
Opportunistic Diversity-Based Detection of
Injection Attacks in Web Applications
Wenyu Qu1, Wei Huo2, Lingyu Wang2,∗

1School of Computer Software, Tianjin University, Tianjin, China
2Concordia Institute For Information Systems Engineering, Concordia University, Montreal, Canada

Abstract

Web-based applications delivered using clouds are becoming increasingly popular due to less demand of
client-side resources and easier maintenance than desktop counterparts. At the same time, larger attack
surfaces and developers’ lack of security proficiency or awareness leave Web applications particularly
vulnerable to security attacks. On the other hand, diversity has long been considered as a viable approach
to detecting security attacks since functionally similar but internally different variants of an application will
likely respond to the same attack in different ways. However, most diversity-by-design approaches have met
difficulties in practice due to the prohibitive cost in terms of both development and maintenance. In this
work, we propose to employ opportunistic diversity inherent to Web applications and their database backends
to detect injection attacks. We first conduct a case study of common vulnerabilities to confirm the potential
of opportunistic diversity for detecting potential attacks. We then devise a multi-stage approach to examine
features extracted from the database queries, their effect on the database, the query results, as well as the
user-end results. Next, we combine the partial results obtained from different stages using a learning-based
approach to further improve the detection accuracy. Finally, we evaluate our approach using a real world Web
application.

Received on 21 November 2018; accepted on 04 December 2018; published on 11 December 2018
Keywords: Diversity, SQL Injection, Web Application Security, Intrusion Detection

Copyright © 2018 Wenyu Qu et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.11-12-2018.156032

1. Introduction

Web-based applications are becoming increasingly
popular in an age of cloud computing, mobile
devices, and Internet of things. In contrast to their
desktop counterparts, Web applications demand less
client-side resources and are easier to deliver and
maintain by employing the Web browser as a thin
client. On the other hand, Web applications are
especially attractive to security attacks due to their
larger attack surfaces and the lack of security
proficiency or awareness of their developers. Protecting
a mission critical Web application, such as those
used by governments, financial institutions, and health
care sectors, means more than just patching known
vulnerabilities and deploying firewalls or IDSs. For
instance, the widespread panic about the Heart

∗Corresponding author. Email: wang@ciise.concordia.ca

Bleed vulnerability [1] has clearly demonstrated the
importance of improving applications’ robustness
against novel zero day attacks exploiting undiscovered
vulnerabilities. On the other hand, this is clearly
a challenging task since signature-based detection
mostly only works for known attacks, whereas anomaly
detection is well known to suffer from inaccuracy.

In a slightly different context, software diversity has
traditionally been regarded as a promising mechanism
for improving the robustness of a software system
against unknown attacks [2]. More recently, diversity
has found new applications in cloud computing
security [3], Moving Target Defense (MTD) [4], network
security [5], and network routing [6] (a more detailed
review of related work will be given in Section 2).
By comparing outputs [7] or behaviors [8] of multiple
software replicas with diverse implementation details,
security attacks may be detected and tolerated as

1

Research Article
EAI Endorsed Transactions
on Security and Safety

EAI Endorsed Transactions on
Security and Safety

10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

http://creativecommons.org/licenses/by/3.0/
mailto:<wang@ciise.concordia.ca>

W. Qu, W. Huo, L. Wang

Byzantine faults [9]. Although the earlier diversity-by-
design approaches are usually regarded as impractical
due to the implied development and deployment cost,
recent work show more promising directions of either
employing opportunistic diversity already existing in
operating systems [10], or automatically generating
diversity through randomization of address space [11,
12], instruction set [13], or data space [14]. Nonetheless,
a dilemma faced by most existing works on detecting
attacks through diversity is that, diversity is either too
costly (as in the case of diversity-by-design), or not
sufficient to be used as a stand-alone means for attack
detection (as in the case of opportunistic diversity).

In this paper, unlike most existing works, our
key idea is to employ opportunistic diversity in
Web applications and database backends to assist,
instead of replacing, traditional anomaly detection
methods, in order to improve the overall detection
accuracy. This approach allows us to avoid the
prohibitive cost of diversity-by-design, while having
the best of both worlds from anomaly detection
and opportunistic diversity. Specifically, we propose
a multi-stage approach to employ the opportunistic
diversity found in Web applications and their database
backends for reducing the false alarms generated by
anomaly detection, as follows.

• First, we conduct a case study on real world
vulnerabilities to confirm the effectiveness of the
proposed approach. Specifically, we perform an
extensive study of almost 6,000 Common Vulner-
abilities and Exposures (CVE) Web injection vul-
nerabilities [15] to find all Web applications that
have multiple variants written in different lan-
guages, and the common vulnerabilities between
those variants. Our results indicate a very low
occurrence of common vulnerabilities between
variants, which implies that opportunistic diver-
sity can indeed assist in detecting attacks.

• Second, we propose a multi-stage approach
to employ opportunistic diversity for assisting
anomaly detection of injection attacks. Specifi-
cally, we design an architecture for monitoring the
behavior of multiple variants of an application at
four stages, in terms of queries sent by the appli-
cation to its database backend, the effect of such
queries on the database, query results, and user-
end results. We propose methods for extracting
features at each of those stages, and for comparing
such features, or partial anomaly detection results
obtained from such features, between different
variants. We also devise a learning-based method
for combining the partial results obtained at dif-
ferent stages into a final decision.

• Finally, we implement the proposed approach
based on a real world Web application and con-
duct experiments to evaluate the effectiveness of
our approach. The experimental results indicate
that, by employing diversity between different
variants, our approach leads to less false posi-
tives than traditional anomaly detection; at the
same time, by combining partial results obtained
from multiple stages, our approach yields higher
detection accuracy than diversity-based detection
based on a single stage.

The main contribution of this paper is twofold. First,
this is among the first efforts that employ opportunistic
diversity for improving the accuracy of anomaly
detection in the specific context of Web applications;
this approach can avoid both the prohibitive cost
implied by diversity-by-design and the high false alarm
rate inherent to traditional anomaly detection. Second,
our approach of combining partial results obtained
at different stages of the interaction between users,
applications, and databases yields a higher detection
accuracy than single-stage detection, and thus leads
to a promising direction towards practical detection
solutions; although we have focused on injection attacks
in this paper, the methodology can potentially be
extended to detect other attacks.
The rest of the paper is organized as follows. We first

review related work in Section 2. We then present a
case study in Section 3. We propose the attack detection
model in Section 4 and present the experimental results
in Section 5. Finally, we conclude the paper in Section 6.

2. Related work

In this section, we review existing approaches to SQL
injection attack detection, query string comparison,
database schema matching and the use of diversity for
security.

2.1. Defense of Injection Attacks

Despite many years of research, various forms of
injection attacks still remain a major threat to Web
applications (e.g., injection attack has been ranked
number one in the top ten critical Web application
security risks by the Open Web Application Security
Project (OWASP) [16]). Defensive coding is one of
the common defense approaches, with mechanisms
like [17] proposed to check user inputs by types,
patterns, and detect the malicious input according
to signatures. Although it is the most fundamental
way to detect SQL injection attacks (SQLIAs), this
practice often generates a significant amount of false
positives and it also cannot completely cover all the
input fields. Xiang Fu et al. propose SAFELI [18], a
mechanism that uses static analysis to detect SQLIAs in

2
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

Web applications during compilation. Similarly, JDBC
Checker [19] is a practical tool implementing static
analysis. Such static code checkers can verify the
correctness of dynamically-generated SQL queries but
cannot handle SQLIA queries that contains correct type
and syntax.
There also exist approaches that involve the combi-

nation of static and dynamic analysis. AMNESIA [20]
is a hybrid solution that combines static and dynamic
analysis which uses static analysis to build a model for
web applications and intercepts the run-time queries
to verify if they match the model. CANDID [21] is
another dynamic analysis approach which dynamically
runs web applications with candidate inputs and detect
SQLIAs by comparing them to the structure of candi-
date queries. SQLGuard [22] and SQLCheck [23] check
SQLIAs based on parse tree models generated by static
code analysis where the runtime queries’ structures
are compared to the model and only the matched
ones would be sent to database. Most such approaches
require code modification of web applications and their
accuracy is still largely based on static analysis. Another
promising SQLIA defense approach is SQLrand [24],
which uses a randomized instruction set of queries to
prevent SQLIAs where the SQL keywords are different
from normal so that the injection code with normal SQL
keyword cannot have command effect to database. This
technique is generally very effective unless if the secret
key is compromised, and the interpretation of proxy
filter may also significantly increase the computation
cost.
A SQLIA detection technique is proposed in [25]

where a standard safe query statement for the web
application is first generated with known safe user
input strings. Detection is achieved by parsing standard
SQL statements and runtime statement and comparing
their syntax tree structure. Two SQL statements are
considered semantic equivalent if their syntax tree
structures are equivalent. If runtime statement fails
to be semantic equivalent to its related standard
statement, it is considered to be a possible SQLIA.
Context-sensitive string evaluation(CSSE) [26] is a more
fine grained analysis where, by instrumentation of
the platform, query strings are separated into user-
provided data and developer-provided data before
being sent to database server. Only user-provided data
would be examined as it is considered to be untrusted.
By using the context of untrusted output string
fragment and intercepted API calls, syntactic content
inside is either escaped or the execution is prevented.
The work in [27] has similar ideas where only strings
originated from external source is considered to be
untrusted and syntax evaluation is applied to those
strings and the query will only execute if the pattern
matching has positive result. The work in [28] prevents
more general injection attacks through analyzing the

parse tree of query strings. A standard grammar
of specific application is pre-defined and user input
section of query string is specially marked with random
symbol and processed with augmented grammar; the
query will only be executed if it complies with the
syntactic constraints.

2.2. Diversity in Security

Using design diversity for fault tolerance has been
investigated for a long time. Many approaches in this
field implement Byzantine Fault Tolerant(BFT) replica-
tion as fault tolerance solution. In [29], many practi-
cal issues in doing so are mentioned, e.g., BFT repli-
cation performance, recovery, effectiveness of diver-
sity, confidentiality, etc. In [9], some of the challenges
are further discussed in a single machine environ-
ment, such as achieving both effectiveness and effi-
ciency while combining OS and binary randomization
techniques. In [30], an intrusion-avoidance architec-
ture is built based on cross-platform JAVA technologies
and infrastructure-as-a-service cloud service providers.
Diversity of this system is achieved in four levels,
operating system, web server, application server and
database management system. One of the most crucial
factors in the effectiveness of an intrusion tolerance
system is that the vulnerability occurs independently.
To reduce common vulnerabilities between replicas,
security patches and recovery need to be preformed.
DIVErse Rejuvenation SYStem(DIVERSYS) [31] provides
automatic management of diverse configurations and
recoveries between replicas in fault tolerance systems.
Diversity components under DIVERSYS is proactively
or reactively patched in each period of time to pro-
vide recycling. When diversity is increased, the prob-
lem of incompatibility between replicas also emerges.
DiveInto [32] is a JAVA tool that improves compliance of
diverse server replicas, which is focused on correcting
syntax and semantic violations of the replicas instead
of malicious violations.
There exist many diversity systems which run

multiple variants and compare their results. M.Garcia
et al. [10] evaluates opportunistic diversity in OS
and its effectiveness for intrusion tolerance. They
obtain vulnerability data of various OSes from
NIST National Vulnerability Database (NVD), classify
them and search for common vulnerabilities across
different OSes. The result is promising as only for
a very small number of non-applications, remotely
exploitable common vulnerabilities are found, which
proves diversity system can significantly improve the
security of OS. They also evaluated various OS pairs
and announced the pairs with best performance on
intrusion tolerance. Besides opportunistic diversity,
another common approach to diversity is by applying
randomization to the low level code of web servers/web

3
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

applications. In [33], the authors propose instruction set
randomization (ISR) to achieve diversity and improve
security. It combines a set of Components-Off-The-Shelf
(COTS) web servers to create a redundant system.
The use of COTS instead of specifically developed
variants reduce the cost of implementation, making it
possible to deploy enough number of COTS servers
to fulfill intrusion tolerance requirement. Another
randomization approach is address space randomization
(ASR) which obfuscates the location of data and code
instead of randomizing the program code itself. In [11],
an ASR technique is proposed to mitigate various code
injection attacks on executable files, such as stack
smashing and format string attacks. Apart from ISR
and ASR, another randomization technique, the Data
Space Randomization (DSR), is proposed in [14] which
randomizes the representation of different data objects;
using different masks on different objects, attackers can
no longer determine if the intended value is overwritten
into the code. Those randomization techniques allow
systems running multiple variants in parallel to be
built. However, the problem of synchronization and
related false alarm issues emerge in this kind of systems
are raised in [34] and a synchronization technique is
proposed based on majority voting.
N-Version Programming and N-Variant Systems [7, 35,

36] are typical examples of diversity systems that utilize
diversity to defend various attacks. The N-version
programming approach generates N ≥ 2 functionally
equivalent programs and compares their results to
determine a faulty version, with metrics for measuring
the diversity of software and fault [37, 38]. The main
limitation of using diversity for fault tolerance lies
in the high complexity of creating different versions,
which may not justify the benefit [39]. Babak Salamat
et al. proposedOrchestra [40] with similar idea, which is
designed as a fully functioning Multi-Variant Execution
Environment (MVEE). The framework of Orchestra is
similar to N-Variant systems, with a diversification
engine, a monitor and multiple variants. It introduces
a notion: synchronization point, which is instantiated by
invocation of a system call to evaluate if the variants are
in conforming states. In another work by Babak Salamat
et al. [41], the problem of false positives/negatives is
also discussed, i.e., race conditionmay occur when third
party trying to manipulate a file under synchronization,
causing divergence between variants and false positives.
Anh Nguyen-Tuong et al. [42] proposes a diversity
system using the N-Variant system framework where
they formally re-define some of the key attributes
including normal equivalence and detection.
There are also diversity systems which distribute

different variants to individual users to prevent attacks.
E unibus pluram [43] utilizes a diversification engine, a
“‘multicompiler”, to generate unique but functionally
equivalent applications for the users, so specific attacks

only succeed on a portion of the targets. One of the
major advantages is it can effectively prevent attackers
from generating attack vectors by reverse engineering.
Compared to similar work of this paradigm, this
work emphasizes on practical massive-scale availability
by introducing online software delivery, reliable
compilers and cloud computing. Another work in [44]
mitigates worm attacks on sensor networks by assigning
different versions of applications to different nodes
in the network. Instead of randomly assigning the
diversified applications, it treats the assignment as
a graph coloring problem, which ensures no two
adjacent nodes in the graph share the same color.
By solving this problem, it achieves better isolation
between adjacent variants while using only a limited
number of diversified applications. Finally, the software
assignment problem, i.e., how to optimally assign
diverse software to different hosts in a network in
order to improve the network’s resilience to security
threats like worms, is addressed in [45] by considering
practical constraints, and a similar issue is formulated
and solved as a multi-objective optimization problem
in [46].

3. The Case Study

In this section, we first use an example to demonstrate
how opportunistic diversity may improve the security
of a web application. We then perform an extensive
study of injection vulnerabilities based on the NVD
database in order to evaluate the sharing of vulnerabil-
ities among different versions of Web applications.

3.1. An Example

Midicart [47] is an online shopping cart application
with both ASP and PHP versions. We demonstrate how
opportunistic diversity may help detecting injection
attacks through an example based on a SQL injection
vulnerability, which is found in the Midicart PHP
version but not in the ASP version.

The ASP Application Line 20 of the “search_list.asp”
file of the Midicart ASP version reads:

search=request.Querystring("searchstring")+request.fo

rm("searchstring")

search = Replace(search, "’", "’’")

search = Replace(search, "/", "//")

...

set rs=conn.execute("SELECT * FROM products where ‘‘& chose

& " LIKE ’%" & search & "%’ ORDER BY maingroup, secondgroup,

code_no")

As the code shows, the “searchstring” parameter
in file “search_list.asp" is filtered by two “Replace"
functions, with “’" and “/" escaped.

4
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

The PHP Application In contrast, in the equivalent
code section of the Midicart PHP version, the
“searchstring" parameter in “search_list.php" is not
filtered at all, as shown below.

$searchstring=$_REQUEST["searchstring"];

$chose=$_REQUEST["chose"];

...

$result = mysql_query("select * from products WHERE

$chose LIKE ’%$searchstring%’ ORDER BY ’maingroup’,’second

group’, ’code_no’ LIMIT 0, 100 ") ;

Injection Attacks To launch an injection attack
exploiting this vulnerability, an attacker will attempt
to inject raw SQL statement into the “search" box, e.g.,
through the following.

http://www.example.com/search_list.php?chose=item&searchs

tring=asus%’ UNION SELECT null,CreditCard, ExpDate, null,

null,null,null,null FROM card_payment where PaymentMethod

LIKE ’%visa

For the PHP version, this will generate the following
database query:

select * from products WHERE item LIKE ’%asus%’ UNIONSELECT

null,CreditCard, ExpDate, null,null, null,null,null FROM

card_payment where PaymentMethod LIKE ’%visa%’ ORDER BY

’maingroup’,’secondgroup’,’code_no’ LIMIT 0, 100

As the first apostrophe is enclosed by injected apos-
trophe, “union select” will be executed; consequently,
the attacker would be able to retrieve the unauthorized
credit card information from the “card_payment” table.
On the other hand, in the ASP version, the query will

be the following.

SELECT * FROM products where " item " LIKE ’%asus%’’ UNION

SELECT null, CreditCard, ExpDate, null,null, null,null,null

FROM card_payment where PaymentMethod LIKE ’’%visa%’ ORDER

BY maingroup, secondgroup, code_no

As the user input apostrophe is replaced by double
apostrophe, the injection code would be treated as a
normal string. That is, the database will not execute the
union select SQL command and the attacker will not be
able to obtain any unauthorized information.

Observations This example shows that, there may
exist opportunistic diversity between different versions
of the same Web application, which will cause the
same user input to induce different behaviors in those
different variants of the same application. Therefore, we
can potentially employ different versions of the same
web application to construct a diversity system and
rely on the different behaviors to help detect possible
injection attacks.
On the other hand, to show the general applicability

of this idea, we need to study the sharing of
vulnerabilities between the different versions of Web
applications in general. In order to achieve this, we will
perform an extensive study of injection vulnerabilities
in Section 3.2.

3.2. Study of Shared Injection vulnerabilities in CVE

We perform an extensive study of shared injection
vulnerabilities between different variants of the same
Web application (here variants mean multiple ver-
sions of the application written in different script lan-
guages, instead of upgraded versions) based on the CVE
database which is generally considered as comprehen-
sive with respect to all publicly known vulnerabilities
and exposures [15]. The goal of this study is to evaluate
the hypothesis that different versions of the same Web
application rarely share common injection vulnerabili-
ties and hence the opportunistic diversity among those
versions will be useful for detecting injection attacks.

Applications with Variants. We first search the CVE
entries for Web applications that have multiple variants
written in different languages in two steps as follows.

1. We first find Web applications with injection
vulnerabilities.

2. Among the result, we then find applications with
multiple variants.

Applications with Injection Vulnerabilities We
apply search keywords like “SQL injection” to find
applications involving injection vulnerabilities in the
master copy of the CVE database. Totally 5,870 entries
are found to be related to SQL injection vulnerabilities
in CVE. A sample vulnerability entry is as follows.

CVE-2012-5912 Multiple SQL injection vulner-
abilities in PicoPublisher 2.0
allow remote attackers to exe-
cute arbitrary SQL commands
via the id parameter to (1)
page.php or (2) single.php.

Generally, such an entry contains the information of
vulnerability type, application name, location of the
vulnerability (parameter name and file name). Such
information may be used to map each entry to a
Web application and find common entries shared by
different variants.

Applications with Variants Considering the large
amount of vulnerability entries (5870), it would be
a tedious process to perform the search manually.
Fortunately, following observations allow us to conduct
the search in a semi-automated fashion.

• First, the majority of involved Web applications
are written in four script languages, ASP, PHP,
JSP, and ASP.NET; applications written in other
script languages rarely have a variant appearing
in the list.

5
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

• Second, since each CVE vulnerability entry
contains the file name in which this vul-
nerability occurs, the file extensions, such as
“.asp”,“.php”,“.jsp”, and “.aspx” will indicate the
script language.

These allow us to group the involved Web appli-
cations into four categories, according to the script
languages they are written in. The grouping result is
summarized in Table 1.

Language ASP JSP ASP.NET PHP
of Applications 488 42 30 1000+

Table 1. Grouping of Applications

As the table shows, JSP and ASP.NET applications
are the minority (30 to 40 of each) among nearly 6,000
SQL injection vulnerability entries. ASP applications
have a relatively larger number, 488, whereas PHP
applications are the clear majority, estimated as over
1000. The four categories have very different population
sizes. This observation helps us to derive some useful
heuristics to reduce the effort as follows. First, we
should begin with a category with less applications.
In addition, we observe that applications written in
JSP are less likely to have variants written in other
languages. On the other hand, since ASP.NET is an
improved version of ASP, many ASP.NET applications
would have an older ASP version, in which case they
generally do not have a corresponding PHP version.
Finally, the most common case would be either ASP
or ASP.NET applications with a PHP variant. With
such considerations and observations, we complete the
search in the following three steps.

1. Find all ASP.NET applications, and search for
their ASP, PHP, JSP variants.

2. Find all JSP applications, and search for their ASP,
PHP variants.

3. Find all ASP applications, and search for their
PHP variants.

During the study, we use the name of the applications
as the keyword to search for its vulnerability entries
in CVE, so the results are not limited to SQL injection
vulnerabilities only. After the results are listed, we
then search for file extensions: “.asp”, “.php”, “.jsp”,
“.aspx” in these entries. If more than one file extensions
exist, the application may have variants and will be
considered as candidate. Finally, we verify the results
manually.

The Result There are totally 16 applications in
CVE database that involve some injection attacks and
have multiple variants, which are listed in Table 2.
Specifically,

Application ASP PHP ASP.NET JSP
Active Bids o o
BlogMe o o
Brooky eStore o o
Dvbbs o o o
fipsGallery o o
Innovative CMS o o
Jbook o o
MaxCMS/PIPICMS o o
MidiCart o o
myNewsletter o o
Pre Classified Listings o o
WmsCms o o
Absolute News Manager(.NET) o o
Active Price Comparison o o
WebEvents o o
Xigla Absolute Banner Manager o o

Table 2. Web Applications with Variants and Injection

Vulnerabilities

• In Step 1, we found five ASP.NET applications
with variants, and the variants are written in ASP.

• In Step 2, none is found.

• In Step 3, we found 12 PHP applications with
variants, and all the variants are also written in
ASP.

Note there is an overlap between these steps for
application “DVBBS”, which has three variants, in ASP,
PHP, and ASP.NET, respectively.

Matching Common Vulnerabilities. Among the 16 appli-
cations, we need to determine whether two variants of
the same application have “common” vulnerabilities, as
explained in the following.

• For any two variants A and B of the same
application, we say parameter m in A and
parameter n in B are equivalent parameters ifm and
n take equivalent input values from equivalent
input fields. Equivalent parameters usually need
to be identified based on the same functionalities
between variants.

• We say two SQLIA vulnerabilities x and y are
common vulnerabilities if they involve equivalent
parameters m and n, respectively.

Our study shows that the existence of equivalent
parameters can be categorized into four cases listed
below. Those cases are from the most common to
the most uncommon, and most equivalent parameters
between variants will still share the same name.

1. The same parameter name and same file name
(ignoring extensions).

6
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

2. The same parameter name and different file
names.

3. Different parameter names and the same file
name.

4. Different parameter names and different file
names.

For example, in our motivating example given
earlier, the “searchstring” parameter is an equivalent
parameter in above Case 1 (the same parameter name
and same file names), even though this vulnerability is
not a common vulnerability since it only exists in the
PHP version.
Among these 16 web applications, there are totally

34 SQL injection vulnerability entries in CVE, which
are listed in the Appendix. Each application has at
least one entry and at most four entries (Pre Classified
Listings). With such a relatively small amount of entries
per application, it is easy to manually identify common
vulnerability between variants.

Matching Common Vulnerabilities We now examine
the 34 vulnerabilities to search for common vulner-
abilities based on equivalent parameters. In order to
simplify the task, we first assume the Case 1 for all
equivalent parameters, such that we can automatically
search for equivalent parameters by names. We then
manually verify the results, and if Case 1 does not
apply, we will manually find the equivalent parameter
matching other cases.
In the end, we only find common vulnerabilities in

one application named “Midicart", as detailed below.

CVE-2006-6209 (ASP) CVE-2005-1503 (PHP)
Multiple SQL injection
vulnerabilities in MidiCart
ASP Shopping Cart and
ASP Plus Shopping Cart
allow remote attackers
to execute arbitrary SQL
commands via the (1)
id2006quant parameter
to (a) item_show.asp, or
the (2) maingroup or (3)
secondgroup parameter to
(b) item_list.asp. NOTE:
the code_no parameter to
Item_Show.asp is covered
by CVE-2005-2601.

Multiple SQL injection
vulnerabilities in MidiCart
PHP Shopping Cart
allow remote attackers
to execute arbitrary SQL
commands via the (1)
searchstring parameter
to search_list.php, the
(2) maingroup or (3)
secondgroup parameters
to item_list.php, or (4)
code_no parameter to
item_show.php.

Table 3. Common Vulnerabilities of Midicart

In both variants, “maingroup”, “secondgroup”, and
“code_no” are all equivalent parameters in Case 1 (the
same parameter name and same file name). Attackers
can exploit such vulnerabilities in both variants, and
hence they cannot be detected through diversity alone

(note, however, we will not rely on diversity alone for
detection in this paper). For all other applications, no
common vulnerability is found.

Summary. Our key findings are as follows.

• There exist 5,870 SQL injection vulnerability
entries related to around 2,000 web applications.

• Among those, there exist 16 applications that have
multiple variants written in different languages.

• Those applications involve 34 vulnerability
entries.

• Among those, only one application contains one
pair of common vulnerabilities.

Those findings confirm our previous hypothesis that
different variants of the same Web application rarely
share common vulnerabilities, and hence opportunistic
diversity may indeed assist the detection of attacks. On
the other hand, the existence of common vulnerabilities
shown above also indicates that opportunistic diversity
by itself may not be sufficient for the detection purpose.
Therefore, we will combine opportunistic diversity with
anomaly detection in the rest of the paper.
There are some limitations in our study. First

of all, the CVE database is certainly not supposed
to be comprehensive enough to cover all known
vulnerabilities. Also, the manual analysis of common
vulnerabilities may not be perfectly accurate. Finally,
the 16 applications we found may not cover all
applications with variants in CVE database since if an
application will be missed in our search if only one
of its versions has vulnerability entries. However, this
may be acceptable since those missed would not have
common vulnerabilities anyway (since only one version
has vulnerability entries in the CVE database).

4. The Methodology

In this section, we present our multi-stage diversity-
based attack detection method.

4.1. Overview

To employ opportunistic diversity for preventing
attacks, we monitor the interaction between a user and
multiple variants of an application together with their
database backends. Anomaly detection is performed
based on features extracted from different stages of such
interaction. Partial results obtained at different stages
and from different variants are combined through a
learning-based approach to reach a decision of whether
allowing the result to be returned to the user.
Our attack detection architecture is composed of

three major components, i.e., a controller, a monitor,
and multiple variants with their database backends,

7
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

 Controller
 User Input distribution

Dataflow

 Input Output

 Variant 1 Variant 2 Variant X

 Stage

Indicator Database 1 Database 2 Database X

 Query Database Change Database Result Application Result

 (Stage 1) (Stage 2) (Stage 3) (Stage 4)

Monitor

Figure 1. The Model

as shown in Figure 1. Arrows between different
components in the figure represent the input and
output dataflow. Note that each monitoring process is
based on each user input instead of each generated SQL
query; it starts when the application receives an user
input, and ends when the output related to this user
input is produced. Thus although there is only a single
pair of dataflow arrow between each application variant
and database, in practice it is possible that multiple
queries are induced by a single user input.
As shown in Figure 1, the user interacts with one

variant of the application. The controller, monitor,
and other variants are transparent to the user. The
controller is responsible for extracting user inputs from
the first variant and distributing them to the other
variants. The monitor extracts features from different
stages of the data flow, conducts anomaly detection,
and finally combines partial detection results to reach a
final decision. Based on the decision, the controller will
either allow the first variant to return the result to the
user, or deny it and return nothing to the user. Those
will be detailed in the following.

4.2. Detection

The controller works as a medium between user and
application variants with two major modules: the user
input distributionmodule and output unifying module.
When it receives a user input, it distributes this input
to equivalent parameters of all variants. If no attack
is detected by the monitor, the controller will return
the result back to the user based on one of the results
received from the variants. Otherwise, an alarm would
be raised and the output is blocked.
The monitor is the component in charge of attack

detection. It first compares the behavior between
variants in multiple stages, then combines partial
results to reach a final detection result. This is detailed
in the following.

Multiple Stages of Detection Our approach does not
solely depend on examining SQL queries to detect
attacks as in most existing works. Having multiple
stages of detection can produce a more reliable
detection result; it can also utilize more aspects of the
diversity. Since the variants of Web applications are
written in different languages and based on different
databases, we can expect different behaviors in terms of
not only SQL queries, but also database activities, their
output results, and the user-side results. Therefore, we
employ four stages of monitoring as follows.

• SQL queries generated by the application.

• Changes made to the database.

• Query results returned by the database.

• Final results to be returned to the user.

Each stage has one or more features to score the
differences in details. For example, we use the feature
tree edit distance of abstract syntax tree obtained from
query in the first stage to score structural difference of
the queries. Features of each stage would be explained
separately later.
We expect to detect certain difference among variants

in one or more of these stages when the user input
is attack-free. When an attack is performed, more
significant difference will generally appear in multiple
stages. On the other hand, even when an attack is
exploiting common vulnerabilities, we may still detect
noticeable difference in certain stages. Thus introducing
multiple stages of comparison may be effective for
mitigating both false positives and false negatives.

Detection Methodology The straightforward way of
detecting different behaviors among variants is to
directly compare the result of each stage among
variants. However, in some applications, this may not
be a practical approach. Although the variants are
functionally similar, sometimes the inherent differences
between them can make direct comparison infeasible.
For example, one variant may use several queries for
a service, but the other variant may use a stored
procedure for the same service. In this case, direct
comparison on the first stage, query string, would
generate a large amount of false positives.
Therefore, different from many existing works, we

do not compare directly the features extracted from
different variants for detecting attacks, but to compare
the partial anomaly detection results obtained based
on such features. The reason is twofold. First, as
we have shown through the case study, opportunistic
diversity alone may not always be sufficient for
detecting attacks. Second, as mentioned above, different
variants may exhibit significant differences in terms

8
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

of implementation details which prevent a direct
comparison.
Specifically, for features that have significant differ-

ences among variants, we first apply a learned-based
method [48] to establish an anomaly detection model
by learning secure profiles through training with attack-
free data (note the work in [48] does not involve multi-
stage detection or diversity-based detection). The run-
time features are then compared to the learned pro-
files to obtain anomaly detection scores. This anomaly
detection phase will produce scores in uniform formats
for different variants, which can then be compared in
the next diversity detection phase to further improve the
detection accuracy. Finally, the comparison result from
each stage would be correlated by decisionmaking tools
to produce a final detection result. In this paper, we use
decision tree learning to produce the final result. The
following provides a detailed description of each stage.

Stage 1: SQL Query. At this stage, we utilize the
opportunistic diversity originated from different source
code writing of Web applications among different
variants. Specifically, when different variants filter user
inputs in different ways, the queries generated for the
same user input may vary. This can happen in two cases
as follows.

• The value of a parameter is filtered properly by
one variant but not filtered at all by the other.
An attacker can attack the vulnerable variant
by simply injecting a raw SQL string. For the
other variant, the special characters in the injected
string, such as apostrophe, will be escaped and the
attack becomes ineffective.

• The parameter is filtered by both variants, but one
of them filters it in a vulnerable way, e.g. allowing
encoding or decoding after filtering. An attacker
can still inject a SQL string with encoded special
characters to bypass the vulnerable filtering
scheme so the special characters can be restored
once passing the filtering. For the other variant,
the encoded special characters will not be restored
which makes the attack ineffective.

In both cases, the query produced from the same
malicious input becomes different among variants.
Namely, the one without proper filtering becomes
effective injection code, the other remains secure.

Example 1. Suppose a login action generates the query

SELECT * FROM admin WHERE username = ‘XXX’ AND password =

‘YYY’

Suppose the “username" parameter in variant A is
not filtered, and variant B will escape any user input
apostrophe to “%2527". Assume an attacker injects
“username” with string ’ or ‘1’=’1;.

1. In variant A, the attack is successful with query

SELECT * FROM admin WHERE username = ‘ ’ or ‘1’=‘1’

AND password = ‘YYY’

2. In variant B, the attack fails with query

SELECT * FROM admin WHERE username = ‘%2527 or

%25271%2527=%25271’ AND password = ‘YYY’

The different input filtering means injection attack
can produce different SQL queries which makes it
detectable in Stage 1.

�
Features for Detection In this stage, we utilize the
diversity at the query string level to detect injection
attacks. Therefore, the features for detection in this
stage should be able to characterize the difference
between normal SQL queries and malicious queries.
Intuitively, using string models, like the length and

character distribution model suggested in [48] is good
for measuring significant string level deviation for
the queries. However, we find through our case study
that, while such string models are good candidates
for the anomaly detection phase, they are usually
ineffective for the diversity detection phase, since
different variants are usually implemented with very
different queries, and such differences can easily
outweigh the difference between attacks and normal
queries. Therefore, we focus on the structure of the SQL
query. The SQL queries are first parsed and represented
as Abstract Syntax Tree(AST), in which the nodes
represent their structural characters. While normal
user input usually generates similar ASTs, the ASTs
yield from malicious input can have a lot of structural
deviation from the normal ones. Consequently, we
compare different variants based on three features.

• The first feature is the edit distance of ASTs [49].
In the anomaly detection phase, we calculate
the tree edit distance between runtime ASTs and
corresponding ASTs inside the previously learned
profiles. In this approach, we employ a tree
distance metric, Robust Algorithm for the Tree Edit
Distance(RTED) [49], to measure the difference
between ASTs. A higher value of tree edit distance
indicates the runtime query has larger structural
deviation from query in profile. Next, in the
diversity detection phase, the calculated edit
distances are compared across different variants
to produce the final score for this feature.

• The second feature is the list of involved tables.
Most SQL parsers can retrieve the name of
database tables involved in a query while parsing
it into AST. If the involved tables do not match the
tables in corresponding profiles, it is a significant
sign of injection attacks. We use a binary score to
describe the result from each variant. “0" means

9
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

involved tables in runtime queries are identical
to those in corresponding profiles; “1" means
otherwise. The binary score from each variant
is added up to produce the final score for this
feature. Thus if the final score is 1, it means one
variant’s runtime query involves different tables
than profile and vice versa.

• The third feature is the number of non-parsed
queries, which is utilized directly in the diversity
detection phase. A SQL parser can only output
ASTs from queries with a legitimate grammar and
cannot work with incorrect grammars. In many
injection attack scenarios, the queries will likely
have incomplete parenthesis or apostrophe, and
thus cannot be parsed. Since this feature will
always lead to a zero value in the training phase,
the anomaly detection phase may be omitted
and we can directly compare the feature across
different variants to produce the final score.

We give an example of SQLIA that can be detected in
this stage.

Example 2. The standard AST generated from the queries
in Example 1 is shown in Fig 2.

Root

SELECT * FROM admin WHERE

Username = 'XXX' AND password = 'YYY'

Figure 2. Standard AST of Example 1

The AST generated from user input in variant A and
B is shown in Fig 3.

Root

SELECT * FROM admin WHERE

username = '' AND password = 'YYY'OR '1' = '1'

Root

SELECT * FROM admin WHERE

username = '%2527 or AND password =
 %25271%2527=%25271' 'YYY'

(a.) Variant A (b.) Variant B

Figure 3. The Generated ASTs from Both Variants

The AST in Fig 3(a) has 3.0 tree edit distance with
standard AST, while the AST in Fig 3(b) has 0 distance
with standard AST. As it shows, ASTs are able to
characterize queries with different structures.

�
Limitations For some malicious input, we may still
observe benign results from the features of Stage 1
because of, but are not limited to, the following reasons:

• The related input filtering of all variants are
improper and thus have common vulnerabilities.

• The query after injection is mistakenly matched
with wrong profile.

To detect attacks that cannot be detected solely based
on SQL queries, we introduce following three stages.

Stage 2: Changes to Database. In this stage, we utilize
the diversity of different databases among the variants,
which may arise due to three factors as follows.

• Unique characteristics of specific database prod-
ucts. For example, many stored procedures or
commands are proprietary to one database prod-
uct, and may not exist, or are under different
names in other databases. The names of data types
in different database products may also vary.

• Different requirements for enclosed bracket or
parenthesis. For example, some variants require
a pair of enclosed brackets or parentheses for
certain input fields, while others do not have such
requirements.

• Different database schemas (e.g., table names and
attribute names) in different variants’ databases.
In many cases, the difference lies in the prefix or
suffix of the name.

When SQL injection is performed, the attacker
usually is required to enclose the apostrophe or
parenthesis at the beginning of the injection code. If
one variant has a left parentheses(“(") before the field
the attacker injects, while the other variant does not
have the parentheses, the injected query can only run
on one variant successfully since there would either be
unclosed left parentheses on one variant or a surplus
right parentheses on the other variant.
Furthermore, SQL injection codes often have specific

names inside, whether it is database table name or
column name. Since the database designmay be slightly
different between variants, an injection code of this kind
may lead to different behaviors among the databases.

Example 3. Suppose the parameter “username” causes
an injection vulnerability on both variants due to the
lack of proper filtering. In such a case, diversity among
queries (Stage 1) will not help to detect the attack. The
following shows how the attack may be detected at
Stage 2.

1. Suppose in variant A, the query is

SELECT * FROM admin WHERE(username = ‘XXX’)

2. In variant B, the query is

SELECT * FROM admin WHERE username = ‘XXX’

Assume the attacker injects the “username” parame-
ter with string ’);drop table admin-

1. In variant A, the query becomes

SELECT * FROM admin WHERE(username = ‘’);drop table

admin--

2. In variant B, the query becomes

10
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

SELECT * FROM admin WHERE username = ‘’);drop table

admin--

Clearly, the query in variant B will not be executed
because of the extra right parenthesis.

�
As both examples show, when detection in Stage 1

fails, some attacks may still cause different behaviors
in the database among variants, which makes them
detectable in Stage 2.
Features for Detection The detection features of this stage
are aimed for monitoring application variants making
different changes to databases. Our first intuition is to
use the database schema similarity score, such as the
existing approaches to database schema matching [50–
52], to measure the difference between databases
at runtime and previously saved database schema.
However, in our study, we found that simpler features
may also be sufficient, becausemost legitimate activities
only involve selection queries and do not modify the
database schema. Consequently, we rely on following
two features to evaluate the difference among variants
in Stage 2.

• The first feature is the existence of changes to
database schema. This feature is directly compared
among variants. Since changes to database schema
are very uncommon for legitimate activities,
we use a binary score for this feature. If any
modification is applied to a variant’s database
schema, the score would be “1”; otherwise, it is
“0”. The binary score from each variant is added
up together to produce the final score for this
feature.

• The second feature is the number of modified
records. This feature is also directly compared
among variants. It records the number of records
in a database that are changed as a result of the
queries. In contrast to the previous feature, this
feature is more fine-grained and will more likely
record a non-zero result. However, in practice,
we found that for legitimate queries, they usually
change same or similar number of rows in
database between different variants. Therefore,
the number of rows can be compared directly
across variants to produce the final score of this
feature. A higher value of final score indicates a
bigger deviation among variants on the number of
rows changed in the database.

Example 4. For the attack in Example 3, the first feature
would score “1” since the database schema is only
changed on one of the variants. The second feature
would have a score equal to the size of table “admin”,
because “admin” table is deleted by variant A but it
stays intact for variant B.

�

Stage 3: Database Result.

Stage 3 is complementary to Stage 2 by utilizing the
same diversity in databases but, instead of monitoring
different changes made to databases, it is based on the
results returned by the database to the application.
As mentioned in Stage 2, because of different

databases used, the same injection string can be
successfully executed on some variants but not others.
If a malicious query does not have result set, difference
among variants can only be observed by the change
of database (Stage 2). However, if a result set exists,
we can also observe difference in the result set among
variants. The reason for difference in result set is similar
to Stage 2, including unique characteristics of database
products, enclosed parentheses, apostrophes handling,
and customized names in databases.

Example 5. Suppose attacker injects “username” param-
eter in the application variants similarly as in Exam-
ple 3 with following string, assuming both variants have
tables named “products”:

’) union SELECT * FROM products WHERE ‘t’ = ‘t

The injected query will only succeed in variant A
because of the surplus parenthesis. As result, the output
result set of variant A contains all the rows from table
“admin” and “products”, while in variant B the query is
not executed and there is no result set to be returned to
the application.

�
As Example 5 shows, some injection attacks that

lead to different behaviors in the database may not
change the database itself. However, we can capture this
difference by comparing the result set among variants.
Features for Detection The features of this stage should
be able to characterize differences among result sets.
Since a result set under the relational model is mostly
a relation, we can use similar features as introduced in
Stage 2 but apply them to the result set relation instead
of database relations. Consequently, we use these two
features in Stage 3, in respect to the “database schema”
and “number of records” features of Stage 2.

• The first feature is the type of data in result set
(which is slightly different from the “database
schema” feature in Stage 2). This feature will be
used in the anomaly detection phase. The data
type of each column of the runtime result set
is compared to those in the learned profiles. We
use a binary score to represent the result at each
variant to indicate whether the data type of a
columnmatches the profile. If the data type of any
column does not match with the profile, the score
would be “1”; otherwise, it is “0”. The binary score

11
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

from each variant is added up together to produce
the final score for this feature.

• The second feature is the number of rows in
result set (similar to the “number of records”
feature in Stage 2). Since a “SELECT” query would
return different numbers of records depending on
the “WHERE” clause, with the same user input,
different variants will likely return a similar
number of rows in the result set. Thus the final
score of this feature is produced by directly
comparing the number of rows among variants. A
higher value indicates bigger difference.

Example 6. For the attack in Example 5, the first feature
would score “1” since variant B does not have a result
set, and thus the data type does not match the profile.
The second feature would score the number of the rows
of record in table “admin” and “products”, since the
result set of variant A has this number of rows while
variant B has zero rows.

�
Stage 4: Application Result. In this stage, we utilize
the diversity in the result to be returned to the
user by the application, which in most cases is an
HTML page. Injection attacks often involve enclosed
apostrophe and parenthesis which may lead to an non-
executable SQL query in some variants. A HTML page
with error message is usually returned to users in
this case. Although the AST-based Stage 1 can also
detect SQL queries that cannot be executed, checking
the application results can provide additional detection
opportunity.

Example 7. Suppose the SQL queries in variant A and B
are the same as in Example 3 when the attacker injects
“username” parameter with following string:

‘) UNION SELECT * FROM products

Suppose the table “products” has zero record on
both variants so we cannot observe any difference from
features of Stage 2. However, the HTML page returned
to user in variant A is a page with empty result. In
variant B, it would be an error page since the related
query cannot be executed. This difference makes the
attack detectable in Stage 4.

�
Features for Detection To measure difference between
HTML pages, many features are available, including
size of the page, title of the page, etc. However, the
detection accuracy of using such fine grained features
in this stage may largely depend on the applications,
since the inherent differences in those features among
variants may be significant even for normal results.
Our study shows that focusing on monitoring error
messages in HTML pages would be sufficient for

Stage Feature Application

Stage 1
Edit distance of ASTs Anomaly
List of involved database tables Anomaly
Number of not parsed queries Direct comparison

Stage 2
Changes to database schema Direct comparison
Number of modified records Direct comparison

Stage 3
Type of data in result set Anomaly
Number of rows in result set Direct comparison

Stage 4 Existence of error page Direct comparison
Table 4. Detection Features

detecting the difference in most cases. Consequently,
we use one feature in Stage 4, i.e., the existence of
error messages, which is directly compared among
variants since the profile obtained from attack-free data
usually has no error message. We check the existence
of multiple error messages that would not normally
appear in regular use. A binary score is used for
recording the result. If error message exist on the page,
the score would be “1”, otherwise, it is “0”. The binary
score from each variant is added up to produce the final
score for this feature.

4.3. Result Correlation

Table 4 summarizes the features used in each stage
along with the way of applying those features (in
anomaly detection or through direct comparison). Since
the behavior of an application in different stages is
usually inter-dependent, correlating the results from
different stages may further improve the detection
accuracy and reduce false alarms. Consequently, we
correlate the results of different stages to make a final
decision on attack detection.
The partial detection results obtained at different

stages may be correlated in many ways. In this work,
we employ decision tree learning to correlate scores of
different features to make the final decision of attack
detection. Features at each stage are used as attributes
for the decision tree, and training data are collected for
different user inputs. For each user input, the anomaly
detection phase and the diversity detection phase
together will produce a result table. The collection of
such results tables for all inputs are used to build a
decision tree, which will be applied to runtime inputs
to classify them into two classes: “attack” or “normal”.
We choose the C4.5 Algorithm [53] as the decision

tree learning algorithm. Compared to its predecessor
ID3 (Iterative Dichotomiser 3) Algorithm [54], C4.5
has several advantages including allowing continuous
attributes and missing attribute values, and the trees
can be pruned after creation. As mentioned previously,
the score of all the features across the four stages are
used as attributes for decision tree. For the features
whose final score is computed by adding up binary

12
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

scores in each variant, we can treat them as discrete
attributes, since there are a limited number of values.
For example, if the system has two variants, possible
score values of this kind of features are 0, 1 and 2. For
the other features, their scores are treated as continuous
attributes and are discretized using the C4.5 algorithm.
In order to have an accurate detection result.

The training data for decision tree learning need to
thoroughly cover most use cases. We use three types of
training data in this approach.

• Attack-free user input, which is the normal
request from a user. The attack-free data is
obtained using scripts that simulate normal user
activity.

• Attack input that will succeed in all variants;
this is obtained by attacking the common
vulnerabilities of all variants.

• Attack input that will succeed in at least one,
but not all variant, this is obtained from attacks
that exploit non-common vulnerabilities in the
variants.

We follow the ten-fold cross validation [55] to
produce the final decision tree. The training data is
randomly partitioned into ten folds and in each run,
nine folds of data are used for training the decision tree
and the trained tree is applied to the remaining one fold
of data for testing.

5. Implementation and Experiments

In this section, we describe our implementation based
on a real web application and perform experiments to
compare our detection model to several other options.

5.1. Implementation

The Application. Our implementation is based on Midi-
cart [47], which is an online shopping cart application
that has multiple variants. We use Midicart ASP version
with Microsoft SQL Server as database and PHP version
with Mysql as database. The main reason we choose
Midicart for implementation is that, according to our
study of shared vulnerabilities in Section 3.2, this appli-
cation has both common vulnerabilities and vulnerabil-
ities existing only on one variant, which is necessary for
evaluating our proposed method in different cases. The
CVE entries regarding Midicart are listed in Table 5.
In the table, parameters “maingroup”, “secondgroup”,
and “code_no” in multiple files have injection vulner-
abilities in both the ASP and PHP versions. However,
“searchstring” parameter is only vulnerable in the PHP
version (all the vulnerable versions were produced in
2006).

CVE-2006-6209 Multiple SQL injection vulnerabilities in
MidiCart ASP Shopping Cart and ASP
Plus Shopping Cart allow remote attack-
ers to execute arbitrary SQL commands
via the (1) id2006quant parameter to
(a) item_show.asp, or the (2) maingroup
or (3) secondgroup parameter to (b)
item_list.asp. NOTE: the code_no param-
eter to Item_Show.asp is covered by CVE-
2005-2601.

CVE-2005-2601 SQL injection vulnerability in MidiCart
allows remote attackers to execute arbi-
trary SQL commands via the code_no
parameter to (1) Item_Show.asp or (2)
search_list.asp.

CVE-2005-1503 Multiple SQL injection vulnerabilities in
MidiCart PHP Shopping Cart allow remote
attackers to execute arbitrary SQL com-
mands via the (1) searchstring param-
eter to search_list.php, the (2) main-
group or (3) secondgroup parameters to
item_list.php, or (4) code_no parameter to
item_show.php.

Table 5. Midicart Vulnerability Entries in CVE

For regular users(customers), the functionality of
Midicart is relatively simple, normal activities of the
application include the following.

• Browse main page.

• List commodities by their categories.

• Search commodities by item number or descrip-
tion.

• Register for payment.

Detection. As described in Section 4.2, for Stage 1, we
need to monitor the runtime SQL queries of all variants,
generate ASTs for the queries and compute the tree
edit distances. We implement this stage in two steps.
First, we extract runtime SQL queries from applications
as follows. For mysql database, we use the event log
function to save runtime queries to “general_log” table.
For SQL Server database, we use Microsoft SQL Profiler
to create a trace and save runtime queries to a user
designated table. On both variants, we use a unique
user name in their connection string to the database.
This is to distinguish queries originated by our web
application from others. We only monitor the records
in the log belonging to type “query”. For Mysql, the
“command_type” field needs to be “Query”. For SQL
Server, the “EventClass” field needs to be “13” or “10”,
which are the code for type “SQL:BatchStarting” and
“RPC:Completed” respectively. We use time as a factor
to distinguish queries from different actions in the log.

13
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

Second, we generate ASTs, calculate edit distance
and retrieve table names from SQL queries as follows.
We use a tool General SQL Parser JAVA [56] to parse
the retrieved queries into ASTs. We use another tool
Robust Algorithm for the Tree Edit Distance(RTED) [49]
to calculate the edit distance between ASTs. However,
since this tool only accepts bracket notation of trees,
we have developed a script to transform the generated
ASTs to the bracket notations according to the rows
and spacing at beginning of each row. We use the
“getTable()” function in “General SQL Parser JAVA” to
retrieve database table names involved in the queries,
this is done simultaneously with AST generation.
For Stage 2, wemonitor changes made to the database

at runtime by collecting information from the data
dictionary about the state of the database including
the table names, the number of records in the tables,
and the schema of the tables. For the number of
records, we compare the number of changed rows
in database between variants. For database schema,
we first compare the schema of individual tables,
then compare the total number of tables in database.
Suppose variant a has m involved tables and variant
b has n; Dai and Dbi are the number of rows in
the ith involved tables of two variants at runtime,
respectively; Sai and Sbi are the reference row count.
Score of this feature is defined as Score = ||∑m

i=1Dai −∑m
i=1 Sai | − |

∑n
i=1Dbi −∑n

i=1 Sbi ||. Finally, for changes
made to database schema, if the schema of variant a is
not changed, Da is “0”; otherwise, it is “1”. Let Db be
the counterpart in variant b. The score of this feature is
defined as Score = Da +Db;.
For Stage 3, we need to monitor the result from

database. We implement this stage by retrieving the
result set of executed queries from the database. We
save the data type of result set as a string and compare
to the corresponding profile. The number of records
in the result set would be directly compared between
variants. We calcuate two scores for the database result
set, i.e., the number of rows in result set, Score =
|∑m

i=1Dai −∑n
i=1Dbi |; (variant a has m queries and

variant b has n; Dai and Dbi are the number of records
for ith query in the two variants, respectively), and the
type of data in result set, Score = |∑m

i=1Dai −∑n
i=1Dbi |;

(suppose there are m result sets in variant a and n
result sets in variant b; if the ith result set’s data type
of variant a are the same as the corresponding profile,
Dai is “0” and “1” otherwise; Dbi is the counterpart in
variant b).
For Stage 4, we need to monitor the result returned by

the application. We use a keyboard and mouse mimic
software “Keyboard Simulator” [57] to script a “save-
to-file” action. This script is added at the end of each
training script such that the web page is automatically
saved to a text file. Since we use “existence of error
page” as the feature for Stage 4, we can later parse the

text file to retrieve multiple error messages in order to
calculate the score of this stage as either “1” if the error
page exists in variant a, or 0 otherwise, for each variant.
For result correlation, we employ the C4.5 algorithm

with discrete attributes for features using binary score
and continuous attributes for other features. The
following shows the case of two variants.

1. Tree edit distance of AST, {continuous}.

2. Involved database table, {0, 1, 2}.

3. Number of not parsed queries, {continuous}.

4. Number of rows changed in database, {continu-
ous}.

5. Change of database schema, {0, 1, 2}.

6. Type of data in result set, {continuous}.

7. Number of rows in result set, {continuous}.

8. Existence of error page, {0, 1, 2}.

5.2. Experiments

Dataset. Our training data is consisted of both attack-
free data and attacks. The attack-free data is obtained
by performing the four types of normal activities
mentioned in Section 5.1. To obtain a sufficient
amount of attack-free training data, we traverse all
the functionalities of the Midicart application, both
manually and through an automated tool to create
scripts which can simulate normal user activities. The
software we employ is the “Keyboard Simulator” [57].
The following shows an example script created using
this software in which the functionality is to open the
URL “http://127.0.0.1:81/midiphp/”, select “code_no”
tag and search for string “1005”.

[Script]

ProcessID=Plugin.Web.Bind("wqm.exe")

...

Call Plugin.Web.Tips("running")

Call Plugin.Web.SetSize(1366,784)

Call Plugin.Web.Go("http://127.0.0.1:81/midiphp/")

Call Plugin.Web.ScrollTo(0,0)

Call Plugin.Web.HtmlSelect("code_no","name:chose&frame:4")

Call Plugin.Web.HtmlInput("1005","name:searchstring&frame:4")

Call Plugin.Web.LeftClick(733, 90)

...

Each simulation script for training contains URL
opening actions at both variants and clicks on certain
elements on the web page if applicable. Apart from
these actions, we also attach a “save-to-file” action at
the bottom of every script such that the opened web
page would be saved as part of the implementation of
Stage 4 as mentioned in Section 5.1.
For attacks, we have implemented the following

attacks which exploit common vulnerabilities and vul-
nerabilities only applicable to one variant, respectively.

14
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

Attack 1 This attack is to exploit the non-filtered
“code_no” parameter in both variants; the union select
SQL injection of Post Data 1 can only succeed in
one of the versions since attacker cannot construct an
injection string which can enclose the parenthesis in
both variants. However, the tautology attack of Post
Data 2 can succeed on both variants.

• Exploited Vulnerability: “code_no" parameter in
item_show.asp, item_show.php

• Is Common Vulnerability: Yes.

• Post Data1: ?code_no=1006 ’ UNION select *
from products where code_no = ’1005

Result1: (ASP): SELECT * FROM products where
code_no = ’1006’ UNION select * from products
where code_no = ’1005’ ORDER BY item

(PHP): select * from products where(code_no =
’1006 ’ UNION select * from products where
code_no = ’1005’) ORDER BY ’item’

• Post Data2: ?code_no=1006 ’ and ’1’ = ’1

Result2: (ASP): SELECT * FROM products where
code_no = ’1006 ’ and ’1’ = ’1’ ORDER BY item

(PHP): select * from products where(code_no =
’1006 ’ and ’1’ = ’1’) ORDER BY ’item’

Attack 2 This attack is to exploit the non-filtered
“maingroup” and “secondgroup” parameter in both
variants; the union select SQL injection can succeed in
both variants since this is a common vulnerability and
there is no enclosed parenthesis problem.

• Vulnerability: “maingroup” and “secondgroup”
parameter in item_list.asp, item_list.php

• Is Common Vulnerability: Yes.

• PostData1: ?maingroup=CPU&secondgroup=Socket-
A’ UNION SELECT null, null, maingroup,
secondgroup,null, null,null,null FROM products
where code_no=’1001

Result1: (ASP): SELECT * FROM products
where maingroup = ’CPU’ AND secondgroup =
’Socket-A’ UNION SELECT null, null, maingroup,
secondgroup,null, null,null,null FROM products
where code_no=’1001’ ORDER BY code_no

(PHP): select distinct * from products WHERE
maingroup = ’CPU’ AND secondgroup = ’Socket-
A’ UNION SELECT null, null, maingroup, second-
group,null, null,null,null FROM products where
code_no=’1001’ ORDER BY code_no

• PostData2: ?maingroup=CPU&secondgroup=Socket-
A’ and ’1’=’1

Result2: (ASP): SELECT * FROM products where
maingroup = ’CPU’ AND secondgroup = ’Socket-
A’ and ’1’=’1’ ORDER BY code_no

(PHP): select distinct * from products WHERE
maingroup = ’CPU’ AND secondgroup = ’Socket-
A’ and ’1’=’1’ ORDER BY code_no

Attack 3 This attack is to exploit the “searchstring”
parameter in both variants. However, while the PHP
variant has the SQLIA vulnerability in this parameter,
in the ASP variant this parameter properly escapes
special characters like apostrophe. Thus the union
select SQL injection can only succeed on the PHP
variant.

• Vulnerability: “searchstring” parameter in
search_list.asp, search_list.php

• Is Common Vulnerability: No.

• Post Data: asus%’ UNION SELECT null,
null,CreditCard, ExpDate,null, null,null,null
FROM card_payment where posted LIKE ’%111

Result: (ASP): SELECT * FROM products where
code_no LIKE ’%asus%” UNION SELECT null,
null,CreditCard, ExpDate,null, null,null,null
FROM card_payment where posted LIKE
”%111%’ ORDER BY maingroup, secondgroup,
code_no

(PHP): select * from products WHERE
code_no LIKE ’%asus%’ UNION SELECT
null, null,CreditCard, ExpDate,null,
null,null,null FROM card_payment
where posted LIKE ’%111%’ ORDER BY
’maingroup’,’secondgroup’,’code_no’ LIMIT
0, 100

The Results.

Decision Tree Figure 4 shows the decision tree which
yields the best detection accuracy for our experiments.
It uses four features from three stages as the decision
nodes, as detailed below. Since both attacks and attack-
free data in this particular application do not modify
the database, no feature from Stage 2 (changes in
database) is used.

1. Stage 1, tree edit distance of AST.

2. Stage 4, existence of error page.

3. Stage 1, number of not parsed queries.

4. Stage 3, type of data in result set.

15
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

= 0 > 3> 0 and <=3

= 0 > 0

<= 1 > 1

= 0 > 0

AST Edit Distance

Safe AttackError Page Existence

AttackNot Parsed Queries

AttackResult Set Data Type

AttackSafe

Figure 4. The Learned Decision Tree

Detection Performance We evaluate the detection
performance using three metrics, the Accuracy (AC),
False Positive Rate (FPR), and False Negative Rate
(FNR), which are defined as: FPR = FP

FP+TN , FNR =
FN

FN+TP , and AC = TP+TN
TP+TN+FP+FN , respectively. Table 6

shows the detection performance results.

FP FN TN TP FPR FNR AC
0 14 554 40 0% 25.93% 97.7%

Table 6. The Detection Performance

As shown in Table 6, the decision tree can classify all
attack-free data in training data correctly. The relatively
simple functionality of the application is the main
reason for the 100% FPR. We expect to observe FPs
when implementing this approach in other applications
with more complex functionality or more significant
differences between variants. The 14 FNs recorded
means 14 out of 554 attack data are misclassified and
therefore the detection accuracy is 97.7%.
The FNR of 25.93% in the result is relatively

high. However, note that this is essentially the worst
case scenario in terms of FNs, since we have chosen
the Midicart application for evaluation, particularly
because it is the only Web application in our study
which has common vulnerabilities shared between
different variants (which result in FNs). For all other
applications with injection vulnerabilities in CVE
(totally around 2000), the amount of FNs is expected
to be significantly lower.
Next, by revisiting the training data, we map each FN

to each of the three attacks mentioned in Section 5.2.
Recall that Attack 1 and 2 are exploiting common
vulnerabilities while Attack 3 only works on one
variant. In our dataset, more than half of the attack data
are from attacks exploiting common vulnerabilities. All
14 FNs come from Attack 1 and 2, which means the
20 attack instances generated from Attack 3 are all
correctly classified, which shows employing diversity

At tack 2 FN

29.0%

At tack 1 FN

12.0%
At tack 2 TP

6.0%

At tack 1 TP

53.0%

Figure 5. FPR and TNR for Detecting Attacks Exploiting

Common Vulnerabilities

does improve the detection performance despite the
FNs. Table 7 shows a breakdown of the FN and TP
among the three attacks.

Attack 1 Attack 2 Attack 3
FN TP FN TP FN TP
4 18 10 2 0 20

Table 7. Detection Performance Breakdown among Attacks

More importantly, we can still detect a portion of
the attacks that exploit the common vulnerabilities
(Attack 1 and 2) despite the fact that such attacks
work on both variants. As Figure 5 shows, 20 out of 34
attack instances exploiting common vulnerabilities can
be correctly detected. The reason is the following.

1. Some injection strings contain specific database
elements that differs across variants (similar to
Example 4), which applies to both Attack 1 and
2.

2. The parenthesis is unenclosed (similar to Exam-
ple 3), which only applies to Attack 1.

Comparison to Anomaly Detection In order to
evaluate the benefit of diversity, we compare the
detection accuracy of our diversity-based detection
approach to anomaly-based detection that does not
involve diversity.
We focus on the feature “AST edit distance” from

Stage 1 since this feature has the highest information
gain during decision tree learning and can “best”
classify the data. We use the ASP variant for anomaly
detection. In the anomaly detection, we compute the
edit distance between runtime ASTs and ASTs in the
corresponding profile. The PHP variant is not involved
since anomaly detection does not require diversity.
We then choose different thresholds to classify the
data into attacks and normal cases, including 0.5, 3.5,

16
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

Threshold 0.5

Threshold 3.5

Threshold 6.5

Threshold 9.5

Decision Tree
88

90

92

94

96

98

100

92.11

95.23

94.74
95.06

97.07

Accuracy(%)

Figure 6. Detection Accuracy Comparison with Anomaly

Detection

6.5, 9.5. Figure 6 shows the detection accuracy using
each of these thresholds, which ranges from 92.11% to
95.23%, and using 3.5 as the threshold gives the highest
accuracy. In contrast, we can see that the diversity-
based approach (labeled as “Decision Tree”) has better
detection performance (97.7%) than the anomaly-based
detection. Note that the relatively simple functionalities
and the small number of attack types involved in the
application have led to the relatively high accuracy for
the anomaly detection, and hence there is limited room
for improvements using diversity.

Comparison with Single-Stage Diversity-Based
Detection To evaluate the contribution of using
multiple stages to detection accuracy, we compare our
approach to diversity-based detection using a single
stage. We use the same features as those used in the
learned decision tree (but without result correlation
using the decision tree), and a threshold is set for
each feature. Specifically, the features include the AST
Edit Distance (threshold 0.5 and 3.5), the Error Page
Existence (threshold 1), and the Result Set Data Type
(threshold 0.5). Training data is classified by comparing
its score of the feature to the threshold. Note that,
unlike the previous experiments, diversity is involved
here since the score is computed across both variants.
Figures 7 show the FPR comparison between

our approach and different single-stage detection
approaches. Our approach has the best FPR (0%);
detection using the AST edit distance with threshold 3.5
and detection using the result set data type also have 0%
FPR. When the threshold of the AST edit distance is set
to 0.5, the FPR increases to 1.62%. The FPR of detection
using the error page existence is relatively high (5.96%).
For the FNR, as shown in Figures 8, our approach

(25.93%) and AST edit distance with threshold 0.5
(20.37%) are at similar levels. Using other three features
result in a high FNR. As mentioned before, the FNRs
are mainly due to the common vulnerabilities existing

D
eci

si
on T

re
e

D
eci

si
on T

re
e

(A
ft
er

Pr
unin

g)

A
ST D

is
ta

nce

(T
hre

sh
old

 0
.5

)

A
ST D

is
ta

nce

(T
hre

sh
old

 3
.5

)

Resu
lt
 S

et

D
ata

 T
ype

Exis
te

nce
 o

f

Err
or

Pa
ge

0

1

2

3

4

5

6

7

0 0

1.62

0 0

5.96
False Posit ive Rate(%)

Figure 7. FPR Comparison with Single Stage Detection

in both variants, which is relatively rare as shown in our
case study.

D
eci

si
on T

re
e

D
eci

si
on T

re
e

(A
ft
er

Pr
unin

g)

A
ST D

is
ta

nce

(T
hre

sh
old

 0
.5

)

A
ST D

is
ta

nce

(T
hre

sh
old

 3
.5

)

Resu
lt
 S

et

D
ata

 T
ype

Exis
te

nce
 o

f

Err
or

Pa
ge

0

10

20

30

40

50

60

70

80

90

22.22
25.93

20.37

48.15

72.22

37.04

False Negat ive Rate(%)

Figure 8. FNR Comparison with Single Stage Detection

As shown in Figure 9, overall our approach has
a higher detection accuracy than any other single-
stage detection approach, which shows the benefit of
correlating results from multiple stages of detection.
Moreover, by comparing the detection accuracy of the
AST edit distance feature in Figure 9 and in Figure 6,
we can see that the same feature when assisted by
diversity (Figure 9) leads to a higher accuracy. This
again demonstrates the effectiveness of diversity in
improving the detection accuracy.

D
eci

si
on T

re
e

D
eci

si
on T

re
e

(A
ft
er

Pr
unin

g)

A
ST D

is
ta

nce

(T
hre

sh
old

 0
.5

)

A
ST D

is
ta

nce

(T
hre

sh
old

 3
.5

)

Resu
lt
 S

et

D
ata

 T
ype

Exis
te

nce
 o

f

Err
or

Pa
ge

86

88

90

92

94

96

98

100

98.03 97.7

96.71

95.72

93.59

91.28

Accuracy(%)

Figure 9. Detection Accuracy Comparison with Single Stage

Detection

6. Conclusion

In this paper, we have proposed a multi-stage attack
detection system employing opportunistic diversity.

17
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

First, we have evaluated the feasibility of this
approach through an extensive study of injection
vulnerabilities shared by different variants of the same
Web application based on the CVE database. We have
identified the Web applications with multiple variants
and demonstrated the rare existence (in only one
application) of common vulnerabilities shared between
such variants. Second, we have designed an attack
detection model to employ diversity between multiple
variants while using features extracted from four stages
of a Web application. We either compared the features
directly, or compared their anomaly detection results
between different variants, and the partial results
from different stages are correlated using decision
tree learning. Finally, we implemented and evaluated
our approach based on a real Web application with
common vulnerabilities shared between two variants.
The results show our approach has better detection
performance than both anomaly detection only, and
single-stage diversity-based detection. In addition,
combining diversity with anomaly detection has helped
to detect the exploits of common vulnerabilities
which would evade detection using diversity alone.
Future directions include applying the approach to
Web applications with more complex functionalities,
expanding the scope of attacks and enriching the
selection of features.

Acknowledgements

Authors with Concordia University were partially
supported by the Natural Sciences and Engineering
Research Council of Canada under Discovery Grant
N01035.

References

[1] “The heartbleed bug.” http://www.heartbleed.com/.
[2] B. Littlewood and L. Strigini, “Redundancy and diversity

in security,” Computer Security–ESORICS 2004, pp. 423–
438, 2004.

[3] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “Dac-macs:
Effective data access control for multiauthority cloud
storage systems,” Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 11, pp. 1790–1801, 2013.

[4] S. Jajodia, A. Ghosh, V. Swarup, C. Wang, and X. Wang,
Moving Target Defense: Creating Asymmetric Uncertainty
for Cyber Threats. Springer, 1st ed., 2011.

[5] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and
M. Albanese, “Network diversity: A security metric for
evaluating the resilience of networks against zero-day
attacks,” IEEE Transactions on Information Forensics and
Security, vol. 11, pp. 1071–1086, May 2016.

[6] J. Caballero, T. Kampouris, D. Song, and J.Wang, “Would
diversity really increase the robustness of the routing
infrastructure against software defects?,” Department of
Electrical and Computing Engineering, p. 40, 2008.

[7] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser, N-
variant systems: A secretless framework for security through
diversity. Defense Technical Information Center, 2006.

[8] D. Gao, M. Reiter, and D. Song, “Behavioral distance
measurement using hidden markov models,” in Recent
Advances in Intrusion Detection, pp. 19–40, Springer,
2006.

[9] B. Chun, P. Maniatis, and S. Shenker, “Diverse repli-
cation for single-machine byzantine-fault tolerance,” in
USENIX Annual Technical Conference, pp. 287–292, 2008.

[10] M. Garcia, A. Bessani, I. Gashi, N. Neves, and
R. Obelheiro, “Os diversity for intrusion tolerance: Myth
or reality?,” in Dependable Systems & Networks (DSN),
2011 IEEE/IFIP 41st International Conference on, pp. 383–
394, IEEE, 2011.

[11] S. Bhatkar, D. DuVarney, and R. Sekar, “Address
obfuscation: An efficient approach to combat a broad
range of memory error exploits,” in Proceedings of the
12th USENIX security symposium, vol. 120, Washington,
DC., 2003.

[12] “The pax team.” http://pax.grsecurity.net/.
[13] G. Kc, A. Keromytis, and V. Prevelakis, “Countering

code-injection attacks with instruction-set randomiza-
tion,” in Proceedings of the 10th ACM conference on Com-
puter and communications security, pp. 272–280, ACM,
2003.

[14] S. Bhatkar and R. Sekar, “Data space randomization,”
Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 1–22, 2008.

[15] “Common vulnerabilities and exposures (cve) database.”
http://cve.mitre.org/.

[16] “Open web applications security project (owasp).”
https://www.owasp.org/.

[17] O. Maor and A. Shulman, “Sql injection signatures
evasion,” Imperva, Inc., Apr, 2004.

[18] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and
L. Tao, “A static analysis framework for detecting
sql injection vulnerabilities,” in Computer Software and
Applications Conference, 2007. COMPSAC 2007. 31st
Annual International, vol. 1, pp. 87–96, IEEE, 2007.

[19] C. Gould, Z. Su, and P. Devanbu, “Jdbc checker: A static
analysis tool for sql/jdbc applications,” in Proceedings of
the 26th International Conference on Software Engineering,
pp. 697–698, IEEE Computer Society, 2004.

[20] W. Halfond and A. Orso, “Amnesia: analysis and mon-
itoring for neutralizing sql-injection attacks,” in Pro-
ceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pp. 174–183, ACM,
2005.

[21] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N.
Venkatakrishnan, “Candid: preventing sql injection
attacks using dynamic candidate evaluations,” in
Proceedings of the 14th ACM conference on Computer and
communications security, CCS ’07, (New York, NY, USA),
pp. 12–24, ACM, 2007.

[22] G. Buehrer, B. Weide, and P. Sivilotti, “Using parse
tree validation to prevent sql injection attacks,” in
Proceedings of the 5th international workshop on Software
engineering and middleware, pp. 106–113, ACM, 2005.

18
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

http://www.heartbleed.com/
http://pax.grsecurity.net/
http://cve.mitre.org/
https://www.owasp.org/

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

[23] Z. Su and G. Wassermann, “The essence of command
injection attacks in web applications,” in ACM SIGPLAN
Notices, vol. 41, pp. 372–382, ACM, 2006.

[24] S. Boyd and A. Keromytis, “Sqlrand: Preventing sql
injection attacks,” in Applied Cryptography and Network
Security, pp. 292–302, Springer, 2004.

[25] S. N. Narayanan, A. R. Pais, and R.Mohandas, “Detection
and prevention of sql injection attacks using semantic
equivalence,” in Computer Networks and Intelligent
Computing, pp. 103–112, Springer, 2011.

[26] T. Pietraszek and C. V. Berghe, “Defending against injec-
tion attacks through context-sensitive string evaluation,”
in Recent Advances in Intrusion Detection, pp. 124–145,
Springer, 2006.

[27] A. Orso, W. Lee, and A. Shostack, “Preventing sql code
injection by combining static and runtime analysis,”
tech. rep., DTIC Document, 2008.

[28] Z. Su and G. Wassermann, “The essence of command
injection attacks in web applications,” in ACM SIGPLAN
Notices, vol. 41, pp. 372–382, ACM, 2006.

[29] A. N. Bessani, “From byzantine fault tolerance to
intrusion tolerance,” 2012.

[30] A. Gorbenko, V. Kharchenko, O. Tarasyuk, and
A. Romanovsky, “Using diversity in cloud-based
deployment environment to avoid intrusions,” Software
Engineering for Resilient Systems, pp. 145–155, 2011.

[31] M. Garcia, N. Neves, and A. Bessani, “Diversys: Diverse
rejuvenation system,”

[32] J. Antunes andN. Neves, “Diveinto: Supporting diversity
in intrusion-tolerant systems,” in Reliable Distributed
Systems (SRDS), 2011 30th IEEE Symposium on, pp. 137–
146, IEEE, 2011.

[33] F. Majorczyk and J. Demay, “Automated instruction-
set randomization for web applications in diversified
redundant systems,” in Availability, Reliability and
Security, 2009. ARES’09. International Conference on,
pp. 978–983, IEEE, 2009.

[34] B. Salamat, C. Wimmer, and M. Franz, “Synchronous
signal delivery in amulti-variant intrusion detection sys-
tem,” tech. rep., Technical report, School of Information
and Computer Sciences, University of California, Irvine,
2009.

[35] A. Avizienis and L. Chen, “On the implementation of n-
version programming for software fault tolerance during
execution,” in Proc. IEEE COMPSAC, vol. 77, pp. 149–
155, 1977.

[36] A. Avizienis, “The n-version approach to fault-tolerant
software,” Software Engineering, IEEE Transactions on,
vol. SE-11, pp. 1491 – 1501, dec. 1985.

[37] M. Lyu, J. Chen, and A. Avizienis, “Software diversity
metrics and measurements,” in Computer Software and
Applications Conference, pp. 69–78, 1992.

[38] S. Mitra, N. Saxena, and E. McCluskey, “A design
diversity metric and analysis of redundant systems,”
IEEE Trans. Comput., vol. 51, pp. 498–510, May 2002.

[39] B. Littlewood, P. Popov, and L. Strigini, “Modeling
software design diversity: A review,”ACMComput. Surv.,
vol. 33, pp. 177–208, June 2001.

[40] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra:
intrusion detection using parallel execution and moni-
toring of program variants in user-space,” in Proceedings

of the 4th ACM European conference on Computer systems,
pp. 33–46, ACM, 2009.

[41] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and
M. Franz, “Runtime defense against code injection
attacks using replicated execution,” Dependable and
Secure Computing, IEEE Transactions on, vol. 8, no. 4,
pp. 588–601, 2011.

[42] A. Nguyen-Tuong, D. Evans, J. Knight, B. Cox,
and J. Davidson, “Security through redundant data
diversity,” in Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pp. 187–196, IEEE, 2008.

[43] M. Franz, “E unibus pluram: massive-scale software
diversity as a defense mechanism,” in Proceedings of
the 2010 workshop on New security paradigms, pp. 7–16,
ACM, 2010.

[44] Y. Yang, S. Zhu, and G. Cao, “Improving sensor network
immunity under worm attacks: a software diversity
approach,” in Proceedings of the 9th ACM international
symposium on Mobile ad hoc networking and computing,
pp. 149–158, ACM, 2008.

[45] C. Huang, S. Zhu, and R. Erbacher, “Toward software
diversity in heterogeneous networked systems,” in IFIP
Annual Conference on Data and Applications Security and
Privacy, pp. 114–129, Springer, 2014.

[46] C. Huang, S. Zhu, and Q. Guan, “Multi-objective
software assignment for active cyber defense,” in 2015
IEEE Conference on Communications and Network Security
(CNS), pp. 299–307, Sept 2015.

[47] “Midicart official site.” http://www.midicart.se.
[48] F. Valeur, D. Mutz, and G. Vigna, “A learning-based

approach to the detection of sql attacks,” in Detection
of Intrusions and Malware, and Vulnerability Assessment,
pp. 123–140, Springer, 2005.

[49] M. Pawlik and N. Augsten, “Rted: a robust algorithm
for the tree edit distance,” Proceedings of the VLDB
Endowment, vol. 5, no. 4, pp. 334–345, 2011.

[50] H.-H. Do and E. Rahm, “Coma: a system for flexible
combination of schema matching approaches,” in
Proceedings of the 28th international conference on Very
Large Data Bases, pp. 610–621, VLDB Endowment, 2002.

[51] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching,” in Data Engineering,
2002. Proceedings. 18th International Conference on,
pp. 117–128, IEEE, 2002.

[52] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic
schema matching with cupid,” in Proceedings of the
International Conference on Very Large Data Bases, pp. 49–
58, 2001.

[53] J. R. Quinlan, C4. 5: programs for machine learning, vol. 1.
Morgan kaufmann, 1993.

[54] J. R. Quinlan, “Induction of decision trees,” Machine
learning, vol. 1, no. 1, pp. 81–106, 1986.

[55] R. Kohavi et al., “A study of cross-validation and
bootstrap for accuracy estimation and model selection,”
in IJCAI, vol. 14, pp. 1137–1145, 1995.

[56] “General sql parser java official site.” http://www.

sqlparser.com/sql-parser-java.php.
[57] “Keyboard simulator official site.” http://www.anjian.

com/.

19
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

http://www.midicart.se
http://www.sqlparser.com/sql-parser-java.php
http://www.sqlparser.com/sql-parser-java.php
http://www.anjian.com/
http://www.anjian.com/

W. Qu, W. Huo, L. Wang

Appendix: The CVE Entries of Injection
Vulnerabilities in Applications with Multiple
Variants

20
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

Application CVE Identifier CVE Entry

Active Bids
CVE-2009-4229 Multiple SQL injection vulnerabilities in ActiveWebSoftwares

Active Bids allow remote attackers to execute arbitrary SQL
commands via (1) the catid parameter in the PATH_INFO to the
default URI or (2) the catid parameter to default.asp. NOTE: this
might overlap CVE-2009-0429.3. NOTE: the provenance of this
information is unknown; the details are obtained solely from
third party information.

CVE-2009-0429 Multiple SQL injection vulnerabilities in Active Bids allow
remote attackers to execute arbitrary SQL commands via the
(1) search parameter to search.asp, (2) SortDir parameter to
auctionsended.asp, and the (3) catid parameter to wishlist.php.

CVE-2008-5640 SQL injection vulnerability in bidhistory.asp in Active Bids 3.5
allows remote attackers to execute arbitrary SQL commands via
the ItemID parameter.

BlogMe
CVE-2008-2175 SQL injection vulnerability in comments.php in Gamma Scripts

BlogMe PHP 1.1 allows remote attackers to execute arbitrary
SQL commands via the id parameter.

CVE-2007-2661 SQL injection vulnerability in archshow.asp in BlogMe 3.0 allows
remote attackers to execute arbitrary SQL commands via the var
parameter, a different vector than CVE-2006-5976.

CVE-2006-5976 Multiple SQL injection vulnerabilities in admin_login.asp in
BlogMe 3.0 allow remote attackers to execute arbitrary SQL
commands via the (1) Username or (2) Password field. NOTE:
some of these details are obtained from third party information.

Brooky eStore CVE-2003-0585 SQL injection vulnerability in login.asp of Brooky eStore 1.0.1
through 1.0.2b allows remote attackers to bypass authentication
and execute arbitrary SQL code via the (1) user or (2) pass
parameters.

DVBBS
CVE-2009-4470 SQL injection vulnerability in boardrule.php in DVBBS 2.0

allows remote attackers to execute arbitrary SQL commands via
the groupboardid parameter.

CVE-2008-5222 SQL injection vulnerability in login.asp in Dvbbs 8.2.0 allows
remote attackers to execute arbitrary SQL commands via the
username parameter.

fipsGallery CVE-2006-6117 SQL injection vulnerability in index1.asp in fipsGallery 1.5
and earlier allows remote attackers to execute arbitrary SQL
commands via the which parameter.

Innovative CMS
(ICMS, formerly
Imoel-CMS)

CVE-2005-4397 SQL injection vulnerability in RunScript.asp iCMS allows remote
attackers to execute arbitrary SQL commands via the Event_ID
parameter.

JBOOK
CVE-2008-6391 SQL injection vulnerability in main.asp in Jbook allows remote

attackers to execute arbitrary SQL commands via the username
(user parameter).

CVE-2008-6376 SQL injection vulnerability in main.asp in Jbook allows remote
attackers to execute arbitrary SQL commands via the password
(pass parameter).

CVE-2006-1743 Multiple SQL injection vulnerabilities in form.php in JBook 1.4
allow remote attackers to execute arbitrary SQL commands via
the (1) nom or (2) mail parameters. NOTE: the provenance of
this information is unknown; the details are obtained solely from
third party information.

21
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

W. Qu, W. Huo, L. Wang

MAXCMS
CVE-2009-1818 SQL injection vulnerability in admin/admin_manager.asp in

MaxCMS 2.0 allows remote attackers to execute arbitrary SQL
commands via an m_username cookie in an add action.

CVE-2009-1764 SQL injection vulnerability in inc/ajax.asp in MaxCMS 2.0
allows remote attackers to execute arbitrary SQL commands via
the id parameter in a digg action.

MidiCart
CVE-2006-6209 Multiple SQL injection vulnerabilities in MidiCart ASP Shop-

ping Cart and ASP Plus Shopping Cart allow remote attackers
to execute arbitrary SQL commands via the (1) id2006quant
parameter to (a) item_show.asp, or the (2) maingroup or (3)
secondgroup parameter to (b) item_list.asp. NOTE: the code_no
parameter to Item_Show.asp is covered by CVE-2005-2601.

CVE-2005-2601 SQL injection vulnerability in MidiCart allows remote attackers
to execute arbitrary SQL commands via the code_no parameter
to (1) Item_Show.asp or (2) search_list.asp.

CVE-2005-1503 Multiple SQL injection vulnerabilities in MidiCart PHP Shop-
ping Cart allow remote attackers to execute arbitrary SQL com-
mands via the (1) searchstring parameter to search_list.php, the
(2) maingroup or (3) secondgroup parameters to item_list.php,
or (4) code_no parameter to item_show.php.

myNewsletter
CVE-2008-1295 SQL injection vulnerability in archives.php in Gregory

Kokanosky (aka Greg’s Place) phpMyNewsletter 0.8 beta 5
and earlier allows remote attackers to execute arbitrary SQL
commands via the msg_id parameter.

CVE-2006-2887 Multiple SQL injection vulnerabilities in myNewsletter 1.1.2
and earlier allow remote attackers to execute arbitrary SQL
commands via the UserName parameter in (1) validatelogin.asp
or (2) adminlogin.asp.

Pre Classified
Listings

CVE-2010-1370 SQL injection vulnerability in detailad.asp in Pre Classified
Listings ASP allows remote attackers to execute arbitrary SQL
commands via the siteid parameter.

CVE-2010-1369 SQL injection vulnerability in signup.asp in Pre Classified
Listings ASP allows remote attackers to execute arbitrary SQL
commands via the email parameter.

CVE-2008-6887 SQL injection vulnerability in detailad.asp in Pre Classified
Listings 1.0 allows remote attackers to execute arbitrary SQL
commands via the siteid parameter.

CVE-2007-2675 SQL injection vulnerability in search.php in Pre Classifieds
Listings 1.0 allows remote attackers to execute arbitrary SQL
commands via the category parameter.

WmsCms CVE-2010-2317 Multiple SQL injection vulnerabilities in WmsCms 2.0 and
earlier allow remote attackers to execute arbitrary SQL
commands via the (1) search, (2) sbr, (3) pid, (4) sbl, and (5)
FilePath parameters to default.asp; and the (6) sbr, (7) pr, and
(8) psPrice parameters to printpage.asp.

Absolute News
Manager(.NET)

CVE-2007-6269 Multiple SQL injection vulnerabilities in xlaabsolutenm.aspx
in Absolute News Manager.NET 5.1 allow remote attackers to
execute arbitrary SQL commands via the (1) z, (2) pz, (3) ord,
and (4) sort parameters.

CVE-2008-2757 SQL injection vulnerability in search.asp in Xigla Absolute News
Manager XE 3.2 allows remote authenticated administrators to
execute arbitrary SQL commands via the orderby parameter.

22
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

Opportunistic Diversity-Based Detection of Injection Attacks in Web Applications

Active Price
Comparison

CVE-2008-5975 SQL injection vulnerability in links.asp in Active Price
Comparison 4.0 allows remote attackers to execute arbitrary SQL
commands via the linkid parameter. NOTE: the provenance of
this information is unknown; the details are obtained solely from
third party information.

CVE-2008-5974 Multiple SQL injection vulnerabilities in login.aspx in Active
Price Comparison 4.0 allow remote attackers to execute arbitrary
SQL commands via the (1) password and (2) username fields.

CVE-2008-5638 Multiple SQL injection vulnerabilities in Active Price Compari-
son 4 allow remote attackers to execute arbitrary SQL commands
via the (1) ProductID parameter to reviews.aspx or the (2) linkid
parameter to links.asp.

WebEvents CVE-2007-4108 SQL injection vulnerability in sign_in.aspx in WebEvents
(Online Event Registration Template) allows remote attackers to
execute arbitrary SQL commands via the Password parameter.

Xigla Absolute
Banner Manager
(.NET)

CVE-2008-2760 SQL injection vulnerability in searchbanners.asp in Xigla
Absolute Banner Manager XE 2.0 allows remote authenticated
administrators to execute arbitrary SQL commands via the
orderby parameter.

CVE-2007-6291 SQL injection vulnerability in abm.aspx in Xigla Absolute
Banner Manager .NET 4.0 allows remote attackers to execute
arbitrary SQL commands via the z parameter.

23
EAI Endorsed Transactions on

Security and Safety
10 2018 - 12 2018 | Volume 5 | Issue 16 | e5

	1 Introduction
	2 Related work
	2.1 Defense of Injection Attacks
	2.2 Diversity in Security

	3 The Case Study
	3.1 An Example
	3.2 Study of Shared Injection vulnerabilities in CVE
	Applications with Variants
	Matching Common Vulnerabilities
	Summary

	4 The Methodology
	4.1 Overview
	4.2 Detection
	Stage 1: SQL Query
	Stage 2: Changes to Database
	Stage 3: Database Result
	Stage 4: Application Result

	4.3 Result Correlation

	5 Implementation and Experiments
	5.1 Implementation
	The Application
	Detection

	5.2 Experiments
	Dataset
	The Results

	6 Conclusion

