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Abstract. The efficiency of a photovoltaic (PV) system depends not only on 

environmental and operating conditions, but also on manufacturing. This dependence 

is intrinsically linked to parameters such as Rs, Rsh, Ncell or Iph. In other words, a good 

PV generator (PVG) is one where the power delivered by the PVG is maximum 

whatever the conditions of use. In this article, we expose a model of PVG, as well as 

some faults that affect its optimal functioning. Given the complexity and the multitude 

of diagnosis methods, we have opted for the artificial neural networks (ANN) approach 

to detect, identify and locate certain faults that hinder its good performance. Once the 

correct diagnosis is made, it will be up to the maintenance technicians to take the 

necessary actions. 

Keywords: Photovoltaic Generator, PVG, fault, classification, detection, diagnosis, 

Artificial Neuron Networks (ANN), Remaining useful life (RUL). 

1   Introduction 

The photovoltaic generator (PVG) is a renewable, inexhaustible and non-polluting source of 

energy. The increase in energy demand means that the use of renewable energies is increasing 

significantly around the world. This strong growth in demand for electrical energy, mainly in 

remote, desert and even mountainous regions, creates problems for both the design, construction 

and maintenance of PVG [1]. 

The robust, reliable, high performance PVG must be able to cope with faults [2] through 

proactive and tailored maintenance. 

A.E. T. Maamar and al (2018) in [11], were specifically interested in detecting and 

classifying faults of a PVG using the neural approach. The performance of the neural approach 

was analysed on the basis of a comparison with the threshold method. Both methods are based 

on generating input residuals between healthy and failing modes. It was then necessary to set a 

threshold for each fault with the threshold method, which was not the case for the method based 

on the artificial neural network learning algorithm. But in [12], we note that a PVG could be 

subjected during its operation to various faults requiring a certain approach to detect them. Also 

they were interested specifically in the detection and location of faults of the PVG by the neural 

approach. Hadjib and al., in [13], analyzed the conditions of a good PV installation, so that the 

power delivered by the PVG would be maximum, whatever the conditions of use. Also, they 
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used artificial neural networks (ANN) as an approach to track the maximum point of power 

regardless of where they were used and operating conditions 

There are many works which propose different methods to diagnosis PVG faults [4], [8], 

[9], but they are not all suitable to diagnosis all faults simultaneously. The obligation for [11] to 

set a detection threshold according to the nature of the fault, leads us to other diagnosis methods 

based on the ANN.  

This article presents a model as close as possible to the real behavior of a PVG based on a 

Bishop model [7] from its basic cell to the PVG. We will base our approach, on the knowledge 

of the faulty behavior of the cell up to the PVG, to establish a global fault scenario [6], in order 

to establish a relation between the fault and the symptoms presented in characteristic IV of the 

PVG and which seriously affects production performance [14].  

The implementation in MATLAB / Simulink will simulate the healthy and degraded 

behavior of PVG. We will apply a diagnosis method whose principle is based on artificial neural 

networks, for the detection, identification and localization of defects. 

In section 1, we will introduce the problems related to fault diagnosis in PVG, before stating 

the problem statement in section 2. The PVG application model will be presented in section 3. 

We will present some faults of PVG in section 4, before presenting the approach by ANN in 

section 5. The interpretation of the simulation results is summarized in section 6. Finally, in 

section 7, we will conclude on the proposed diagnosis method and suggest some perspectives. 

2   Problem statement 

The first objective of this work is to present a model as close to the reality of a PVG, as 

well as some inherent faults in the proper functioning of all complex industrial processes. The 

second objective of the work is to implement a diagnosis method based on artificial neural 

networks, able of identifying said faults in the PVG. The application of the fault detection and 

isolation (FDI) method on this industrial system which exhibits peculiarities of non-linearities 

and faults that can significantly affect its operating performance. The simulation results on the 

detection of faults in accordance with the incidence matrix will make it possible to isolate any 

faults. Ultimately, this will make it possible to undertake corrective or predictive maintenance 

actions resulting from the diagnosis made. 

3   PVG model 

When the PV cell is occulted, it operates in the reverse regime of zone C [5]. Standard cell 

models, one diode or two diodes [3], represent only normal cell models, i.e., in zone A of the 

operating characteristic of Figure 1. This does not take into account the avalanche effect of the 

cell. This function, which can only be explained in the failed mode of the cell or field, requires 

a model that can describe the entire cell characteristic in the three [4] areas of Figure 1.  



 

 

 

 

 

Fig.1. Complete characteristic I-V of PV cell  

In normal operation, the cell operates in zone A where the operating point is within the limit 

defined by its Icc1 short circuit current based on its Voc1 circuit voltage. However, in abnormal 

operation, the cell may be forced in the negative region of its voltage (zone B) and the negative 

current region (zone C). The cell will be damaged when the rupture voltage is reached. 

The avalanche effect of the cell is considered only in the Bishop model [7] presented in 

Figure 1. It is improved by the addition of the nonlinear multiplier factor M(V1) representing 

the mass avalanche effect with shunt resistance [4, 7, 8, 9]. Its electrical pattern is given by 

figure 2, and the mathematical model is given by relation (1): 

 

Fig.2. Bishop model of PV cell 

𝐼 = 𝐼𝑝𝑣 − 𝐼0 [exp (
𝑉+𝑅𝑠𝐼

𝑉𝑡 
) − 1] −

𝑉+𝑅𝑠𝐼

𝑅𝑝 
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𝑉+𝑅𝑠𝐼

𝑉𝑏 
)

−𝑛

]   (1) 

where 

𝐼 = 𝐼𝑝𝑣 − 𝐼0 [exp (
𝑉+𝑅𝑠𝐼

𝑉𝑡 
) − 1] −

𝑉+𝑅𝑠𝐼

𝑅𝑝 
𝑀(𝑉1)      (2) 

With 𝑀(𝑉1) = 1 + 𝑘 (1 −
𝑉+𝑅𝑠𝐼

𝑉𝑏 
)

−𝑛

           (3) 

𝑘 : Bishop's adjustment coefficient (3,4 ≤ 𝑘 ≤ 4) 

𝑛 : Bishop's adjustment coefficient (𝑛 ≅ 0,1) 

𝑉𝑏: cell clacking voltage (−30 ≤ 𝑉𝑏 ≤ −10) 

This model called Bishop with its eight parameters 𝑎, 𝐼𝑑 , 𝑅𝑠, 𝑅𝑠ℎ, 𝑘, 𝑛, 𝑉𝑏 𝑒𝑡 𝐼𝑝ℎ  takes into 

account the avalanche effect of the diode, which passes successively from operating areas A, B 



 

 

 

 

to C in figure 2. It is a model of PV cell study, very close to reality, which is sometimes in 

generator, if it is well sunny and sometimes in receptor, when it is under shade. 

The parameter a or ideality factor of the diode, depends intrinsically on the nature of the 

used semiconductor [3]. 

From the model of the cell presented above to the PV field through the module, the whole is 

subject to the same conditions of temperature and sunshine [5]. The equivalent circuit of the 

PVG, with an 𝑁𝑠 number of serial-mounted modules and an 𝑁𝑝  number of parallel-mounted 

modules showns in Figure 3, with the relationships (4) to (7) to establish the current and voltage 

of the PVG created [4, 10, 11]. We get for healthy mode: 

 

 

 

 

 

 

Fig.3. PV generator model.  

Thus, we obtain successively:  

▪ from cell to module through relations (4);  

 

{
 𝐼𝑐 =  𝐼          

 𝑉𝑚 =  𝑁𝑐𝑒𝑙𝑙 ∗ 𝑉
                         (4) 

 

▪ from module to string by relations (5);  

 

{
 𝐼𝑠𝑡𝑔 = 𝐼                

 𝑉𝑠𝑡𝑔 =  𝑁𝑠 ∗  𝑉𝑚         
                 (5) 

 

▪ from string to field by relations (6);  

 

{
 𝐼𝐺 =  𝑁𝑝 ∗ 𝐼𝑠𝑡𝑔   

 𝑉𝐺 =  𝑉𝑠𝑡𝑔              
                 (6) 

 

▪ finaly from the field to the generator by the relations (7).  
 

{
 𝐼𝐺 =  𝑁𝑝 ∗ 𝐼          

 𝑉𝐺 = 𝑁𝑠 ∗ 𝑁𝑐𝑒𝑙𝑙 ∗ 𝑉
            (7) 

 

with the following notations: 
▪ 𝐾𝑖: the current / temperature coefficient of short-circuit; 
▪ 𝐾𝑉 : the open circuit voltage/temperature coefficient; 
▪ 𝑇 𝑎𝑛𝑑 𝑇𝑛  are the current and nominal temperatures 
▪ 𝐺 𝑎𝑛𝑑 𝐺𝑛 are the current and nominal illuminance; 
▪ 𝐼𝑝ℎ𝑛 : the nominal current of the PV cell, given under nominal conditions 𝑇 = 25℃ 𝑎𝑛𝑑 𝐺 =

1000W/m² ; 
▪ 𝐼𝑐  : current supplied by PV cell; 



 

 

 

 

▪ 𝐼𝑠𝑡𝑔  : PV module current; 

▪ 𝐼𝐺  : generator current or PV field; 
▪ 𝐼𝑑: the current in the diode; 
▪ 𝐼0: the saturation current of the diode; 
▪ 𝐼𝑠𝑐𝑛 : the rated short-circuit current at standard test conditions (STC) 𝑇 = 25℃ 𝑎𝑛𝑑 𝐺 =

1000W/m²; 
▪ 𝑉𝑡: the thermal tension of the panel; 
▪ 𝑉𝑜𝑐𝑛 : the nominal open circuit voltage; 
▪ 𝑉 voltage at the terminals of PV cell; 
▪ 𝑉𝑚: voltage at the terminals of PV module; 
▪ 𝑉𝑠𝑡𝑔: voltage at the terminals of string; 

▪ 𝑉𝐺: voltage at the terminals of generator or PV field; 
▪ 𝑘𝑏 : Boltzmann's constant; 
▪ 𝑞 : the charge of the election; 
▪ 𝑁𝑐𝑒𝑙𝑙  : number of cells in series in a module; 
▪ 𝑁𝑠: number of serial modules in a string; 
▪ 𝑁𝑝: number of strings in parallel in the PV generator; 

▪ 𝑅𝑠: series resistance of the cell which depends on the materials used to construct the cell and 
whose effect is greatest in the voltage source operating region;  

▪ 𝑅𝑠ℎ : parallel resistance whose effect is greatest in the current source operating region; 
▪ 𝑎: coefficient of ideality of diode; 
▪ 𝑘 : Bishop's adjustment coefficient; 
▪ 𝑛 : Bishop's adjustment coefficient; 
▪ 𝑉𝑏: the breakdown voltage of the cell. 

The characteristic I-V in healthy operation mode can be done on the basis of a single PV 

cell. This is achieved by the relation (7). Here, the behaviour of all the cells is identical, which 

causes the blocking of the bypass diode and the conduction of the anti-return diode. 

The simulation of healthy mode is done with modules of 36-cell. The generators below, are 

configured by 𝑁𝑠 ∗ 𝑁𝑝 modules, one module, two modules, four modules, eight modules and 

finally 16 modules. 

Below, the simulation of healthy mode with modules of 36-cell in Figure 4, was done for:  

𝑅𝑠 = 0.015 Ω; 𝑅𝑠ℎ = 700 𝑘Ω;  𝑇 = 25°𝐶 𝑒𝑡 𝐺 = 1000𝑊/𝑚2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. Healthy mode: characteric of Current and Power 



 

 

 

 

4 The PVG faults 

The failure mode is a particular case of the one proposed to model a healthy PV field. Also, 

we simulated it under Simulink, in order to have access to all components of the system. This 

allows to introduce the type of considered faults 𝑅𝑠, 𝑅𝑠ℎ, 𝑁𝑐𝑒𝑙𝑙 , 𝐼𝑝ℎ, 𝑇 𝑜𝑟 𝐺.  

4.1 Considered faults 

Simulation of the behaviour of a PV field for a comprehensive fault scenario shows that it is 

possible to identify potential symptoms that can be used to overcome the nature of faults. Also, 

the combination of the symptoms identified, also known as faults signature, allows the 

identification of the fault or a group of faults responsible for the behaviour examined [4]. On 

the characteristic of Figure 5, the following five zones can then be identified.  

Fig. 5. I-V characteristic in healthy mode (black) and failure mode (red) 

▪ The first obvious fault, which once appeared may suggest the presence of a failure, is the 

loss of power produced. Because this is not always true, however, certain faults do not lead 

to any loss of power. This is the case when the bypass diode is disconnected.  

▪ The second fault in "zone 1" is the known difference between the open circuit voltage of the 

PV system in normal operation and the failed circuit voltage in zone 1 of figure 5. Like a 

module ripped off (𝑅𝑠, 𝑅𝑠ℎ) or bypassed, or a temperature rise (𝑇). 

▪ The third fault in "zone 2" is the known difference between the short circuit current of the 

PV system in normal operation and the failed current in zone 2 of figure 5. Like the loss of 

a module of string (𝑅𝑠, 𝑅𝑠ℎ) or a bad sunshine (𝐺). 

▪ The fourth fault in "zone 3" refers to the abrupt deviation of the characteristic I-V which 

leads in the latter to one or more inflection points in zone 3 of figure 5. Like losing a set of 

modules in a string (𝑁𝑐𝑒𝑙𝑙 , 𝑅𝑠, 𝑅𝑠ℎ).  

▪ The fifth fault in "zone 4" refers to the deviation of the slope of the failing I-V characteristic 

from that in healthy operation. There is no deviation if the voltage and current drop profile 

is constant throughout the I-V curve. Otherwise, attention will be given: 

✓ to the voltage drop profile in vertical zone 4 of figure 5, corresponding to an increase in 

the serial resistance (𝑅𝑠);  

✓ to the profile of the current fall in zone 4 horizontal of figure 5, corresponding to a 

decrease in shunt resistance (𝑅𝑠ℎ).  



 

 

 

 

4.2 Signature table 

The results of simulations of [3] to [5] allow us to establish the simplified table of faults 

given in table 1. The code generated will be used for interpretation during simulation.  

Table 1: Signature of faults 

 

 

 

 

 

 

4.3 Generating matrix input  

Simulink simulation was used to replicate the behaviour of our PVG, to extract the input 

matrix [P, V, and I] as matrix [201*3]. For each of the faults introduced, we could feed each 

simulation base. In the synoptic of the Figure 6 below, we summarize the construction of the 

database used to feed the inputs of the ANN algorithm. 

 

Fig. 6. Synoptic of construction of database used. 

5 Proposed approach  

Nowadays, the artificial neural network is an essential tool used in many research activities 

for complex industrial systems. One of the advantages of using neural networks to detect failures 

in complex systems is that they can interpret measurement data. Because a neural network,  is 

able to generalize a obtained model. Error tolerance, which characterizes the neural network, 

effectively treats model errors. In addition, he can perform non-linear mapping and learn 

dynamic behaviours in order to generalize the obtained models. 

Code P V I Default Designation 

000 0 0 0 Healthy mode 

001 0 0 1 Mismatch type shade or sunshine 

010 0 1 0 Short-circuited or reverse module 

011 0 1 1 Mismatch type partial shade, or dirt 

100 1 0 0 Bypass or Mismatch type Rp or Rs 

101 1 0 1 Bypass or Mismatch type Rp or Rs 

110 1 1 0 Mismatch type Rs 

111 1 1 1 Fault nature is Unknown  



 

 

 

 

For data processing, the use of ANN is an interesting approximation approach for systems 

that are difficult to model using conventional statistical methods [3]. 

 

5.1 The architecture of a neuron 

Figure 7 shows an artificial neuron receiving signals from the environment and from other 

neurons to which it is connected. Each entry is associated with a weight representing the 

“strength” of the interneuron connection. Each calculation unit has its own transition or 

activation or transfer function which allows it to calculate its output state from the inputs and 

the weight of the associated connections [10]. 

 

Fig. 7. Model of an artificial neuron. 

The neuron behaviour is governed by the following equation: 

 

𝑆 = 𝑋1𝑊1 + 𝑋2𝑊2 + ⋯ + 𝑋𝑛𝑊𝑛 = ∑ 𝑋𝑖𝑊𝑖
𝑛
𝑖=1       (8) 

 

𝑆 : the weighted sum; 

𝑌 = 𝑓(𝑥) : the neuron output; 

𝑋1, 𝑋2, … , 𝑋𝑛: the neuron inputs; 

𝑊1, 𝑊2, … , 𝑊𝑛: the synoptic weights that control the passage rate of the input signal;  

𝑓 : the transfer function; 

Shows in Table 2, the commonly used transfer function for training neural networks. for 

multilayer networks with back-propagation algorithm. The most widely used transfer function 

is the log-sigmoid. 

Table 2: The transfer function [12] 

Name Input/output relation 

Hard limit 
𝑓(𝑥) =  {

1 𝑖𝑓 𝑥 ≥ 0
0 𝑖𝑓 𝑥 < 0

  

Symmetrical hard limit 
𝑓(𝑥) =  {

   1 𝑖𝑓 𝑥 ≥ 0
−1 𝑖𝑓 𝑥 < 0

  

linear 𝑌 =  𝑋  

Log-sigmoid 𝑌 =
1

1+𝑒−𝑋  

Hyperbolic tangent 𝑌 =
𝑒𝑋−𝑒−𝑋

𝑒𝑋+𝑒−𝑋  



 

 

 

 

 

5.2 Learning of the neural network 

Learning in a neural network is its developmental phase until the desired behavior is 

obtained. The weights of the connections are randomly initialized several times to calculate the 

output, until they reach their final value. The error is calculated and the weight correction will 

be applied if the goal is not reached. The learning algorithm is illustrated in Figure 8. 

  

Fig. 8: The learning algorithm of a neural network 

The data collected for the detection and characterization process are noisy, but the error 

tolerance capacity of the neural networks allows the detection system to differentiate the model 

from noise. This property is a huge advantage in fault detection and problem solving. 

In this article, the Levenberg-Marquardt algorithm (LM) is proposed to perform the tasks of 

detection and classification of faults.  

5.3 The setting and training 

A network is driven on data through a learning mechanism that acts on the network 

components to achieve the desired task.  

The network development process is in four phases:  

▪ The collection of data made under Simulink using a file of each defect to change the input 

matrix. 

▪ The generation of power, voltage and current errors contained in the input matrix through 

the MATLAB nstart block. 

▪ The construction of the neural network, which is a two-layer network (201-24-142); three 

layers of size 3*201 inputs, 24 neurons in the hidden layer and 3*142 output.  

▪ Finally, the artificial neuron network learning, uses the data contained in the input matrix. 



 

 

 

 

▪ The setting of weight of input vectors and target vectors will be randomly divided into three 

sets as follows: 

✓ 70% will be used for training. 

✓ 15% will be used to validate the generalized network and stop the formation of the 

adjustment. 

✓ the remaining 15% will be used in an independent test of network generalization. 

The network used is a two-layer feedforward network, with a sigmoid transfer function in 

the hidden layer and a linear transfer function in the production layer. 

The simulation of the network in Figure 9 continue until the maximum error desired is 

reached after 1000 iterations, for a performance of 0.615 and a run time of 0.0004 seconds. The 

performance metric used by this Multi-layer Perceptron (MLP) is a cross-entropy (also called 

log loss) is a metric that should be minimized and not maximized in Figure 9. To this ANN 

code, we add the description code of the fault, by report with target in Table 1 above. 

 

Fig. 9. ANN simulation result on Rs failure 

Figure 10 shows the receiver operating characteristic curve, or ROC curve. In our case, it 

indicates a straight line corresponding to the first bisector, a random detection, indicating a high 

probability of detection for the two hypotheses, true or false. The area under the ROC curve 

(AUC, Area Under the Curve) gives an indicator of the quality of the prediction (1 for an ideal 

prediction, 0.5 for a random prediction).  

Overall, we can consider an improvement for our diagnosis, either:  

• Determine a threshold providing better performance, for a COR above the first bisector; 

• determine better measurement conditions, for better overall performance of the COR curve. 

 



 

 

 

 

 

Fig. 10. ANN simulation results minimum gradient 

6  Simulation and interpretation  

We have chosen by experience and experimentally a fault detection threshold of (0.001), 

because it offers relatively satisfactory results and avoids false detections. Then, we pass the 

output matrix under an nnstart algorithm for fault detection and classification. 

6.1 Healthy mode or no defaults 

From an input matrix derived from a healthy mode of operation, we gave a threshold of 

0.1 and obtained the following identification and localization in Figure 11: 

 

Fig. 11. Diagnosis in a healthy mode 

6.2 Default on Rs 

From an input matrix derived from a gradient mode of operation on Rs, we gave a threshold 

of 0.0001 and obtained the identification and location below in Figure 12. In the figure 5, we 

have a few deviation. 



 

 

 

 

 

Fig. 12. Diagnosis due to variation in Rs 

6.3 Rsh defect 

From an input matrix derived from a gradient mode of operation on Rsh, we gave a threshold 

of 0.0001, because in Figure 5, we have a few vertical deviation and obtained the identification 

and location below in Figure 13: 

 

Fig. 13. Diagnosis due to variation in Rsh 

6.4 Temperature fault 

From an input matrix derived from a gradient mode of operation on T, we gave a threshold 

of 0.0001 we have current or voltage which decrease and obtained the identification and location 

below in Figure 14: 

 

Fig. 14. Diagnosis due to variation in T 

6.5 Summary 

The diagnosis technique by ANN uses a database to detect and classify the faults defined in 

the signature matrix of Table 1, according to the previously defined threshold. The learning of 

the ANN is quite simple and allows to classify the faults, to improve the results obtained and 



 

 

 

 

the percentage of detection if necessary. To improve its performances, we can do one of the 

following:  

• Train again; 

• Increase the number of neurons; 

• Choose a larger training data set, which takes a lot more time and patience to build such 

a database.  

On the one hand, if the overall learning performance is good, but the testing performance is 

significantly poor, then the number of neurons should be reduced. To have poor performance, 

increases the number of neurons.  

On the other hand, the choose of the threshold is difficult because the modification of the 

values of a parameter linked to a known fault, can appear under the nature of another fault. This 

leads to false alarms and poor detection of a certainly major fault.  

7 Conclusion 

From the results obtained, we can say that the ANN approach is based on a database to 

detect, classify and isolate faults. It is a relatively simple technique that does not require complex 

programming languages.  

The analysis of the simulation results shows that the ANN are sufficiently efficient for the 

diagnosis and that they remain a simple and suitable technique to ensure a good diagnosis for a 

conditional or preventive maintenance in a PVG. Locating the Rs, Rsh, T, G or Iph type of fault 

will no doubt make it possible to take the appropriate measures to restore the PVG to the best 

operating conditions.  

Depending on the failure area in Fig. 5, the error value is small or large. That is why we have 

to adjust the threshold every time in our classification algorithm, shown in Figures 10 to 13. 

This part of the diagnosis also opens up huge improvements for the prognosis over the remaining 

life or RUL of our PVG, but requires a database large enough for the application of neural 

network analysis.  

The use of this artificial intelligence method in the field of automation for the diagnosis of 

a complex industrial system is very commendable. The prospects are quite good, but only the 

use of an automatic database of residuals, built over a long period with patience, will allow a 

diagnosis in real time and without false interpretation of the anomalies of the PVG, and in 

relation to the parameters. incriminated. This will allow of course technicians to better maintain 

PVG, but especially engineers to design on-board and autonomous equipment able of making 

decisions in the direction of increasing remaining useful life (RUL). This research work is 

necessary both for the search for clean energy accessible to all with an optimal return on 

investment as stipulated in article 7 of the United Nations charter for sustainable development.  
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