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Abstract

The signal can be charactered by both eigenvalues and eigenvectors of covariance matrix. However, the
existing detection methods only exploit the eigenvalue or eigenvector. In this paper, we utilize the both
eigenvalues and eigenvectors of the sampled covariance matrix to perform spectrum sensing for improving
the detection performance. The features of eigenvalues and eigenvectors are considered integratedly and the
relationship between the false-alarm probability and the decision threshold is offered. To testify this method,
some simulations are carried out. The results demonstrate that the method shows some advantages in the
detection performance over the conventional method only adapting eigenvalues or eigenvectors.
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1. Introduction
At present, wireless spectrum resources are assigned
statically, and the given spectrum bands are authorized
to some communication systems. Simultaneously, other
systems cannot occupy these spectrum bands. For the
limited wireless resources, the static style of working
results in a precipitous decline in available spectrum
resources. However, some of these licensed frequency
bands are underutilized[1–3]. To solve the unbalanced
utilization of spectrum resources, cognitive radio is
presented. Many institutions and scholars put more
attentions on key issues of cognitive radio [4–7], such
as spectrum sensing, spectrum sharing.

Nowadays, conventional spectrum sensing methods
are composed of matched filter detection, energy detec-
tion, likelihood ratio test detection and cyclostationary
detection [8–11]. When the signal is corrupted by the
Gaussian white noise, matched filter detection has opti-
mal detection performance. Unfortunately, some prior
information about licensed users must be known. More
difficultly, precise synchronization between licensed
users and secondary users must also be achieved. It
is mostly impossible for secondary users to acquire
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these prior knowledge. Energy detection is most com-
monly used in practice due to its simplicity and low
computational complexity. No additional prior infor-
mation about licensed users are required for energy
detection. However, energy detection suffers from noise
uncertainty and SNR wall, which degrade the detection
probability and the false-alarm probability severely.
Likelihood ratio test based detection method has opti-
mal detection performance under the Neyman-Pearson
criterion. This method detect the signal by virtue of
the difference of probability density function between
the licensed user and noise. Obviously, the algorithm
requires the corresponding prior knowledge. For cyclo-
stationary detection method, the inherent features of
the licensed user, which arise from modulation style,
signal rate or other parameters, are exploited. This
method can overcome the effect of fading and shadow
and has the better performance than other detection
methods in the low SNR region. But, the computational
complexity is unaffordable for the practical application
at most cases.

From the previous analysis, we can see that
the mentioned-above methods have advantages and
disadvantages. So the detection method based on
random matrix was first introduced by Cardoso to
deal with these problems. This method can cope with
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the noise uncertainty of energy detection and require
no prior information about the licensed user. So this
method attract more attentions. In [12], the ratio of
the maximum eigenvalue and the minimum eigenvalue
is adapted as the test statistic to perform spectrum
sensing, the corresponding threshold are calculated
according to MP law of random matrix. But the
requirement of too many samples is unsatisfactory.
Aiming to solve this problem, the authors in [13] exploit
the Tracy-Widom distribution of maximum eigenvalue
to modify the threshold and propose the Maximum
Minimum Eigenvalue (MME) method. In the light of
these work, many modifications were made to improve
the sensing performance.

In fact, it is well known that eigenvectors also contain
related information about the presence of signal.
Compared to the method exploiting the eigenvalue,
only a few works about the utilization of eigenvector
are reported. In terms of principle component analysis,
eigenvector-based feature template matching (FTM)
method was proposed [14]. This method utilizes the
eigenvector of sampled covariance matrix as the test
statistic to carry out spectrum sensing. Additionally,
literature [15] combine kernel function of machine
learning with FTM to propose the kernel feature
template matching method. It is pointed that feature
template matching (FTM) method is a special case of
kernel feature template matching method. The authors
of the literature also derived the false-alarm probability
and decision threshold and analyzed the factors of
affecting the detection performance.

Stimulated by the eigenvalue-based method and
FTM algorithm, we combine the eigenvalue and
eigenvector to carry out spectrum sensing. In the
porposed method, the product of main eigenvector and
the ratio of maximum and minimum eigenvalue is
utilized as the test statistic. In terms of the concept of
random matrix, the false alarm probability is derived
by approximating some results. Finally, the decision
threshold is calculated.

2. System model and algorithm description

We assume that there are K sensing nodes. For the ith
node, the binary hypothesis test can be expressed as

yi(n) =
{

ωi(n), H0
hi(n)xi(n) + ωi(n), H1

(1)

Where ωi(n), xi(n) and hi(n) denote the additive noise,
the licensed user signal and channel gain respectively.
Two different segments signals are exploited to

construct the received signal matrix Y1 and Y2

Y1 =


y1 (1) y1 (2) . . . y1 (N )
y2 (1) y2(2) . . . y2 (N )
... . . .

...
yK (1) yK (2) . . . yK (N )

 (2)

Y2 =


y1 (N + 1) y1 (N + 2) . . . y1 (2N )
y2 (N + 1) y2(N + 2) . . . y2 (2N )

... . . .
...

yK (N + 1) yK (N + 2) . . . yK (2N )

 (3)

Where N is the number of signal samples. Their
corresponding covariance matrix R1 and R2 are
expressed as

R1 =
1
N

Y1Y1
T (4)

R2 =
1
N

Y2Y2
T (5)

If the only the noise exists, the maximum eigenvalue
λmax and minimum eigenvalue λmin of the sampled
covariance matrix has the following relation.

λmax = λmin = σ2 (6)

But, when the signal is present, the maximum
eigenvalue and minimum eigenvalue differs

λmax > λmin = σ2 (7)

Therefore, by combining (6) and (7), we have(
λmax

λmin

)
H0

<

(
λmax

λmin

)
H1

(8)

Analogously, for the main eigenvector of H0 and H1
case, the following relation holds

(|〈a1,b1〉|)H0
< (|〈a1,b1〉|)H1

(9)

where a1 and b1 are the corresponding main eigenvec-
tors of the sampled covariance matrix R1 and R2. Jointly
considering (8) and (9), we can obtain(

λmax

λmin

)
H0

(|〈a1,b1〉|)H0
<

(
λmax

λmin

)
H1

(|〈a1,b1〉|)H1
(10)

We can observe that the product of the ratio of the
maximum eigenvalue and minimum eigenvalue and the
correlation of main eigenvectors for the H0 and H1
case differ obviously. Compared to the method only
employing eigenvalue or eigenvector, more obvious
difference can be obtained for the product. Thus, we
select the product as the test statistic of spectrum
sensing. The proposed method is summarized as
follows.
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1)The received signal is sampled to get two different
signal matrix Y1 and Y2, And then the corresponding
sampled covariance matrices R1 and R2 are calculated.

2)The covariance matrices R1 and R2 are decomposed
to obtain main eigenvectors a1 and b1 , the maximum
eigenvalue λ max 1 and λ max 2, the minimum eigenvalue
λ min 1 and λ min 2 .

3)The product is calculated as follows

T = ρ1ρ2 |〈a1,b1〉| (11)

where ρ1 = λmax 1
λmin 1

and ρ2 = λmax 2
λmin 2

.
4) Based on the preset threshold γ , the final decision

is made to perform spectrum sensing. If T > γ , the
signal exists, otherwise, only the noise is present.

3. Solving the false-alarm probability and the
decision threshold
From the definition of false-alarm probability, we have

Pf a = P (D1|H0)
= P (T > γ |H0)

= P (ρ 1ρ 2 |〈a1,b1〉| > γ |H0)
(12)

When only the noise exists, the covariance matrix of the
received signal is Wishart matrix. From the MP law, the
maximum eigenvalue and minimum eigenvalue in the
H0 case are

λmax = σ2
(
1 +
√
c
)2

(13)

λmin = σ2
(
1 −
√
c
)2

(14)

where c is the ratio of the number of nodes and
the number of samples. The ratio of the maximum
eigenvalue and the minimum eigenvalue is

η =
λmax

λmin
=

(
1 +
√
c
)2(

1 −
√
c
)2 (15)

For the matrix R1 and R2, we can calculate the
corresponding η1 and η2.

It is pointed by the literature [16] that the eigenvalue
and eigenvector of Wishart matrix are independent to
each other. Let γ = εη2 . Coupled with (15), the false-
alarm probability can be expressed in the form

Pf a = P (ρ 1ρ 2 |〈a1,b1〉| > γ |H0)
= P (ρ 1ρ 2 |〈a1,b1〉| > εη1η2|H0)

≈ P (|〈a1,b1〉| > ε|H0)
(16)

To calculate the false-alarm probability, we derive the
probability density function of |〈a1,b1〉|. In terms of the
concept of eigenvalue decomposition, we can get

R1 = AΛ1A
T (17)

R2 = BΛ2B
T (18)

where Λ1 and Λ2 are the diagonal matrix containing
eigenvalues of R1 and R2. The columun vectors of and
correspond to eigenvectors. And the main eigenvectors
a1 and b1 of the sampled covariance matrix R1 and R2
are the first column of matrix A and B. Because A and
B are unitary matrix, we have

f
(
ATB

)
= f (B) (19)

We can say that the elements of ATB and B in the
same position follow the same distribution

f (〈a1,b1〉) = f (b11) (20)

From the properties of unitary matrix, b11 obeys the
Beta distribution with parameters α = 1

2 and β = N−1
2

f (x) =

(
1 − x2

)(n−1)/2−1

B
(

1
2 ,

N−1
2

) (21)

Because the distribution are computationally com-
plex, we approximate it with the Gaussian distribution
for the large N [15]. According to the result derived in
literature [15], f (x) can be replaced by h (x)

h (x) =

√
N
√

2π
e−

Nx2
2 (22)

Substituting (22) into (16) yields to

Pf a ≈ P (|〈a1,b1〉| > ε|H0)
= P (〈a1,b1〉 > ε, 〈a1,b1〉 < −ε|H0)

= 2P (〈a1,b1〉 > ε|H0)

= 2
∫∞
ε

√
N√
2π
e−

Nx2
2 dx

= 2Q
(√
Nε

) (23)

When the false-alarm probability is preset, we get the
parameter ε

ε = Q−1
(
Pf a
2

)
1
√
N

(24)

So, the corresponding threshold can be calculated as

γ = εη2 =

(
1 +
√
c
)4(

1 −
√
c
)4Q

−1
(
Pf a
2

)
1
√
N

(25)

4. Numerical simulation and analysis
We first carry out simulations to testify the correctness
of approximated probability density function in (22).
Fig.1 plots the f (x) and h (x) when N=20,40 and 80. We
observe from Fig.1 that the difference between f (x) and
h (x) becomes gradually small with the increasing of N .
WhenN=80, no obvious difference is found. Simulation
results prove the approximation of probability density
function
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Figure 1. Comparison of f (x) and h (x)

In the following, we compare the estimated probabil-
ity density function and theoretical result for 〈a1,b1〉.
The simulated parameters are as follows. The number
of Monte Carlo simulation is 2000, K=10, N=500. Fig.2
demonstrates the results. We can see that the estimated
probability density function fits perfectly the theoreti-
cal result.
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Figure 2. The estimated pdf and theoretical result of the main
eigenvector for H0

Next, we verify the rationality of the decision
threshold. We offer the relationship among the test
statistic of H0 case, test statistic of H1case and the
decision threshold in Fig.3 when K=10čňand SNR=-
10dB. It is demonstrated that the threshold varies
dynamically with the number of samples. Additionally,
we can also observe that the difference of the test
statistic for H0 and H1 case is obvious for all the
samples and the decision threshold is between the test
statistics forH0 andH1 case. All these results guarantee
the proper threshold for obtaining the satisfactory
performance.
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Figure 3. The estimated pdf and theoretical result of the main
eigenvector for H0

We now verify the detection performance of the
proposed method. The simulated parameters are set
as follows. K=10čňN=200ąć500ąć1000. The number
of Monte Carlo simulation is 2000. Fig.4 plots the
detection probability for the different SNR. We can
draw three conclusions. 1) The detection probability is
improved with the increasing of samples for the low
SNR region. For example, the detection probability
is 0.5 and 1 for N=200 and 1000 when SNR=-15dB.
2) When SNR is more than -10dB, the detection
probability remains a constant 1 for the different
samples. 3) when the samples remains unchanged, the
detection probability increases proportionately with
SNR.
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比变化曲线 
Figure 4. the detection probability for the different samples and
SNR

To testify the superiority of the proposed method
over other algorithms, we show the detection probabil-
ity of FFM, MME and the proposed method in Fig.5. The
simulated parameters are set as follows. K=10, N=500.
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The number of Monte Carlo simulation is 2000. It is
noted that the samples are divided into two segments
for FTM and the proposed method, and each segment
has N/2 samples. We can observe that the proposed
method has good detection performance over other two
algorithms.
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Figure 5. the detection probability for the different samples and
SNR

5. Conclusion
Inspired by the FTM and eigenvalue-based spectrum
sensing, we introduced the spectrum sensing algorithm
based on dual-feature consisting of eigenvalues and
eigenvector. We defined the product of the ratio of
the maximum eigenvalue and the minimum eigenvalue
and main eigenvector as the test statistic. This
test statistic consider the eigenvalue and eigenvector
comprehensively. Based on the test statistic, we derived
the false-alarm probability and offer the closed form
of threshold under Newman Pearson criterion. In
simulations, we testified the correctness of Gaussian
approximation of probability density function and
compared the proposed method with FTM and MME
algorithms. The simulation results showed that the
proposed method outperforms the FTM and MME
algorithms with lower computational complexity.
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