for the concurrent
engineering of mechanical, electronic and software
components of mechatronic systems [19] [15]. This
paradigm was proposed to address the need for an
integrated development in mechatronic systems. MIM
supports the model-driven development of complex
mechatronic systems (MTSs) through the evolution of
models that have as primary construct the mechatronic
component (MTC). The MIMs architecture is shown in
Figure 12.

The most common kind of SysML diagram is
the Block Definition Diagram (BDD). It is possible
to display various kinds of model elements and
relationships on a BDD to express information about
a system’s structure. Blocks can represent any level of
the system hierarchy including the top-level system, a
subsystem, or logical or physical component of a system
or environment, as well as software entities. Blocks
are modular units of system descriptions. Each block
defines a collection of features to describe a system
or other element of interest. These may include both
structural and behavioral features, such as properties
and operations, to represent the state of the system and
behavior that the system may exhibit [14].

Blocks provide a general-purpose capability to model
systems as trees of modular components. SysML
blocks can be used throughout all phases of system
specifications and design, and can be applied to many

2 EAI

Design Implementation
Space Space

Model integration

Mechanical Process layer Moedel evolution

Figure 12. Model Integrated Mechatronics (MIM) Architecture
[15].

different kinds of systems. SysML blocks are based
on UML [13] classes as extended by UML composite
structures. Some capabilities available for UML classes,
such as more specialized forms of associations, have
been excluded from SysML blocks to simplify the
language. SysML Blocks also extend the capabilities
of UML classes and connectors with reusable forms
of constraints, multi-level nesting of connector ends,
participant properties for composite association classes,
and connector properties [14].

As a prove of concept, a set of BDD diagrams
have been generated based on the results, described in
the previous section, provided by GARMDROID. See
Figures 13 to 17.

6. Conclusions

Despite the fact that openness has been an important
factor in Android fast positioning into the mobile
market, it is clear that it implies certain security
challenges. In the case of the Internet of Things (IoT)
the growing adoption of devices and solutions that
incorporate Android has brought those challenges into
the realm of the IoT. Therefore, in order to guarantee
high security levels IoT developers need to get more
involved in the analysis and detection of security
threats.

Since IoT development requires a vast and detailed
knowledge of diverse technological aspects it is always
difficult to count with personnel experienced in those
many areas. Consequently, the use and development
of new tools and analysis techniques that facilitate or
simplify in some extent security analysis are becoming
important research and development areas. This paper
presented a proof-of-concept that demonstrates visual

EAI Endorsed Transactions on

7 Future Internet

082017 - 01 2018 | Volume 3 | Issue 10 | e3

A. Rodriguez-Mota, et al.

bdd Smart Device Structure [Device Hierarchyu

<<hardware>» /

Accelerometer

<csystem of Interest>>
Smart Device

e

| <<hardware>>
Compass

<<hardware>> <<hardware>>

Barometer Bluetooth

| <<hardware>»
Camera

<<hardware>>
Audio

<chardware>>

<<hardware>> Touch screen

Location

<<hardwares>
Microphane NFC

<<hardware>>
Gyroscope

Light

<<hardware>> <<chardware>>
UsB Proximity

<<hardware>>
Telephony

<<hardware>> <<hardware>>

WiFi Screen

Figure 13. SysML Block Definition Diagram for the Hardware-
Test app.

bdd Smart Device Structure [Device Hierarchvy

<<system of interest=>
Smart Device

X
\\
N S

<<hardware>>
Camera

<<hardware>>
Touch screen

<<hardware>> <<hardware>>
Location WiFi

Figure 14. SysML Block Definition Diagram for the lighting
sample app.

bdd Smart Device Structure [Device Hierarchyu

Smart Device

A

<<hardware>>
Screen

<<system of interest>= ‘

<<hardware=>
WiFi

<<hardware>=>
Touch screen

<<hardware=>
Bluetooth

ffhardwwcu

Figure 15. SysML Block Definition Diagram for an IR remote
control sample app.

representations of some application’s static features
that could help developers to direct security analysis.
Although only a part of the system under develop-
ment is described in this paper, it is considered that the
features provided currently represent a useful asset for
software development in the IoT area when compared
with other options currently in the marked. As an
example, the identification of “suscpicious” hardware

O EAI

bdd Smart Device Structure [Device Hierarchyu

<<system of interest>=>
Smart Device

<<hardware=> <<hardware>>
IR Touch screen

Figure 16. SysML Block Definition Diagram for a second IR
remote control sample app.

bdd Smart Device Structure [Device Hierarchyu

<=system of interest>>
Smart Device

<<hardware=>
Touch screen

Figure 17. SysML Block Definition Diagram for the gyroscope
sample app.

features requests discussed in this paper only required
from a user a quick review of the visual information,
whether a similar analysis using raw analysis data, e.g.
from VirusTotal, would require more effort reading all
permissions identified and selecting those that could let
to infer the hardware features. It must be considered
that this task can be performed easily for few samples
but it becomes error prone as the number of permis-
sions per app and apps under analysis increases.

In terms of the results presented in this work, it can
be concluded that visualization of features requested
by an Android app may provide a simple and quick
overview of the app’s real intentions. This, combined
with the knowledge of the permissions requested by the
application, provides a good reference for developers
that are faced with the decision of whether or not to
reuse code, install a new application, grant permissions,
define features requests, among other tasks. Addition-
ally, a higher abstract level representation, in this case
SysML Block Diagrams, based on the hardware features
requested by software applications appears to be a
viable way towards producing expressive and reliable
systems representations which can be further extended
to include other aspects such as security and man-
agement details. Further analysis and development is
planed in this research in order to integrate these results
with others from more elaborated techniques, such as

EAI Endorsed Transactions on
Future Internet
082017 - 01 2018 | Volume 3 | Issue 10 | e3

Reassessing Android Malware Analysis: From Apps to loT System Modelling

machine learning, in order to provide a more detailed
and holistic analysis. Some work in this direction is in
progress at our research institution.

6.1. Acknowledgements

This material is based on work supported by the
Mexican National Council of Science and Technology
(CONACYT) under grant 216747. Also the authors
acknowledge support from IPN under grant SIP-
20161697.

References

[1] Roman, R.,Najera, P, Lopez, J. (2011) Securing the Internet
of Things (IEEE Computer), vol. 44, no. 9, 51-58.

[2] Cuips, D.,GiLLiLAND, A., Gorenc, B., Goupky, H., GunN,
A.,HooLg, A, LANCASTER, J., MUTHURAJAN, S., Wook OH, J.,
TsipENyuk O’NEIL, Y., PARK,]., PETROVSKY, O., SECHMAN, .,
SuaH, N., Sorack, T., Svajcer, V. (2015) The HPE Cyber
Risk Report 2015 (HP).

[3] Garrner (2013) Gartner Says Worldwide Smartphone Sales
Recorded Slowest Growth Rate Since 2013,http://www.
gartner.com/newsroom/id/3115517,6 1 2016.

[4] WikipeDIA Garmr. [Online]. Available:https:
/len.wikipedia.org/wiki/Garmr, 1511 2015.

[5] MicLeTTE, G., STROUD, A. (2012) Professional, Android Sensor
Programming. (John Wiley & Sons, Inc.)

[6] ANDrROID DEVELOPERS uses-features. [Online]. Available:
http://developer.android.com/intl/es/guide/
topics/manifest/uses-feature-element.html, 10 12
2015.

[7] EmBARCADERO Internet of Things Solutions. [Online].
Available: https://www.embarcadero.com/solutions/
internet-of-things, 2 1 2016.

[8] PmiEer, L. Top 10 Android Security
Risks. [Online]. Available: http://www.
esecurityplanet.com/views/article.php/3928646/
Top-10-Android-Security-Risks.htm, 14 05 2015.

[9] KeNDALL, K. Practical Malware Analysis.
[Online]. Available: https://www.blackhat.com/

< EAI

presentations/bh-dc-07/Kendall_McMillan/Paper/
bh-dc-07-Kendall_McMillan-WP.pdf, 07 05 2015.

[10] Aronso, V., bDE AMoriM, M., GRALGIO, A. R. A., JUNQUERA,
G. & pE Geus, P (2015) "Identifying Android malware
using dynamically obtained featuresAtAf (Springer-
Verlag) Journal of Computer Virology and Hacking
Techniques 2015, vol. 11, pp.9-17.

[11] Moser, A., Kruegel, C. & Kirda, E. (2007) “Limits of Static
Analysis for Malware DetectionAtAt Computer Security
Applications Conference 2007,ACSAC 2007, pp. 421-430.

[12] VirusTorar. [Online]. Available: https://www.
virustotal.com/es-mx/, 0512 2015.

[13] OMG (2015) OMG Unified Modeling Language (OMG
UML). Version 2.5. March 2015. [Online]. Available:http:
[/www.omg.org/spec/UML/2.5/.

[14] OMG (2015) OMG System Modeling Language (OMG
SysML). Version 1.4. September 2015. [Online]. Available:
http://www.omg.org/spec/SysML/1.4/PDF/.

[15] TuramBouripss, K. (2004) Model Integrated Mechatronics:
An Architecture for the Model Driven Development of
Mechatronic Systems, 2nd IEEE International Conference
on Mechatronics, pp. 497-502, Istanbul, Turkey.

[16] TuramBouLiDis, K. (2010) The 3+1 SysML View-Model
in Model Integrated Mechatronics Journal of Software
Engineering and Applications, Vol. 3 No. 2, pp. 109-118.

[17] TaramsouLripis, K.,CuristouLakis, F (2016) UML4IoT-
A UML-based approach to exploit IoT in cyber-physical
manufacturing systems. Computers in Industry. [Online].
Available: http://www.sciencedirect.com/science/
article/pii/S016636151630094X, 10 05 2016.

[18] Deverorer Anpromp (2015) Top 10 Android
Security Risks. [Online]. Available: http://www.
esecurityplanet.com/views/article.php/3928646/
Top-10-Android-Security-Risks.htm, 14 05 2015.

[19] TuramBouLipss, K. (2005) "Model Integrated Mechatron-
ics Towards a new Paradigm in the Development of
Manufacturing Systems”. IEEE Transactions on Industrial
Informatics, vol. 1, No.1.

EAI Endorsed Transactions on
Future Internet
082017 - 01 2018 | Volume 3 | Issue 10 | e3

http://www.gartner.com/newsroom/id/3115517
http://www.gartner.com/newsroom/id/3115517
https://en.wikipedia.org/wiki/Garmr
https://en.wikipedia.org/wiki/Garmr
http://developer.android.com/intl/es/guide/topics/manifest/uses-feature-element.html
http://developer.android.com/intl/es/guide/topics/manifest/uses-feature-element.html
https://www.embarcadero.com/solutions/internet-of-things
https://www.embarcadero.com/solutions/internet-of-things
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
https://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Kendall_McMillan/Paper/bh-dc-07-Kendall_McMillan-WP.pdf
https://www.virustotal.com/es-mx/
https://www.virustotal.com/es-mx/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/SysML/1.4/PDF/
http://www.sciencedirect.com/science/article/pii/S016636151630094X
http://www.sciencedirect.com/science/article/pii/S016636151630094X
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm
http://www.esecurityplanet.com/views/article.php/3928646/Top-10-Android-Security-Risks.htm

	1 Introduction
	2 Android Overview
	3 Android Threats
	3.1 Android Malware Analysis

	4 GARMDROID
	5 Results
	5.1 Physical IoT Objects Modelling from Malware Static Analysis Data

	6 Conclusions
	6.1 Acknowledgements

