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Abstract

The class imbalance problem is prevalent in many domains including medical, natural language processing,
image recognition, economic and geographic areas etc. We perform a systematic experimental comparison
of different imbalance classification algorithms — ranging from sampling, distance metric learning, cost-
sensitive learning to ensemble learning approaches — on several datasets from UCI, KEEL and OpenML. The
algorithms included DDAE, MWMOTE, SMOTE, RUSBoost, AdaBoost, cost-sensitive decision tree (csDCT),
self-paced Ensemble Classifier, MetaCost, CAdaMEC and Iterative Metric Learning (IML). As the substantial
bias potentially caused by imbalance classification can be harmful for underrepresented classes which are of
critical social and economic values and even lives, the main objective of our study is thus to understand the
impact of imbalance ratio and the size of the utilized datasets on the performance of the above-mentioned
algorithms. Our experiments show that 1) Sampling methods perform the worst and cannot be used directly
for imbalanced classification, since they lack of consideration of neighborhoods based on distance. However,
some classifiers can be improved after the balance of class distribution. 2) Cost-sensitive learning models
should be utilized when the dataset is less imbalanced, because it is difficult to set an appropriate cost matrix
for a specific dataset, which can cause performance fluctuations. 3) IML consistently shows good performance
(in terms of F1 and AUCPRC), is resilient to different imbalance ratios but sensitive to the data distribution
of the dataset. 4) Ensemble learning techniques generally perform better over other approaches due to their
combined intelligence of multiple basic classifiers. 5) In terms of system performance, self-paced Ensemble
Classifier performs fairly well with regards to learning time, while IML and DDAE yield the longest learning
time; AdaBoost and self-paced Ensemble Classifier are two algorithms require lowest memory usage. We
also provide our empirical recommendation for algorithm selection under different requirements and usage
scenarios based on our analysis.
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1. Introduction
Classification is one of the most popular topics
of machine learning [1–3] and much attention has
been paid to binary classification [4–6]. Classical
classification methods include Naïve Bayes, k-nearest
neighbor (kNN) [7], support vector machine (SVM)
[8], decision tree [9] and random forest [10]. These
classification algorithms typically assume their datasets
are balanced in their class distribution. However, in
many real-world application domains such as medical
diagnosis [3, 11–14], streaming and social behavior

data analysis [2, 15], software development process [16,
17], financial frauds [18–20], unsolicited phone calls
[21], disaster risks [22, 23], recommendation systems
[24, 25], and text classification [26–28], inherently
imbalanced datasets are commonly seen. Also, the
limitation of the data collection process and the
imbalanced cost for fixing different errors can lead to
the imbalance. Affected by these conditions, normal
classifiers are often confused by the majority class
and ignore the minority class, which may result in
catastrophe for instance massive waste of resources,
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time or money, and even can endanger the lives
[29–31]. Additionally, for the percentage of examples
available for each class, most real-world datasets
processed using non-linear classification strategies are
imbalanced, which may cause the algorithm to learn
overly complicated models that overfit the data and
have almost no correlation [32]. This issue is especially
critical since it leads to a significant barrier in the
performance achieved by classical learning methods
which typically assume that the class distribution is
balanced [31, 32]. To combat the losses in critical
social and economic values and even lives, its
highly important to understand the impact of class
imbalance in different imbalance learning algorithms
and recommend an appropriate algorithm for a given
use scenario.

In practical situations, the ratio between two classes
of a dataset may be substantial, similar to 1:100, 1:1000,
1:10000, or even higher [33]. Fig. 1 and Fig. 2 show two
dataset examples with different Imbalance Ratios (IR)
of 1.684 and 12, respectively.

Figure 1. Class distribution on the dataset with IR=1.684

Figure 2. Class distribution on the dataset with IR=12

Solutions to tackle the imbalance problem of
classification can be broadly classified into four
major families [9]: sampling methods (including

oversampling and undersampling) [34, 35], cost-
sensitive learning [29], distance metric learning [36],
and ensemble learning [37] and hybrid methods which
integrate the features from different families such as
Adacost [38], RUSBoost [39] and DDAE [40].

As demonstrated in previous literature, a poor-
performing algorithm for imbalance classification can
lead to substantial losses in critical social and economic
values and even lives [12, 14, 19, 20, 23, 27, 28,
31]. Hence, it is important to study the impact of
different metrics on the different algorithms under
different situations, so that an appropriate choice
could be made when deciding the algorithms used for
imbalance classification. Although there are evaluation
studies on one of the specific directions for imbalance
classification or focusing on one specific metric [41], to
our best knowledge no work has been conducted using a
comprehensive set of evaluation metrics to quantify the
performance of representative algorithms from these
different classification families.

This paper focuses on comparing the performance
of these algorithms on multiple datasets from sev-
eral different domains, including healthcare, card play-
ing, software development projects and hand-written
digit recognition. We use these datasets to evaluate
ten imbalanced classification algorithms, namely 1)
sampling: SMOTE [35] and MWMOTE [42]; 2) cost-
sensitive learning: MetaCost [43], CAdaMEC [44] and
cost-sensitive decision tree [9]; 3) distance metric learn-
ing: Iterative Metric Learning (IML) [36]; 4) ensemble
learning and hybrid methods: AdaBoost [45], RUSBoost
[39], self-paced Ensemble Classifier [11] and DDAE
[40]. Our experiments not only analyze the performance
of different models based on a general set of evaluation
metrics on the same dataset, but also quantify the
impact of key factors related to imbalanced learning,
such as the size of the dataset and the imbalance ratio,
as well as system performance in terms of learning time
and memory usage.

The following sections will first review the related
work, and then present our data sources. In Section
4 are the detailed evaluation results, with additional
discussions following in Section 5. Section 6 concludes
this paper.

2. Related Work
Due to the vital importance of data analysis for hu-
man health, lives and the socioeconomic world, many
researchers examined the issue of imbalanced classifica-
tion. For example, [46] combined feature selection and
ensemble classification to solve the problems of imbal-
anced healthcare data on the diagnosis of a brain tumor.
[47] introduced a novel voting class weight algorithm
based on random forest algorithm to identify the minor-
ity class sufficiently in medical applications and can be
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applied to the detection of diseases. [48] presented an
innovative comprehensive ensemble learning paradigm
that involves multiple SVM diversity structures for
classification for the early detection of diseases with
imbalanced data.

2.1. Sampling Methods
Resampling means creating a new transformed version
of the training set of an imbalanced dataset, offering
a set of practical and straightforward approaches to
provide a more balanced data distribution [34]. The
three main resampling methods are oversampling,
undersampling, and hybrid techniques which are a
combination of both from sampling algorithms [9].

Among these three groups, informed undersam-
pling such as EasyEnsemble and BalanceCasad [49],
and synthetic sampling such as SMOTE [35] and the
Borderline-SMOTE [50] are shown to outperform ran-
dom oversampling and random undersampling. How-
ever, undersampling methods can lead to information
loss which in turn results in loss in classification per-
formance and underfitting, while oversampling suffers
from issues of overfitting, high computational overhead
and long training time [4].

Synthetic Minority Oversampling Technique (SMOTE).
SMOTE [35] addresses the class imbalance problem by
generating synthetic samples in feature space (see Fig. 3
for more details). One minority class example s1 will be
selected randomly and then its k nearest neighbors in
the minority class will be screened out; a line segment
is formed between one of these k neighbors s2, which
is selected at random, and s1 in the feature space
[35]. SMOTE creates the synthetic samples through a
convex combination of s1 and s2 [51]. As described in
[52], random undersampling is suggested to be used to
curtail the size of the majority in the first instance. Next,
SMOTE is utilized on the training set to align the class
distribution. This approach is proven to outperform the
plain undersampling [35].

Figure 3. SMOTE working procedure [53]

2.2. Cost-sensitive learning methods
Cost-sensitive learning methods are utilized to deal
with different misclassification errors that incur

different penalties to find the optimal decision based on
the cost matrix [29, 54] as shown in Table 1. If m stands
for the predicted label and n stands for the actual label,
the C(m, n) is the cost of predicting a class n sample as
class m. Given the cost matrix, the purpose of this type
of learning method is explained to create a model with
minimal overall misclassification costs [55, 56].

Table 1. Cost Matrix for Binary Classification

Actual negative Actual positive
Predict negative C(0, 0) C(0, 1)
Predict positive C(1, 0) C(1, 1)

As most traditional classifiers assume that the
misclassification has the same cost for false negative
(FN) and false positive (FP) [29], the real-world
scenarios are not so ideal. Conceptually, in certain
situations, the cost of incorrect labeling for a sample
should always be higher than a correct one [29, 30,
55]. The supplied cost matrix can strongly impact the
effectiveness and a common phenomenon is that, the
cost of classification errors cannot be described clearly
and domain expert knowledge is lacking [9, 54].

Cost-sensitive learning techniques can be categorized
into two families: meta-learning (including two aspects:
thresholding and sampling) and Direct methods [56].
The principle of the former category is to create a
“wrapper” to turn existing cost-insensitive classifiers
into cost-sensitive classifiers, and in the latter case,
classifiers that are cost-sensitive in themselves are
constructed [56]. Although efficient due to their ability
to take account of the importance of different classes,
a disadvantage of cost-sensitive algorithms is that it is
difficult to define an appropriate cost matrix for each
dataset and generalize the learning algorithm [57].

Cost-sensitive DeCision Tree (csDCT) [9]. Its main idea
is to minimize two separate costs: the test cost of the
feature and the cost of misclassification of the sample.
It takes account of misclassification during pruning
and is popularly used as a direct method for detecting
card frauds when the cost to misclassify could vary
[56, 58]. Weighting [59] is one implementation of the
sampling methods, in which examples of the minority
are assigned high weights according to their proportion.

CAdaMEC. CAdaMEC [44] is proposed upon AdaMEC
[60] (a cost-sensitive algorithm) through an appropriate
calibration with Platt scaling.

MetaCost. MetaCost [43] is another cost-sensitive
learning model which includes a cost-minimizing
method independent of the number of classes or
arbitrary cost matrices. It relabels the instances in the
training set with the class labels that have estimated
minimal costs, then the new replacement training set
will be applied to the error-based learners. MetaCost
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can be viewed as a representative thresholding tool in
the case of thresholding (see Section 2.5).

2.3. Distance Metric Learning Methods
Iterative Metric Learning (IML) [36] focuses on the
exploration of a stable neighborhood space for each of
the data samples in the testing set. To achieve this, the
proposed procedure utilizes an iterative metric learning
technique [36], which locates a stable neighborhood
for the specific testing data, using k-nearest neighbors
rule (kNN) [7] as the base classifier. IML comprises
the following steps: 1) Large Margin Nearest Neighbor
(LMNN) learning [61] (a learning method which offers a
much higher accuracy than kNN; see Fig. 4) to improve
the data space (through relabeling and regrouping
the neighbouring data blocks) which separates the
data samples with a different class label by a large
margin and makes the samples with the same class
labels close to each other; 2) calculate the distance
between each of the samples from the training set
to the testing samples; 3) run this and previous
steps through multiple iterations, controlled by a
predefined matching ratio. [62] shows that IML yields
to a classification performance bound but requires the
learned matrix conforms to the Positive Semi-Definite
(PSD) constraint; its performance is still unknown for
non-linear metrics.

Figure 4. The procedure of LMNN Distance Metric Learning

2.4. Ensemble Learning and Hybrid Methods
In 1979, Dasarathy and Sheela [63] presented one of the
earliest studies on ensemble learning, which partitions
the feature space with two or more classifiers. In 1990,
Hansen and Salmon [12] utilized ensemble artificial neu-
ral networks (ANNs) with similar configurations to im-
prove a single classifier’s generalization performance.
In 2005, Surowiecki [64] illustrates the basic idea of
various ensemble learning methods and shows that
under certain controlled circumstances, the ensemble
decisions or predictions of humans often outperform
those made by an individual.

The ensemble methodology is used to enhance the
individual classifiers. The key idea is to train multiple
classifiers and then combine them to achieve an overall

classification. The ensemble learning approach has
been successfully applied to many areas like medical
diagnosis [65, 66], cheminformatics [67, 68], and
bioinformatics [69, 70]. Ensemble methods reduce the
dispersion of model performance and can make reliable
prediction performance, but since they are typically
based on either sampling and/or cost-sensitive methods
as basic classifiers, they may enjoy the benefits of these
basic classifiers but also inherit their disadvantages.

Boosting is one of the most practical techniques of
ensemble learning through instance partitioning [71].
Simply put, Boosting generates an ensemble classifier
by applying resampling methods on data and is later
combined with major voting [64, 72]. In 1997, Freund
and Schapire introduced AdaBoost (Adaptive Boosting)
[45], one of the most representative works of boosting,
which applies an iterative process to simple boosting
to improve performance. This approach focuses on the
instances which are much more complex to classify.

Adaptive Boosting (AdaBoost). Adaboost [73] is a boosting
ensemble learning approach utilized to deal with the
class imbalance problem; the key principle behind it
is to enhance the weak learner gradually into a strong
learner. More specifically, in AdaBoost, a new dataset,
in which higher weights are assigned to instances that
are misclassified by the previous classifier and a lower
weight is assigned to the one with a correct prediction,
is used for training each subsequent classifier [74].
This is implemented by varying the sample weight,
which indicates its importance in the classifier training
process, stage by stage. Fig. 5 shows the process of
combining the ultimate classifier.

Figure 5. The process of the combination of the ultimate strong
learner in AdaBoost

Majority Weighted Minority Oversampling Technique (MW-
MOTE). MWMOTE [42] balances the class distribu-
tion also by generating synthetic examples from a
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weighted minority class through a clustering approach.
The weight of each important minority sample is chosen
based on its Euclidean distance to the nearest majority
class sample.

RUSBoost. RUSBoost [39] is a combination of data
sampling and boosting algorithm based on SMOTE-
Boost [75] that balances class distribution through
SMOTE [35] and works on improving classifier per-
formance with the balanced data under the help of
AdaBoost. Instead of SMOTE, this hybrid approach
utilizes random sampling (RUS) for performance im-
provements.

DDAE. DDAE [40] is a novel model to address the
class imbalance problem consisting of resampling,
data metrics learning, cost-sensitive learning, and
ensemble learning. Besides using kNN as the base
classifier, DDAE has four components: 1) Data Block
Construction (DBC), divides the training (both minority
and majority) samples into different number of data
blocks based on the given balanced ratio; 2) Data Space
Improvement (DSI) applies LMNN (similar to IML)
to improve the data space (through relabeling and
regrouping the neighbouring data blocks) for training
samples in each data block generated in the DBC
component; 3) Adaptive Weight Adjustment (AWA)
finds an appropriate overall class weight generated
using the data coming from each data block [89]; 4)
Ensemble Learning (EL) leverages ensemble learning
with the weight determined via AWA; multiple base
classifiers with major voting technique work on the
final decision for each input sample.

Self-paced Ensemble Classifier. Self-paced Ensemble
Classifier [11] is an effective ensemble classifier
generated by self-paced harmonizing data hardness
through undersampling. [11] shows this method can
achieve robust performance even when the classes are
highly overlapped and the data distribution highly
skewed.

2.5. Evaluation metrics
Evaluation of classification performance plays a signif-
icant role in guiding and learning performance [76].
Hence, we make extensive evaluation of these existing
classification algorithms in different scenarios to under-
stand their pros and cons in this paper.

One popular way of describing evaluation metrics
is through the confusion matrix [77], which provides
multiple performance results to offer a deeper under-
standing of predictive model performance, so that the
types of error can be more clearly observed. Table 2
shows the structure of a confusion matrix for binary
classification. Table 3 shows the measures derived using
the confusion matrix from Table 2.

Table 2. Confusion Matrix for Binary Classification

Actual negative Actual positive
Predict negative TN(True Negative) FN(False Positive)
Predict positive FP(False Positive) TP(True Negative)

Table 3. Evaluation Metrics based on Confusion Matrix

Metrics Formula

Accuracy
T P + TN

T P + TN + FP + FN
Error Rate

FP + FN
T P + TN + FP + FN

Precision
T P

T P + FP
Recall (Sensitivity)

T P
T P + FN

Fβ-Measure

(
1 + β2

)
∗ Precision ∗ Recall

β2 ∗ Precision + Recall

Specificity
TN

TN + FP
Geometric Mean

√
Sensitivity ∗ Specificity

A more systematic way of depicting evaluation
metrics was proposed by Ferri et al. [78], which
classifies the evaluation metrics into three groups:
probability metrics, ranking metrics and threshold metrics.
In this paper, we apply two groups of metrics,
threshold and ranking metrics, to evaluate the model
performance.

Thresholding metrics, which quantify the classifi-
cation prediction error, focuses on the generalization
ability of the trained classifier through the quality of
the trained classifier when used to predict unknown ex-
amples [79]. The most common threshold metric is the
accuracy of classification applied in most conventional
applications; nevertheless, accuracy is inappropriate for
evaluating the imbalanced dataset since it is simple for
a classifier that only predicts the majority to yield a low
error [80].

Sensitivity-specificity metrics are practical threshold-
ing metrics for imbalanced classification that are ap-
plied by several researchers [81, 82]. As defined in Table
3, specificity means the true negative rate. Sensitivity,
the complement to specificity, describes the true posi-
tive rate. The geometric mean (G-mean) is calculated
through the combination of sensitivity and specificity
[83] and can balance both concerns. Sensitivity, Speci-
ficity and G-mean are taken into account when both
positive and negative classes are meaningful at the same
time [84]. In addition, Precision-Recall metrics arising
from the fields of information retrieval are utilized
when the output of the minority(class positive) is more
crucial [85]. In this paper, F1 (the value of β in Fβ-
Measure is 1) is utilized as one of the most important
evaluation metrics.

Nonetheless, threshold metrics are not suitable when
the distribution of categories observed in the training
dataset does not match the distribution of the test set
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Figure 6. An example of ROC Curve

and the actual data, which can make the performance
misleading [51].

The ranking metrics focus on how effectively the
base classifiers rank the examples [78]. A numeric
score of an example that refers to the probability
of being classified as positive is provided by the
base classifier, which shows the level of granularity
instead of a simple prediction. Different thresholds
whose choice affects the trade-offs of both classes’
errors can be utilized to test classifiers’ performance
[9]. Receiver Operating Characteristics (ROC) Curve
[86] is the most commonly applied ranking metric
that is not based on a specific threshold. ROC Curve
takes the true positive rate (TPR) and false positive
rate (FPR) into account and each point of ROC Curve
corresponds to the single classifier performance with a
given distribution [54]. The area under the ROC curve
(AUCROC) is generally applied to measure different
classifiers’ performance, which is summarized into a
single metric [84]. An example of ROC Curve can be
observed from Fig 6. Point A (0, 1) represents the best
performance of the classifier. Therefore, the closer the
ROC curve is to A and the more it deviates from the
45-degree diagonal(representing a random classifier),
the more successful it is; this also indicates the greater
the AUCROC is, the better [84, 86]. However, in [54],
it is argued that even a classifier with a high AUCROC
can perform poorly in a particular region in ROC space
compared with a low AUCROC classifier.

If a dataset is highly skewed, the performance of the
algorithm might as observed overly optimistic through
a ROC curve [86]. The Precision-Recall (PR) Curve,
which assesses a more informative representation of
performance, is utilized to solve such a limitation [54,
87]. PR-Curve is a plot of Recall on the x-axis and
Precision on the y-axis [87], and it can capture the
performance of the classifier correctly and effectively
if the number of false positives drastically change as

the Precision metrics takes the ratio of TP to TP+FP
into account [54]. Due to its high level of performance
with highly skewed data, it has been applied to the
evaluation of performance by many researchers, such
as [88–90]. Unlike ROC-Curve, whose objective is to
be closer to the point (0, 1), the highest performing
classifier is represented by a PR-Curve residing in the
top right of the PR space(point C(1, 1)) [9]. Similar to
AUCROC, the area under the PR Curve (AUCPRC) is
also a summary of PR-Curve with a single scale value
[9]. An example of PR-Curve can be observed in Fig 7.

Figure 7. An example of PR Curve

Recall, Precision, G-Mean, F1 and AUCPRC are
applied to evaluate the algorithms’ performance in the
following experiments.

3. Data Sources
Eight datasets were collected from the medical or
healthcare sector. These are Yeast1vs7, Euthyroid Sick,
Thyroid Sick, and Mammographic (MGC), Wisconsin
Diagnosis Breast Cancer (WDBC) and Pima Indian
Diabetes (PID) from UCI [91], and two sub datasets of
Protein Homology (PH1 and PH2) from KDD Cup 2004
[92], which are utilized to test the performance of these
models. The detail of these datasets is depicted in Table
4. In addition, eight further datasets are employed,
including Cm1, Mw1, Pc1, Pc3, Pc4 which are from
NASA Metrics Data Program (NASA) dataset [93] on the
software development process, two datasets Poker89vs6
and Poker8vs6 for card playing, which are from KEEL
[16], and Optical Recognition of Handwritten Digits
(optdigits) from UCI. All these datasets are imbalanced
distributed but with various imbalance ratio (IR),
instances and features. The detail of these datasets is
depicted in Table 5.

We apply a few data cleaning techniques introduced
by previous works (e.g., [94–97]). Data entries with
duplicated, inconsistent, or missing values are either
deleted or corrected by replacing the missing value with
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Table 4. Characteristics of Used Healthcare Datasets

Dataset #Class #Instances #F IR
Euthyroid Sick 2 3,163 42 9.795
Thyroid Sick 2 3,772 52 15.329
PH1 2 11,274 74 7.699
PH2 2 31,296 74 23.148
MGC 2 11,183 6 42.012
Yeast1vs7 2 459 7 14.300
WDBC 2 768 8 1.866
PID 2 568 32 1.684

Table 5. Characteristics of Used Datasets from Other Fields

Dataset #Class #Instances #F IR
optdigits 2 5,620 65 9.144
Cm1 2 497 21 9.354
Mw1 2 403 37 12.000
Pc1 2 1,109 21 13.400
Pc3 2 1,563 37 8.769
Pc4 2 1,458 37 7.191
Poker89vs6 2 1,485 10 58.400
Poker8vs6 2 1,477 10 85.882

a dummy value or the median of the corresponding
attribute, depending on the nature and distribution of
the data. For instance, in the Euthyroid Sick Dataset,
the missing rate of the attribute ‘Age’ is 14.10% (466
of 3163). Fig. 8 shows the 8 top values of this attribute,
with the age range of the whole dataset between 1 and
98 years old. During the data cleaning process, this
kind of missing value will be replaced with the median
of this attribute. Dummy variable adjustment [98] is
utilized when the attribute is discrete and has few
different values, which can be converted into a dummy
variable. For example, in the Thyroid Sick dataset,
there are three different values for the gender SEX
attribute: ‘M1’, ‘F2’, ‘?3’ (see Fig. 9, so this column can
be converted into IS_SEX_MALE, IS_SEX_FEMALE,
IS_SEX_NA).

Outliers with outstanding values are identified and
cleaned up, with the aid of data visualization e.g.,
by box plots with quantiles. For example, Fig. 10
and Fig. 11 depict the box plots for the attributes
‘Blood Pressure’ and ‘Glucose’ from the PID dataset,
respectively. The outliers can be observed clearly in this
illustration: there are some instances with an extremely
low value for ‘Blood Pressure’ which is rare in the real
world; an instance of a 0 ‘Glucose’ can also be viewed
as an outlier. Such incorrect data, or data that violates
common sense, may lead to an ineffective model.

Further used data preprocessing techniques include
feature encoding [99], which allows data transforma-
tion to make data more acceptable as input for models.

1Male
2Female
3Missing Value

Figure 8. Age Attribute in Euthyroid Sick Dataset

Figure 9. SEX Attribute in Thyroid Sick Dataset

For example, the attribute ‘referral source’ of thyroid
sick dataset contains five values: ‘SVI’, ‘SVHC’, ‘STMW’,
‘SVHD’ and ‘other’. Table 6 shows the results of using
feature encoding for this attribute before and after
transformation. This attribute will be replaced by four
new attributes: ‘RSrc1’, ‘RSrc2’, ‘RSrc3’ and ‘RSrc4’. The
package Scikit-Learn provides a OneHotEncoder class
to transform these kinds of category values into one-hot
vectors [99].

Table 6. Comparison of Before and After One Hot Encoding for
Attribute ‘referral source’ in Thyroid Sick Dataset

Raw No referral source

=⇒

RSrc1 RSrc2 RSrc3 RSrc4
1 SVI 1 0 0 0
2 STMW 0 0 1 0
3 SVHD 0 0 0 1
4 SVHC 0 1 0 0
5 other 0 0 0 0

In our experiments, all datasets are split based on
T rainingSet : T estSet = 7:3 and all experiments are run
10 times and all the performance values are averaged.
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Figure 10. Box Plot for Attribute ‘Glucose’ in PID Dataset

Figure 11. Box Plot for Attribute ‘Blood Pressure’ in PID
Dataset

4. Results
4.1. Overall Comparison
Tables 7-21 present the results of our performance
evaluation of all examined imbalance classification
algorithms in terms of G-mean, F1 and AUCPRC for
each separate dataset.

As shown from these results, the G-mean of DDAE
is close to or better than the average on most of the
datasets. For example, the G-mean value obtained on
the MGC is 0.878, while the average value at this time
is only 0.750; the G-mean value yielded on Pc1 is 0.740,
while the figure for RUSBoost is only 0.44. However,
DDAE’s F1 and AUCPRC are not satisfactory; they are,
lower than the corresponding average values on most
of the datasets. In contrast, AdaBoost and self-paced
Ensemble Classifier yield high performance in terms of
F1, AUCPRC and G-mean under most circumstances.
These two ensemble algorithms seem can accurately

Table 7. Overall Results for Euthyroid Sick Dataset

Models
Euthyroid Sick

G-mean F1 AUCPRC
DDAE 0.880 0.552 0.587
MWMOTE 0.832 0.658 0.616
SMOTE 0.829 0.667 0.621
RUSBoost 0.911 0.725 0.779
AdaBoost 0.904 0.862 0.901
MetaCost 0.935 0.846 0.723
csDCT 0.960 0.846 0.723
CAdaMEC 0.876 0.831 0.865
self-paced 0.971 0.856 0.861
IML 0.867 0.809 0.836

Average 0.897 0.765 0.751

Table 8. Overall Results for Thyroid Sick Dataset

Models
Thyroid Sick

G-mean F1 AUCPRC
DDAE 0.883 0.506 0.622
MWMOTE 0.735 0.558 0.342
SMOTE 0.694 0.535 0.323
RUSBoost 0.908 0.783 0.805
AdaBoost 0.879 0.828 0.882
MetaCost 0.413 0.280 0.342
csDCT 0.891 0.811 0.700
CAdaMEC 0.835 0.794 0.901
self-paced 0.915 0.861 0.893
IML 0.615 0.474 0.335

Average 0.777 0.643 0.615

Table 9. Overall Results for PH1 Dataset

Models
PH1

G-mean F1 AUCPRC
DDAE 0.955 0.828 0.891
MWMOTE 0.934 0.781 0.647
SMOTE 0.925 0.765 0.630
RUSBoost 0.938 0.868 0.940
AdaBoost 0.940 0.926 0.963
MetaCost 0.851 0.774 0.706
csDCT 0.918 0.837 0.728
CAdaMEC 0.934 0.913 0.960
self-paced 0.936 0.892 0.943
IML 0.907 0.874 0.925

Average 0.924 0.846 0.833

Table 10. Overall Results for PH2 Dataset

Models
PH2

G-mean F1 AUCPRC
DDAE 0.986 0.830 0.956
MWMOTE 0.953 0.664 0.498
SMOTE 0.935 0.701 0.546
RUSBoost 0.996 0.981 0.999
AdaBoost 0.995 0.994 1.000
MetaCost 0.884 0.794 0.783
csDCT 0.999 0.999 0.997
CAdaMEC 0.995 0.991 1.000
self-paced 0.999 0.999 1
IML 0.978 0.964 0.999

Average 0.972 0.892 0.878
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Table 11. Overall Results for optdigits Dataset

Models
optdigits

G-mean F1 AUCPRC
DDAE 0.986 0.904 0.995
MWMOTE 0.986 0.965 0.934
SMOTE 0.983 0.968 0.940
RUSBoost 0.970 0.921 0.971
AdaBoost 0.963 0.955 0.986
MetaCost 0.836 0.616 0.490
csDCT 0.900 0.758 0.637
CAdaMEC 0.972 0.985 0.992
self-paced 0.965 0.946 0.980
IML 0.981 0.970 0.995

Average 0.954 0.899 0.892

Table 12. Overall Results for MGC Dataset

Models
MGC

G-mean F1 AUCPRC
DDAE 0.878 0.321 0.324
MWMOTE 0.798 0.522 0.321
SMOTE 0.813 0.539 0.331
RUSBoost 0.708 0.549 0.513
AdaBoost 0.803 0.767 0.758
MetaCost 0.793 0.313 0.208
csDCT 0.782 0.284 0.141
CAdaMEC 0.640 0.562 0.627
self-paced 0.877 0.516 0.669
IML 0.411 0.286 0.270

Average 0.750 0.466 0.416

Table 13. Overall Results for WDBC Dataset

Models
WDBC

G-mean F1 AUCPRC
DDAE 0.866 0.831 0.825
MWMOTE 0.891 0.873 0.957
SMOTE 0.941 0.937 0.945
RUSBoost 0.911 0.898 0.926
AdaBoost 0.887 0.871 0.832
MetaCost 0.887 0.871 0.910
csDCT 0.907 0.882 0.831
CAdaMEC 0.891 0.873 0.957
self-paced 0.866 0.831 0.825
IML 0.893 0.870 0.910

Average 0.894 0.874 0.892

Table 14. Overall Results for PID Dataset

Models
PID

G-mean F1 AUCPRC
DDAE 0.712 0.657 0.586
MWMOTE 0.760 0.780 0.841
SMOTE 0.807 0.824 0.859
RUSBoost 0.649 0.562 0.642
AdaBoost 0.693 0.671 0.709
MetaCost 0.751 0.688 0.734
csDCT 0.738 0.671 0.610
CAdaMEC 0.727 0.658 0.692
self-paced 0.640 0.550 0.610
IML 0.667 0.587 0.586

Average 0.714 0.665 0.687

Table 15. Overall Results for Yeast1vs7 Dataset

Models
Yeast1vs7

G-mean F1 AUCPRC
DDAE 0.713 0.214 0.257
MWMOTE 0.778 0.307 0.336
SMOTE 0.775 0.300 0.468
RUSBoost 0.598 0.353 0.304
AdaBoost 0.496 0.333 0.305
MetaCost 0.331 0.080 0.083
csDCT 0.000 0.000 0.129
CAdaMEC 0.000 0.000 0.066
self-paced 0.740 0.245 0.181
IML 0.607 0.526 0.387

Average 0.582 0.237 0.304

Table 16. Overall Results for Poker8vs6 Dataset

Models
Poker8vs6

G-mean F1 AUCPRC
DDAE 0.622 0.029 0.078
MWMOTE 0.866 0.857 0.752
SMOTE 0.999 0.889 0.800
RUSBoost 0.707 0.667 0.761
AdaBoost 1.000 1.000 1
MetaCost 0.000 0.000 0.000
csDCT 0.443 0.019 0.009
CAdaMEC 0.000 0.000 0.007
self-paced 0.613 0.085 0.038
IML 0.500 0.400 0.379

Average 0.695 0.395 0.482

Table 17. Overall Results for Poker89vs6 Dataset

Models
Poker89vs6

G-mean F1 AUCPRC
DDAE 0.704 0.051 0.188
MWMOTE 0.986 0.500 0.750
SMOTE 0.979 0.400 0.750
RUSBoost 1.000 1.000 1.000
AdaBoost 1.000 1.000 1.000
MetaCost 0.000 0.000 0.015
csDCT 0.495 0.032 0.019
CAdaMEC 0.000 0.000 0.014
self-paced 0.567 0.036 0.016
IML 0.816 0.800 0.848

Average 0.755 0.382 0.559

Table 18. Overall Results for Cm1 Dataset

Models
Cm1

G-mean F1 AUCPRC
DDAE 0.699 0.290 0.214
MWMOTE 0.679 0.286 0.182
SMOTE 0.715 0.308 0.219
RUSBoost 0.438 0.250 0.386
AdaBoost 0.981 0.970 0.995
MetaCost 0.744 0.322 0.198
csDCT 0.559 0.203 0.158
CAdaMEC 0.622 0.237 0.196
self-paced 0.690 0.298 0.262
IML 0.499 0.207 0.137

Average 0.663 0.337 0.295
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Table 19. Overall Results for Pc1 Dataset

Models
Pc1

G-mean F1 AUCPRC
DDAE 0.740 0.237 0.179
MWMOTE 0.718 0.226 0.160
SMOTE 0.734 0.244 0.205
RUSBoost 0.440 0.235 0.214
AdaBoost 0.223 0.091 0.226
MetaCost 0.548 0.197 0.109
csDCT 0.642 0.185 0.099
CAdaMEC 0.673 0.203 0.156
self-paced 0.649 0.253 0.251
IML 0.649 0.253 0.251

Average 0.602 0.212 0.185

Table 20. Overall Results for Pc4 Dataset

Models
Pc4

G-mean F1 AUCPRC
DDAE 0.756 0.381 0.364
MWMOTE 0.825 0.497 0.499
SMOTE 0.789 0.460 0.443
RUSBoost 0.752 0.418 0.413
AdaBoost 0.823 0.699 0.714
MetaCost 0.790 0.436 0.273
csDCT 0.826 0.512 0.364
CAdaMEC 0.831 0.475 0.695
self-paced 0.837 0.524 0.453
IML 0.668 0.505 0.416

Average 0.790 0.491 0.463

Table 21. Overall Results for Pc3 Dataset

Models
Pc3

G-mean F1 AUCPRC
DDAE 0.772 0.440 0.319
MWMOTE 0.780 0.491 0.401
SMOTE 0.752 0.440 0.376
RUSBoost 0.452 0.273 0.310
AdaBoost 0.438 0.289 0.343
MetaCost 0.737 0.432 0.263
csDCT 0.719 0.432 0.284
CAdaMEC 0.629 0.301 0.336
self-paced 0.719 0.432 0.284
IML 0.418 0.267 0.300

Average 0.645 0.380 0.322

classify not only a large proportion of minority but also
most majority in most cases. For example, AdaBoost
has achieved the highest F1 and AUCPRC on datasets
such as Euthyroid Sick and PH1, its F1 (0.970) being
nearly three times that of MetaCost (0.322), which is
the second highest value, on the Cm1 dataset; self-
paced Ensemble Classifier has achieved the highest
F1 and AUCPRC on Thyroid Sick dataset and PH2
dataset, and its F1 and AUCPRC on Pc1 are twice that
of AdaBoost. In addition, RUSBoost shows relatively
stable performance and close to the average on most
datasets.

The stability of cost-sensitive learning models, such
as MetaCost, csDCT and CAdaMEC, is not very obvious.

CAdaMEC, as well as csDCt, performed well on the
optdigits dataset and the Thyroid Sick dataset, but on
Yeast1vs7 dataset, its performance is the worst.

SMOTE and MWMOTE are two sampling models,
with a similar performance in most cases except on the
Poker8vs6 dataset.

Moreover, the performance of IML fluctuates above
and below the average level.Compared with other
algorithms, the advantage is not obvious.

To investigate the ability of theses models on positive
sample detection, the recall for all these models on the
medical datasets is presented in Table 22.

It shows the recall for DDAE performs well on all
medical datasets. The recall for self-paced Ensemble
Classifier and CAdaMEC can also maintain a relatively
stable performance on nearly all the medical datasets.

4.2. Impact of Imbalance Ratio
First, to analyze the influence of the IR on the model,
eight identically-sized sub-datasets with different
imbalance ratios (IRs) were used in the experiment.
They were IR=10, 20, 30, 40, 50, 60, 70, 80 and 90. The
x-axis for Figures 12-14 is IR.

Fig. 12 illustrates the trend of recall of all algorithms
as the IR increases. This metric stays stable on
DDAE most of the time, and DDAE keeps the
recall between 0.9 and 0.95. MWMOTE, SMOTE,
cost-sensitive Decision Tree, CAdaMEC, self-paced
Ensemble Classifier and IML show a downward trend.
Among these, the recall of MWMOTE, SMOTE and
self-paced Ensemble Classifier decreased slightly as
the class distribution became more imbalanced, with
the highest and lowest values for MWMOTE, SMOTE,
AdaBoost and self-paced Ensemble Classifier being
0.978(IR=30) and 0.852 (IR=90), 0.967 (IR=30) and
0.793 (IR=80), 0.865 (IR=10) and 0.517 (IR=80), 0.898
(IR=10) and 0.795 (IR=80), respectively. The figures
for recall of the other four “decreasing” algorithms
drop significantly, from 0.841 (IR=20) to 0.593 (IR=90)
for csDCT, from 0.836 (IR=10) to 0.519 (IR=90) for
CAdaMEC, and from 0.767 (IR=10) to 0.517 (IR=90) for
IML. In addition, no obvious correlation between recall
and the changes in IR can be seen through the curves
of RUSBoost and MetaCost. All of them show a slight
fluctuation in this process.

Notably, the G-mean of almost all the models remains
nearly stable except MetaCost. All of the models still
retain a high value for G-mean even when the IR is
70 or 80. Fig. 13 shows that some of models performs
better (or similarly) when the IR is 70 compared to
the IR is 10, including DDAE, MWMOTE, SMOTE,
RUSBoost, AdaBoost, MetaCost, self-paced Ensemble
Classifier, IML and csDCT.

F1 is an evaluation metric which takes both recall
and precision into account. In other words, if the
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Table 22. Recall for for All Models on 8 Medical Public Datasets

Dataset
Recall

DDAE MWMOTE SMOTE RUSBoost AdaBoost MetaCost csDCT CAdaMEC self-paced IML
Euthyroid Sick 0.929 0.737 0.725 0.888 0.827 0.898 0.867 0.776 0.847 0.763
Thyroid Sick 0.883 0.558 0.494 0.844 0.779 0.169 0.805 0.701 0.844 0.383

PH1 0.956 0.926 0.913 0.900 0.887 0.741 0.867 0.877 0.887 0.831
PH2 0.990 0.946 0.939 0.992 0.990 0.787 1.000 0.990 0.997 0.931
MGC 0.834 0.651 0.675 0.506 0.675 0.675 0.663 0.410 0.795 0.169

WDBC 0.894 0.950 0.960 0.864 0.894 0.818 0.909 0.833 0.864 0.864
PID 0.810 0.824 0.869 0.512 0.548 0.774 0.690 0.631 0.524 0.524

Yeast1vs7 0.750 0.750 0.750 0.375 0.250 0.125 0.000 0.750 0.750 0.375

Figure 12. Recall: Impact of Imbalance Ratio

Figure 13. G-mean: Impact of Imbalance Ratio

trend of recall for a specific model maintains stability

Figure 14. F1: Impact of Imbalance Ratio

Figure 15. AUCPRC: Impact of Imbalance Ratio

with only a slight decrease/increase, the changes in
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F1 will be similar to those in precision. Fig. 14
shows F1’s trends of SMOTE, MWMOTE, DDAE and
csDCT, which reflects the changes in precision. The
value of F1 for MetaCost and AdaBoost decreases
slightly during the process. In contrast, as the
performance of other models shows degradation to
some degree, the figures for IML, RUSBoost and self-
paced Ensemble Classifier stay almost stable, but the
former increases slightly after the IR is greater than
70 and the latter drops to a small degree. AUCPRC
is another evaluation metric which considers recall
and precision at the same time. As shown in Fig.
15, the AUCPRCs for DDAE, MWMOTE, SMOTE,
CAdaMEC and IML decrease as the IR increases.
The figure for MetaCost fluctuates significantly but is
still showing a decrease. The AUCPRCs for AdaBoost,
RUSBoost and self-paced Ensemble Classifier are all on
a slightly downward trend. Moreover, csDCT preforms
differently on AUCPRC from other models; the figure
for these two models climbing when the IR varies from
50 to 90.

4.3. Impact of the Size of Datasets
Next, in order to analyze whether the size of the dataset
will affect the classification accuracy of the model, five
sub-datasets with the same IR but different numbers
of instances (which are #Instances=4500, 9000, 18000,
36000 and 72000) are taken from the Protein Homology
dataset. The results can be observed in Figures 16-25.

It can be seen that with the sample dataset sizes, the
values of the five evaluation metrics for the algorithms
DDAE, MWMOTE, SMOTE, IML and cost-sensitive
Decision Tree (csDCT) have an upward trend, especially
the precision and F1, which increase more than 0.2
and 0.1 respectively. This phenomenon shows that the
classification results are more accurate on these models
when the sample size is extensive compared to when the
sample size is small.

The RUSBoost, AdaBoost, self-paced Ensemble Clas-
sifier and CAdaMEC algorithms are not significantly
affected by the size of the dataset. The performance of
the algorithms on all five experiments is quite excellent,
and the values of the evaluation metrics are mostly
between 0.9-1.0. Although the CAdaMEC is slightly
inadequate when the total sample size is 4500, the recall
value is also greater than 0.8, and as the total number
of instances exceeds 10,000, this model can predict
the labels of all majority and minority classes correctly
among all the algorithms.

It can be noted that, only MetaCost does not show an
apparent trend.

4.4. Evaluation on System Performance
We also evaluate the system performance of these
algorithms. All our experiments are conducted on

Figure 16. DDAE: Impact of Dataset Size

Figure 17. IML: Impact of Dataset Size

Figure 18. self-paced: Impact of Dataset Size
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Figure 19. MetaCost: Impact of Dataset Size

Figure 20. CAdaMEC: Impact of Dataset Size

Figure 21. csDCT: Impact of Dataset Size

a laptop with Intel(R) Core(TM) i7-7660U CPU @
2.50GHz and 16GB RAM, running Windows 10 Version
20H2.

Figure 22. AdaBoost: Impact of Dataset Size

Figure 23. RUSBoost: Impact of Dataset Size

Figure 24. MWMOTE: Impact of Dataset Size

Table 23 shows the learning time achieved by each
algorithm on different datasets. IML and DDAE yield
the longest learning time compared to the other
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Figure 25. SMOTE: Impact of Dataset Size

algorithms. Self-paced Ensemble Classifier performs
fairly well in terms of learning time with most of the
values ranging in (0, 0.1).

As shown in Table 24, the memory usage of each
algorithm is similar, even when processing different
datasets, and there is no obvious relation between the
memory usage and the size of the dataset. Among all
these algorithms, AdaBoost and self-paced Ensemble
Classifier are two algorithms with the lowest memory
usage.

5. Discussion

As shown in our experiments, DDAE yields the highest
value for recall on almost all imbalanced datasets.
Since the recall only focuses on minority, a higher
recall means that most samples with a class label
of 1 can be correctly predicted. since the recall and
precision generally cannot be satisfactory at the same
time, it is critical for a class imbalance classification
model to achieve an appropriate F1. Comparing with
other algorithms like csDCT, RUSBoost and self-paced
Ensemble Classifier, the F1 of DDAE is extremely
low on some datasets. This illustrates that DDAE is
more sensitive than others, so it is easier to predict
a sample with a class label of 0 as 1, which can be
considered first because the number of training samples
is too small. On several datasets, such as Poker8vs6,
DDAE’s F1 performs extremely poorly compared to
other algorithms but has better recall performance. This
dataset contains a total of 1,477 samples, but its IR is
as high as 85.882, that is, only 17 positive samples are
included in this dataset. Comparing to Poker8vs6, the
performance of F1 on PH1 (with 11,274 data samples)
and optdigits (with 5,620 data samples) is much better.
This can also be confirmed from Fig. 15 and Fig. 16,
which shows that when the size of dataset is constant,

as the IR increases, the F1 and AUCPRC of DDAE on
individual dataset shows a significant decrease.

Iterative Metric Learning (IML) is a model that also
utilizes Large Margin Nearest Neighbor (LMNN) to
improve the data space and uses the kNN classifier
as the basic classifier. Unlike DDAE, IML consistently
performs well in F1 and AUCPRC, even when the
value of recall is low. compared with other models,
the evaluation metrics of IML on different datasets
vary, meaning that IML is more sensitive to the data
distribution of the dataset. The results in Section 4.2
shows the performance of IML keeps stable under
different IRs.

The performance of SMOTE and MWMOTE seems
quite similar, but the G-mean, F1 and AUCPRC for
SMOTE on some slightly imbalanced datasets, such as
WDBC (IR=1.866) and PID (IR=1.684), are better than
that of MWMOTE. This can also be observed from
Fig. 14, which shows that the IR is relatively small,
SMOTE performs better than MWMOTE. SMOTE will
randomly select minority samples to synthesize new
samples, regardless of the surrounding samples. This
may generate useless samples if the selected minority
sample is far away from the decision boundary; the
newly generated samples may be also overlapped with
the majority samples in the surrounding if the selected
minority resides inside the majority region [52].
MWMOTE also applies the synthetic sample generation
technique. However, unlike SMOTE, MWMOTE utilizes
a clustering procedure to ensure that all the produced
samples must be located within the minority region
to avoid any false or noisy synthetic samples [42].
Different from SMOTE, MWMOTE employs a more
practical approach to select samples that are difficult to
learn, and then assigns them appropriate weights [42].
This can explain why MWMOTE performs better than
SMOTE when the IR is high.

AdaBoost, RUSBoost and self-paced Ensemble Classi-
fier are three alternative ensemble learning techniques
to DDAE. AdaBoost is a basic implementation of the
ensemble learning technique. RUSBoost adds a random
undersampling technique on the foundation of boost-
ing. Like DDAE, the self-paced Ensemble Classifier
also cuts the majority of the dataset into several bins
and uses the resampled balance training set (includ-
ing majority subset and minority subset) to train each
base classifier. Unlike DDAE, the other three ensemble
methods do not take the weights of both classes into
account, which can also contribute to a lower recall
value but higher F1 and AUCPRC values. AdaBoost and
RUSBoost perform similarly. Compared with RUSBoost,
the self-paced Ensemble Classifier and AdaBoost show
a more stable performance. Even though AdaBoost and
RUSBoost and AdaBoost achieve 0.196 and 0.214 re-
spectively in terms of recall on the Pc3 dataset, the
recall of the self-paced Ensemble Classifier is 0.786 for
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Table 23. Learning Time for All Models on the Public Datasets

Dataset
Learning Time (in Seconds)

DDAE MWMOTE SMOTE RUSBoost AdaBoost MetaCost csDCT CAdaMEC self-paced IML
Euthyroid Sick 146.78 0.381 0.224 0.050 0.110 2.426 7.586 0.185 0.041 912.87
Thyroid Sick 471.88 1.362 1.711 0.542 1.103 19.910 16.786 0.370 0.080 1680.46

PH1 1753.42 0.940 8.006 4.857 2.494 64.927 786.164 1.053 0.226 16627.12
PH2 14446.34 115.313 51.917 4.091 5.783 188.748 4513.89 2.770 0.302 46155.96

optdigits 637.39 0.983 3.207 0.863 0.976 31.625 166.284 0.372 0.070 5001.33
MGC 1472.36 0.845 0.749 0.529 0.679 54.577 31.973 0.231 0.065 9861.93

WDBC 13.43 0.950 0.960 0.864 0.894 0.818 0.909 16.117 0.864 8.11
PID 17.45 0.381 0.224 0.381 0.478 9.187 15.547 0.089 0.029 27.03

Yeast1vs7 46.99 0.083 0.014 0.235 0.141 2.411 11.044 0.109 0.036 5.85
Cm1 54.64 0.069 0.060 0.016 0.106 1.201 36.415 0.086 0.029 10.87
Pc1 76.46 0.103 0.119 0.244 0.177 3.570 35.073 0.106 0.032 8.70
Pc3 110.98 0.358 0.053 0.274 0.258 5.388 136.251 0.157 0.034 180.43
Pc4 97.79 0.399 0.638 0.259 0.208 5.175 65.156 0.118 0.038 156.00

Poker8vs6 126.93 0.101 0.034 0.185 0.135 4.565 7.267 0.090 0.038 134.87
Poker89vs6 101.16 0.136 0.020 0.236 0.261 4.617 6.322 0.102 0.029 135.84

Table 24. Memory Usage for All Models on the Public Datasets

Dataset
Memory Usage (in MB)

DDAE MWMOTE SMOTE RUSBoost AdaBoost MetaCost csDCT CAdaMEC self-paced IML

Euthyroid Sick 1.587 0.833 0.388 0.417 0.342 0.418 1.449 0.369 0.399 0.977
Thyroid Sick 1.978 0.425 0.362 0.403 0.344 0.410 0.956 0.364 0.354 0.481

PH1 1.964 0.428 0.356 0.391 0.338 0.400 1.149 0.357 0.348 0.592
PH2 1.986 0.817 0.369 0.417 0.350 0.417 1.523 0.351 0.366 0.607

optdigits 1.677 0.416 0.439 0.344 0.330 0.394 0.813 0.336 0.336 0.413
MGC 1.996 0.822 0.885 0.425 0.347 0.762 1.055 0.376 0.353 0.457

WDBC 1.609 0.549 0.451 0.677 0.390 0.388 1.414 0.725 0.447 0.619
PID 0.707 0.457 0.450 0.355 0.338 0.383 0.810 0.343 0.346 0.426

Yeast1vs7 0.430 0.438 0.428 0.354 0.334 0.396 0.781 0.342 0.358 0.504
Cm1 1.499 0.614 0.515 0.399 0.343 0.410 0.829 0.366 0.358 0.437
Pc1 1.966 0.549 0.451 0.677 0.390 0.388 1.410 0.725 0.447 0.619
Pc3 1.503 0.530 0.458 0.793 0.361 0.417 1.305 0.372 0.381 0.612
Pc4 1.007 0.474 0.429 0.366 0.342 0.387 0.808 0.348 0.348 0.434

Poker8vs6 1.510 0.525 0.464 0.392 0.344 0.408 0.911 0.367 0.365 0.435
Poker89vs6 0.638 0.404 0.418 0.360 0.336 0.395 0.836 0.346 0.346 0.426

this dataset, which yields the highest value among all
our investigated models.

Moreover, the cost-sensitive learning methods (Meta-
Cost, csDCT and CAdaMEC) can perform well when
the IR of the dataset is relatively low, such as in the
Euthyroid Sick, optdigits and PH1 datasets. The perfor-
mance of MetaCost varies when it deals with different
datasets. It is hard to set an appropriate cost matrix for
each dataset, as people cannot be experts all the time.
If the set cost matrix is not suitable for the predicted
dataset and the data is highly skewed, the performance
of the classifier can be extremely unsatisfactory, such as
on the Poker8vs6 dataset. Considering this, it is better
to utilize this kind of classifier when the imbalance ratio
is not very high. Our experiments confirmed that as
the IR increases, the curves of all evaluation metrics
of MetaCost and CAdaMEC fluctuate, but still show a
downward trend.

The impact of the size of the dataset on the
performance of the model is noticeable. Except for
Metacost (which shows an irregular fluctuation), the
remaining algorithms either consistently perform very
well or all the evaluation metrics of the algorithm rise
gradually as the number of samples in the dataset
increases. For most algorithms, the more samples in
the dataset, the more training samples are used to train
the model, which can provide a stronger training basis
for the model and enable more accurate prediction.
Enlarging the scale of the dataset can enhance the
completeness of the data, and can also alleviate
the over-fitting phenomenon caused by resampling
methods, such as in MWMOTE and SMOTE.

Although our current experiments focus on binary
classification, some of the investigated algorithms are
also suitable for multi-class classification, such as
AdaBoost, MetaCost and cost-sensitive decision tree.
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SMOTE, MWMOTE and IML focus on the feature
space. Thus, if these techniques are used for multi-
class classification, the classifier combined with these
techniques should be also suitable for multi-class
classification.

Table 25 summarizes the pros and cons of all the
techniques investigated in this paper. As a consequence,
since algorithms have various characteristics, it is im-
portant to choose the appropriate algorithm depending
on the actual situation. For instance, for the algorithms
used for stocks prediction, people should pay more
attention to their precision. However, in medical diag-
nosis or earthquake prediction fields, the recall for the
algorithms is more significant.

Based on our experimental results in the studied
datasets, we recommend the following flowchart for
algorithm selection, as shown in Fig. 26.

Figure 26. Our recommendation for algorithm selection based on
experimental results in this paper

6. Conclusion
We conducted a systematic performance comparison
of several class imbalance classification models using
various datasets from medical and other sectors.

Our experiments showed sampling methods perform
the worst, and when the dataset is not very imbal-
anced cost-sensitive learning models achieves good
performance. Ensemble learning techniques generally
perform better over other approaches due to their
combined intelligence of multiple basic classifiers. In
terms of system performance, distance metric learning
requires the longest learning time, while self-paced
Ensemble Classifier requires shortest time for learning;
AdaBoost and self-paced Ensemble Classifier requires
the lowest memory usage.

Our analysis implies that the performance of algo-
rithms cannot be judged by the individual evaluation
metrics alone; the application requirements and usage

scenarios should also be taken into account. In partic-
ular, we make our empirical recommendation for algo-
rithm selection under different requirements and usage
scenarios. In addition, the number of base estimators
set by ensemble learning classifiers can also make an
impact on their performance.
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