
The Detector of Plagiarism in Autograder for PHP

Programming Languages

Nelita Apriyani1, Aldy Rialdy Atmadja2, Rifqi Syamsul Fuadi3, Yana Aditia Gerhana4

{nelita.ap@student.uinsgd.ac.id1, aldy@if.uinsgd.ac.id2, rifqi@if.uinsgd.ac.id3,

yanagerhana@uinsgd.ac.id4}

Informatics Department, UIN Sunan Gunung Djati Bandung

Abstract. The detection of plagiarism in the PHP language program code is one of the

things that needs to be done especially in the field of education. At this time checking

plagiarism is done by checking someone's program code with another program code. Of

course this takes a lot of time. This encourages researchers to provide a system that can

make plagiarism checking activities computerized. The plagiarism checking method has 5

stages of checking, namely Pre-Processing, Tokenization, Exclusion, Similarity

measurement and Final similarity calculation. In the Final similarity calculation process,

similarity calculations were carried out using the Sorensen Dice Coefficient method. The

results obtained from this study are that the system can classify 5 types of percentages of

plagiarism, namely 0% not taking plagiarism, <15 means having a little in common, 15-

50% being moderate plagiarism, 50% means approaching plagiarism, 100% being program

code the whole is the same.

Keywords: Program Codes, PHP, Plagiarism Detection, Plagiarism Classification.

1 Introduction

Plagiarism program codes is one of dishonesty in academic which is often done by
someone in programming [1]. Plagiarism program code has different characteristics from other
plagiarism actions, and also acts of plagiarism in the program code is difficult to detect manually
because it needs a lot of time to checking the process. In some previous research mentioned
some characteristics of plagiarism that are often practiced :

1. Copying all codes in program includes comments, input data and user interfaces.
2. Change the structure of program to the others language programming.
3. Using software that can generate codes in program automatically.
4. Using the previous codes then combined it with the program codes obtained by the

others.
A State of Art on Source Code Plagiarism Detection is entitled a research that discusses the

criteria for plagiarism in program codes by comparing the advantages and disadvantages of
existing plagiarism detection tools [2]. The next research is Review of Source Code Plagiarism
Detection in Academia which is this research explains the 5 processes that are passed in the
detection of plagiarism[1].

ICONISTECH-1 2019, July 11-12, Bandung, Indonesia
Copyright © 2020 EAI
DOI 10.4108/eai.11-7-2019.2298067

Research that discusses about the technicque of n-gram carried out in the separation of text
into characters is discussed in research Comparison of N-gram Technique and Rabin Karp in
Application of Plagiarism Detection in Indonesian Text Documents. This research explains that
the N-gram method has a more detecting process faster than other methods [3].
The next research Anti Plagiarism Application with Algorithm Karp-Rabin At Thesis In
Gunadarma University. In this research obtained 5 criteria for plagiarism based on the
percentage of text similarity using the rabin-karp method[4].

The main objective in this research is to create a system that can detect plagiarism in PHP
programming codes by classifying the percentage of plagiarism that can be integrated on the
autograder system[5].
Based on previous autograder system research, autograder systems do not have features or
capabilities in detecting program code plagiarism. Therefore, a research Plagiarism Detection
was conducted in Autograder for PHP Programming, where this research can improve the
existing autograder system.

II. Plagiarism Checked Code

The main processes carried out detecting plagiarism in the program codes :
1. Pre-Processing

In this process the program code is transformed by removing comment blocks, saving
spaces, and removing program code that is not related to the conversation[5].

2. Tokenization
Decomposition of a text string to get a set of words or tokens is called Tokenization.
This step needs to be done in retrieving information from a string that will be processed
later.

3. N-gram
The N-Gram technique is based on separating text into strings of length n starting from
a certain position in a text. The next n-gram position is calculated from the actual
position shifted according to the given offset. The N-Gram for each string is calculated
and then compared one by one.

4. Similarity
The percentage of the level of similarity between documents after checking the
plagiarism of the program code.

III Proposed Solution

In this study the valuation method used to construct plagiarism detections system in PHP
autograder (Moghrap) with using six stages of the process of checking in performing its
detection is illustrated in the figure below.

Fig 1. Detection Process of Plagiarism

5. Pre-processing
In this process the removal process is carried out whitespace, new line (enter), and the
symbol of a semicolon.

6. tokenization using PHP Parser At this stage, the process of converting the program
code above into token- token contained in php programming language.

7. tokenization with token manual
From the tokenization process with php parser before they found some token that is
not listed in the PHP programming language.

8. Token value conversion
Below in Table 4.3 is the most tokens each having a value as the initials of the token
parser that will constitute the new value of the conversion token.
Here are some parser php token initialization.

Table 1 Token Initials

TOKEN INITIALS

T_ARRAY a

T_BREAK c

TOKEN INITIALS

T_CASE d

T_CLASS e

T_CLOSE_TAG f

T_COMMENT h

T_CURLY_CLOSE l

T_CURLY_OPEN m

T_DEFAULT n

T_DNUMBER o

T_ECHO p

T_ELSE q

T_ELSEIF r

T_ENDFOR t

T_ENDFOREACH u

T_ENDIF v

T_ENDSWITCH w

T_ENDWHILE x

T_EQUAL y

T_EVAL z

1. String matching method with N-Grams

Matching string with N-grams method of function is to check the similarity of the structure

of the token code

2. Calculation of Similarity

At this stage is a stage that serves to calculate the similarity of the program code N-Grams
results that have been obtained from the previous process. Here is the formula for calculating
the similarity.

S = 2 x � |A ∩ B|
 |A| + |B|�

To obtain the results of the formula percentage multiplied by 100%.

a) Classification Percentage of Plagiarism
This stage is a stage to determine the categorising of the plagait level. The following is

a classification of the level of plagiarism:

0% : 0% of test results mean both program code is very different both in terms of content

and overall.

< 15% : The 15% test results mean that both program codes have very little in common.

15 – 50% : The 15-50% test results mean that both program code includes plagiarism

level moderate.

>50% : test results more than 50% mean both program codes include approaching

plagiarism.

100%: Test results of 100% mean that both program codes include plagiarism due to

the similarity of program code from start to finish.

2 Implementation

 The plagiarism detection system on the PHP (mograph) Autograder in the study was

implemented into a Web-based system built using PHP native and integrated with the Mograph

system. The system has a database that is implemented into the MySQL Mograph. The following

on Figure 5 is the architecture of the Mograph system. The following on Figure 6 is the

dashboard implementation for the admin page while Figure 7 is an implementation of the

problem list page that serves to view the list of questions.

Fig 2. Admin Dashboard Page

Fig 3. List Problem Page

This problems list page displays the list of problems submitted by the user to check the

percentage of plagiarism. Implementation of the page interface of the problems list. On

Figure 6 is a checking page of plagiarism.

Fig 4. Plagiarism Check page

Implementation of page interface plagiarism checks results is the output of plagiarism

checks page.

The next is the implementation of detail page of plagiarism in Figure 7 below.

Fig 5 Plagiarism Presentation Detail page

3 Experiment

Testing of the program code's plagiarism checking system was conducted using a black
box testing test system, where black box testing was a testing process done by observing the
execution results through test data and checking Functional software of the software. The main
purpose of this test is to find out whether the system can classify the percentage of plagiarism
program code in PHP programming language. Testing was conducted based on 5 categories of
percentage classification of plagiarism with test scenarios as follows:

a) experiment comparing 2 pieces of program code with percentage of similarity 100%

b) Experiment showing the percentage of similarity PHP program code

c) The experiments classify the types of plagiarism.

The following are the 2 code programs to be examined percentage of plagiarism.

Table 2 Code Program

CODE PROGRAM 1 CODE PROGRAM 2

<?php
$a=fgets(STDIN);
$b=fgets(STDIN);
$result = $a-$b;
echo $result;
?>

<?php
$a=fgets(STDIN);
$b=fgets(STDIN);
$result = $a-$b;
echo $result;
?>

The following is an explanation of the classifications of plagiarism experiments in accordance
with the methods described in the previous chapter.
From the above code obtained plagiarism check results with the following stages:

1. Pre- processing
In this process the process of removing whitespace, new line (enter), and the
semicolon symbol

2. Tokenization by using PHP Parser
At this stage the process of converting the program code above into tokens in the PHP
programming language. Then the conversion result is in Table 4.1 as follows:

Table 3 Results PHP Parser

CODE PROGRAM 1 CODE PROGRAM 2

["T_OPEN_TAG",
"T_VARIABLE",
"=",
"T_STRING",
"(",
"T_STRING",
")",
";",
"T_VARIABLE",
"=",
"T_STRING",
"(",
"T_STRING",
")",
";",
"T_VARIABLE","=",
"T_VARIABLE","-",
"T_VARIABLE",
";",
"T_ECHO",
"T_VARIABLE",
";",
"T_CLOSE_TAG"]

["T_OPEN_TAG",
"T_VARIABLE",
"=",
"T_STRING",
"(",
"T_STRING",
")",
";",
"T_VARIABLE",
"=",
"T_STRING",
"(",
"T_STRING",
")",
";",
"T_VARIABLE","=",
"T_VARIABLE","-",
"T_VARIABLE",
";",
"T_ECHO",
"T_VARIABLE",
";",
"T_CLOSE_TAG"]

3. Tokenization with manual tokens

From the tokenization process with the previous PHP parser still found some tokens

that are not listed in the PHP programming language, then re-performed the

subsequent tokenization that generates the conversion in the following table:

Table 4 Tokenization with manual tokens

CODE PROGRAM 1 CODE PROGRAM 2

Array
(
T_VARIABLE
T_EQUAL
T_STRING
T_KURUNG_BUKA
T_STRING
T_KURUNG_TUTUP
T_VARIABLE
T_EQUAL
T_STRING
T_KURUNG_BUKA
T_STRING
T_KURUNG_TUTUP
T_VARIABLE
T_EQUAL
T_VARIABLE
T_MINUS
T_VARIABLE
T_ECHO
T_VARIABLE
)

Array
(
T_VARIABLE
T_EQUAL
T_STRING
T_KURUNG_BUKA
T_STRING
T_KURUNG_TUTUP
T_VARIABLE
T_EQUAL
T_STRING
T_KURUNG_BUKA
T_STRING
T_KURUNG_TUTUP
T_VARIABLE
T_EQUAL
T_VARIABLE
T_MINUS
T_VARIABLE
T_ECHO
T_VARIABLE
)

4. Token Value Conversion

Based on the table above, the tokenization conversion results in initials are as follows:

Table 5 Token Value Conversion Results

CODE PROGRAM 1 CODE PROGRAM 2

SyNANBSyNA
NBSySDSpS

SyNANBSyNA
NBSySDSpS

5. N-Gram Method

The result of matching strings with the N-grams method of the function is to check the

similarity of the program code 1 token structure with program code 2 based on the

initials in the previous table, with the result in the table below:

Table 6 N-Gram Conversion results

CODE

PROGRAM 1

CODE

PROGRAM 2

Array

(
 [0] => SyNA
 [1] => yNAN
 [2] => NANB
 [3] => ANBS
 [4] => NBSy
 [5] => BSyn
 [6] => SyNA
 [7] => yNAN
 [8] => NANB
 [9] => ANBS
 [10] => NBSy
 [11] => BSyS
 [12] => SySD
 [13] => ySDS
 [14] => SDSp
 [15] => DSpS
)

Array

(
 [0] => SyNA
 [1] => yNAN
 [2] => NANB
 [3] => ANBS
 [4] => NBSy
 [5] => BSyn
 [6] => SyNA
 [7] => yNAN
 [8] => NANB
 [9] => ANBS
 [10] => NBSy
 [11] => BSyS
 [12] => SySD
 [13] => ySDS
 [14] => SDSp
 [15] => DSpS
)

6. Calculation of Similarity value

Based on the result of the conversion of N-grams above, there is a similarity of program

code 16 tokens (Array 0 – Array 15). Then the calculation is obtained:

S = 2 x � |A ∩ B|
 |A| + |B|�

S = 2 x
 16
 16 + 16�

S = 2 x �0,5 �

To get the percentage then the result is multiplied by 100% then the result is

S = 1 x 100 %

 S = 100 %
From the above calculation, it can be classified that the program code is 100%

plagiarism

The above process is done repeatedly so that it will produce classifications of

plagiarism as follows:

Table 7 Result

No User
Result

User1 User2 User3 User4 User5

1 User 1 0% 88% 100% 38%
2 User 2 0% 88% 100% 38%
3 User 3 88% 88% 88% 38%
4 User 4 100% 100% 88% 38%
5 User 5 38% 38% 38% 38%

4 Conclusion

Once implemented the implementation of 6 plagiarism detection process The program code

described in the previous chapter, it can be seen that the system can display the similarity

percentage of the program code simultaneously, then can Classify many types of plagiarism in

a single time.

References

[1] M. Novak, “Review of source-code plagiarism detection in academia,” in 2016 39th

International Convention on Information and Communication Technology, Electronics

and Microelectronics, MIPRO 2016 - Proceedings, 2016.

[2] M. Agrawal and D. K. Sharma, “A state of art on source code plagiarism detection,” in
Proceedings on 2016 2nd International Conference on Next Generation Computing

Technologies, NGCT 2016, 2017.

[3] P. N. Technique, D. A. N. Rabin, and K. Pada, “Pendeteksi Plagiarisme Dokumen
Teks Bahasa Indonesia,” Semin. Nas. APTIKOM, vol. 10, no. 28, pp. 753–759, 2016.

[4] A. B. Mutiara and S. Agustina, “Anti Plagiarism Application with Algorithm Karp-
Rabin at Thesis in Gunadarma University,” Nov. 2008.

[5] W. B. Zulfikar and N. Lukman, “PERBANDINGAN NAIVE BAYES CLASSIFIER
DENGAN NEAREST NEIGHBOR UNTUK IDENTIFIKASI PENYAKIT MATA,”
J. Online Inform., 2016.

