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Abstract.  Distributed systems are highly heterogeneous, dynamic and unstable. It is there-
fore realistic to expect that some resources will fail during use. To overcome these problems
and achieve better performance, it is necessary to implement load balancing algorithms that are
adapted to any situation where some nodes are overloaded while others are less so or are even
idle.

Load balancing between JobManager and JobManagers candidates, and between JobManagers of
the same scheduler or load balancing between Schedulers, implies that additional loads are only
done hierarchically.

In this paper, we propose a two-level dynamic, hierarchical and decentralised load balancing
strategy focusing on three performance indicators namely: response time, process latency and
running time of MapReduce jobs.

The first level of load balancing is intra-scheduler, in order to avoid the use of the large-scale com-
munication network, and the second level of load balancing is inter-scheduler, for load regulation
of our whole system. The proposed solution provides a better optimisation of the load balancing
process and an improvement of the task mean response time with minimal communication.

Keywords: Big Data, Distributed processing, Load balancing, CLOAK-Reduce, Task alloca-
tion.

1 Introduction

Big Data can be considered in two main phases : Data storage on the Distributed File System
(DFES) and Data processing on Distributed System. Different approaches to distributed computing
have been proposed for Big Data processing, the most widely used being MapReduce [1].
DHTs have been widely studied because of their attractive properties: efficiency and simplicity
with Chord [2], controlled data placement with SkipNet [3], Pastry [4] routing and localization, and
good consistency and reliable performance with Kademlia [5].
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CLOAK!' DHT, the basis of our work, is based on a hyperbolic tree constructed in hyperbolic
space (hyperboloid) and projected stereographically into a Poincaré disk (Euclidean plane) of radius
1 centred at the origin where the tree node uses a virtual coordinate system [6, 7, 8].

Like DHTs, several studies and many load-balancing algorithms [9, 10, 11] have been proposed
for traditional cluster computing and distributed systems.

However, load balancing, which consists of allocating data first and then eventually redistribut-
ing it across a set of nodes in order to minimise their processing time, remains a real problem for
distributed systems.

Although the problem of load balancing of homogeneous distributed systems has been inten-
sively studied, the new challenges related to heterogeneous distributed systems make it an interesting
topic for many projects because of the management of node heterogeneity.

Our objective is to propose a load balancing and task allocation strategy for our distributed
CLOAK-Reduce model inspired by the CLOAK DHT [6, 7, 8] and MapReduce [12, 13, 14].

We will then evaluate the performance of this strategy by simulations.

Our study focuses on the following aspects:

1. Our first contribution is the summary of our model of distributed processing platform CLOAK-
Reduce.

2. Our second contribution is the description of the load balancing strategy of CLOAK-Reduce.

3. the third contribution is to study the quality of the results produced by the analysis of the
proposed load balancing strategy.

Our paper will be organized as follows:
1. afirst step covers related works;
2. asecond step, we describe CLOAK-Reduce platform;

3. the third part, we analyse the results of the different simulations.

2 Related Works

2.1 Distributed Systems

A distributed system, also known as distributed computing, is a system with multiple compo-
nents located on different machines that communicate and coordinate actions in order to appear as a
single coherent system to the end-user[15].

The machines that are a part of a distributed system may be computers, physical servers, virtual
machines, containers, or any other node that can connect to the network, have local memory, and
communicate by passing messages [15, 16].

There are two general ways that distributed systems function:
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1. Each machine works toward a common goal and the end-user views results as one cohesive
unit.

2. Each machine has its own end-user and the distributed system facilitates sharing resources or
communication services.

Although distributed systems can sometimes be obscure, they usually have three primary characteris-
tics: all components run concurrently, there is no global clock, and all components fail independently
of each other [17].
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Fig. 1. Distributed systems computing environment.

2.2 Grid Computing

Grid computing is a virtual infrastructure made up of a set of potentially shared, heterogeneous,
distributed, autonomous and delocalised computing resources [18].

Grid computing is an autonomous, dynamically reconfigurable, scalable computing infrastruc-
ture aggregating a large number of computing and data storage resources. It is intended to make
resources available to users for distributed computing.

More concretely, a computing grid is made up of a large number of heterogeneous and often
delocalized machines linked by an Internet network and made homogeneous to users by middleware
[19].

2.3 Distributed Hash Tables

A DHT is a technology for constructing a hash table in a distributed system where each piece
of data is associated with a key and is distributed over the network. DHTSs provide a consistent hash



function and efficient algorithms for storing STORE(key, value) and locating LOOKUP(key) of the
node responsible for a given (key, value) pair.

It is therefore important to specify that only a reference of the declared object (Object IDentifier
(OID)) is stored in the DHT. Concerning the search for an object, only by routing the searched key
can the set of associated values be found [6, 7, 15].

In practice, DHTs are substituted by “overlay” networks on top of the physical networks, thus
reducing the size of the table at each node while considerably increasing the efficiency of the search
algorithm.

2.4 Load Balancing

Load balancing is the process of allocating workloads and resources between nodes so that
no node is overloaded, underloaded or idle. With the advent of Big Data and the proliferation of
connected objects, the world has become digital, which can lead to system failure, as the number of
requests submitted leads to system overload.

Therefore, to solve this overload problem, load balancing algorithms are used to distribute the
tasks among several nodes. These algorithms track and manage the demand of running applications
by distributing resources across multiple systems. Load balancing also aims to optimise the use of
resources.

CLOAK DHT, to solve this problem uses the root as the only controller so that it can handle
the workloads, but after some time, if more requests are made, it will cause the system to fail again.
This process is considered onerous because it is also costly. This is why a hierarchical solution is
considered the best, as it avoids the problem of bottlenecks by distributing the loads according to the
capacity of the nodes.

2.5 Dynamic Load Balancing Algorithms Classification

To activate the load balancing and to decide which nodes to give the next job, load balanc-
ing algorithms are used. So load balancing algorithms are classified into Static and Dynamic load
balancing algorithms [19].

In this paper, we mainly interested in dynamic load balancing which offers three categories
of load balancing algorithms [20]: decentralized, centralized or hierarchical. A dynamic process
allocation algorithm consists of two basic elements: an information element and a control element
(Figure 2). The role of the information element is to maintain information about the state of the
distributed system, which is used by the control element to perform the actual placement of processes
[21].

In a dynamic environment the lightest node among whole nodes is searched and that nodes is
selected for balancing a load. These algorithms easily adapt to the changes made in the load during
runtime [22, 23]. Dynamic environment is considered difficult and complex to apply but it balances
aload in an efficient way.
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Fig. 2. Structure of a dynamic allocation algorithm.

Some Load Balancing Performance Indicators

Some performance indicators are needed to measure the effectiveness of the different load

balancing algorithms. They have been the subject of many studies which can be resumed as follows
[11,24,25]:

Response Time: This is the time spent in the queue of ready processes before the first execu-
tion.

Process latency: or Waiting Time for Jobs is the time a process spends waiting before started.

Running time: or Restitution time is the time that elapses between the submission of the job
and its completion.

Throughput: It indicates that how many requests (tasks) completed execution per unit time.

Makespan: It is the total time required to complete all the tasks submitted to a virtual ma-
chine.

Fault tolerance: It is the capabilities of the system to perform uninterrupted and uniform
service even if one or more arbitrary nodes fail.

Migration time: The time required to transfer a task or a virtual machine from one physical
machine to another.

Degree of Imbalance: It measures the imbalance among virtual machines.



* Energy Consumption: It is the amount of energy consumed by the devices used in the cloud
computing or by the particular data centers.

* Resource utilization: It is the notch to which the resources of the system like CPU, Memory,
Storage, and Networking etc. are uniformly utilized.

 Reliability: The task is transferred to any other virtual machine in case of any system failure
to enrich the reliability of the system.

* Band width (BW): It determines the regulating of outgoing traffic from the local network and
incoming traffic sent by an internet agent. This disparity of traffic over a network needs to be
managed.

It should also be noted that this is not an exhaustive list, many other parameters can be taken
into account depending on the needs of the researcher. As outlined in the abstract, this study is
concerned with the Response time, Process latency, and Running time of a task.

3 Our contributions

3.1 CLOAK-Reduce

CLOAK-Reduce is built by implementing, on the CLOAK DHT, a module to create and execute
MapReduce operations. It is a distributed model that exploits the advantages of CLOAK DHT and
MapReduce. CLOAK DHT to submit Map() and Reduce() jobs in a balanced way thanks to the
replication mechanisms it offers in addition to the task scheduling strategy we provide (Figure 3)

The tree structure of the CLOAK DHT allowed us to define a hierarchical architecture of load
balancing at two levels: Intra-scheduler for local load balacing and Inter-schedulers for global load
balacing (Figure 4).

Our model consists of a root node, three schedulers, several candidate nodes or JobManagers
candidates and builder nodes or JobBuilders.
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Fig. 3. Architecture of CLOAK-Reduce.



3.1.1 Summary of the invention

Root node The root is a node of coordinate (0,0), the minimal depth (%)) tree, of the Poincaré
disk. It allows to :

» Keep tasks that cannot be executed immediately in a Jobs queue;
¢ Maintain schedulers load information;

¢ Decide to submit a task to a scheduler.

Schedulers The schedulers of depth (2 ), have the function of :
* Maintain the load information of all their JobManagers;
* Decide their JobManagers load balancing;

» Synchronise their load information with their replicas to manage their failure and the others
schedulers for load balacing;

¢ Transfer unsubmitted tasks to the root;

JobManagers JobManagers candidates have a minimum depth (> 2,). They are elected for:
* Supervise MapReduce jobs running;
* Manage the information related to JobBuilders;
* Maintain their load state;

* Decide local load balacing with their circulars replicas JobManager candidate of the same
scheduler;

* Inform JobBuilders of the load balancing decided for the backup of intermediate jobs.

JobBuilders The JobBuilders are of minimum depth (> 23). Their function is to:
* Execute MapReduce jobs;

» Synchronize the images of their different works as they go on their radial replicas of the depth
> 9.

* Keep the information on the state of their charge up to date;
» Update this workload information at the JobManager;

 Perform the balancing necessities ordered by their JobManagers.
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Fig. 4. CLOAK-Reduce function diagram.

3.2 Load balancing strategy

Our strategy is to load balance at each JobManager, between JobManagers, and between Sched-
ulers. This load balancing approach using key hashing is more deterministic and allows for more or
less efficient affinity (under certain conditions) between nodes.

Load balancing is performed between nodes and their circular replicas (JobManagers candi-
dates). It saves response time on the one hand, and reduces the communication time of the model on
the other.

3.2.1 Brief description

» Each JobManager has a period, during which it sends its load information to the JobManagers
candidates of the same scheduler.

» Each JobManager has a period, during which it sends its load information to its scheduler.

* Each scheduler has a period, during which it sends its load information to the other schedulers.
* Each scheduler has a period, during which it sends its load information to the root.

* Intra-scheduler load balancing is triggered by schedulers or their JobManagers.

* Intra-scheduler load balancing of JobManager is performed between the JobManagers and its
JobManagers candidates to avoid the use of any scheduler communication network.

¢ Scheduler’s intra-scheduler load balancing favours, where possible, load balancing between
JobManagers to avoid the use of any Scheduler communication network.

* The overloaded scheduler redirects the task to be submitted to the root spool.



* Inter-scheduler load balancing is triggered by the overloaded schedulers in case intra-scheduler
load balancing is not successful.

* Inter-scheduler load balancing favours load balancing between schedulers.

* The root submits pending tasks to schedulers based on a load level.

3.2.2 Intra-scheduler load balancing

Each JobManager can trigger a load balancing operation based on a threshold load. This thresh-
old is estimated from cumulative information collected periodically from JobBuilders. The load bal-
ancing of the JobManager takes place between its candidate JobManagers. The inter-JobManager
load balancing is ordered by the Scheduler when that of a JobManager fails. This locality approach
aims to reduce communication costs.
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Fig. 5. Intra-scheduler load balancing.

3.2.3 Inter-scheduler load balancing

Inter-schedulers load balacing start only when intra-scheduler balancing fails. In this case, all
the new submissions of the overloaded scheduler will be transfered to the root.

In addition, the root, depending on the scheduler’s information, may instruct the overloaded
scheduler to perform inter-schedulers load balancing, taking into account allocation costs and the
choice of tasks to select.

3.2.4 Brief description of some load balancing algorithms

We are focused on the Response time, the Process latency, and the average execution time of a
task as a JobManager load.
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Fig. 6. Inter-schedulers load balancing.

Notations :

Table 1: Break-even point for JobManagers and Schedulers.

Variables JobManagers Scedulers
Response time o; O
Waiting for jobs B; Bs
Running time for jobs ¢ &

Table 2: time variables for JobBuilders and JobManagers.

Variables JobBuilders JobManagers
Response time T, D,
Waiting for jobs T, D,
Running time for jobs 7, o,

Nodes :
JobBuilder (J,), JobManager (J,,), JobManager candidate (J;,,c ),
Scheduler (. ), Root (Z ).



Algorithms:

for EveryJy of  do

for Each time period do
/* Receive from every J, of J, */

Calculate 7, =2X7;

Calculate 71, =ZX1,;

Calculate T, =ZX1T,;

Send T,,T,,Te to their . associated ;

if ((t, > ;) and (1, > B;) and (1. > €;)) then
Transfer submissions from J, to Juc ;

else
Transfer submissions from J, to J, ;

end if
end for
end for

Algorithm 1: Intra-Scheduler load balancing

Input: Tr[3],Ta[3],Te[3],D,, D4, P,
for Every.” of CLOAK-Reduce do
/+ Calculate the capacities of x/
Calculate @, =2X1,;
Calculate ®,=2X1,;
Calculate &, =%X7, ;

Trsli] = @, ;

TaS[i]:(Da;

TeS[i]:q)a;

/+ List ¥ capacities by descending order relative to their load
*/

Sort Trg[i] ; Sort Tagli]; Sort Tesli]
if ((®, > ) and (P, > Bs) and (D, > €&)) then
Transfer submissions from . to Z.JobSpool ;

else
Transfer submissions from .¥ to Jye ;

end if
end for

Algorithm 2: Tasks allocation



Call Algorithm 2
while Capacity(S;) > Capacity(Siy1) And Z.JobSpool !=¢ do
if Z.JobSpool!=¢ then
Transfer submissions from Z.JobSpool to % ;
Underloaded Z.JobSpool;
Z.JobSpool — —;
else
Capacity(Capacity(Si+1))
end if
end while

Algorithm 3: Inter-Schedulers load balancing

3.3 Performance analysis
3.3.1 Experimental setup

For data collection, the circular and radial replication mechanisms of CLOAK-Reduce have
been set to five (05), in a dynamic network with 10% churns, have been required.

In order to study the scalability of the system in addition to load balancing, we opted to consider
a random number of nodes as follows: 100, 300, 500 and 1000, with the number of tasks varying
from 6000 to 10000 in steps of 1000.

The data processed in the rest of this paper are the result of ten (10) independent repetitions of
each simulation phase in order to extract a significant average.

This collection allowed us to conduct a comparative study on the Intra-Scheduler and Inter-
Schedulers load balancing strategy.

This limitation is due to the hardware constraints of the machine to run the simulation. All
experiments were performed on a 2.60 GHz Intel Core i5 CPU PC with 8 GB memory running
Windows 10 Professional.

To achieve our simulation objectives, we opted to use the PeerSim simulator.

3.3.2 Simulator

* PeerSim [26] is a simulator whose main objective is to provide high scalability, with network
sizes up to 10° nodes, which characterises its dynamicity and extensibility. Its modularity
facilitates the coding of new applications. The PeerSim configuration file has three types of
components: protocols, dynamics and observers.

* Simulation is a widely used method for performance evaluation. It consists of observing the
behaviour of a simplified model of the real system with the help of an appropriate simula-
tion program which will result in graphs that are easy to analyse and interpret. This method
is closer to the real model than analytical methods, and is used when evaluation by direct
measurement becomes very expensive [27].



3.3.3 Some performance indicators

We are interested by reducing the response time, the process latency for jobs, and the run-
ning time of MapReduce tasks. The following performance metrics have been analysed in order to
measure the performance.

¢ To calculate the mean response time (MRT) of the processes we use the following formula:

MRT =Y 1,;/n (1)

n
i=0
With 7,;= completion time - arrival date

* The mean process latency (MPL) is calculated as follows

MPL =Y 1,/n 2

n
i=0
With 7,;= 7,; - running time

* Running time: or Restitution time is the time that elapses between the submission of the job
and its completion.

* Pre-strategy estimation in milliseconds (PSE),
 After strategy estimation in milliseconds (ASE),

* Percentage of time saved (Gain). Gain = (PSE - ASE) / PSE .

3.4 Load balancing performances

We compare CLOAK-Reduce and the CLOAK DHT, unlike CLOAK DHT which centralized
load balancing strategy, CLOAK-Reduce has a hierarchical load balancing strategy.

Therefore, our strategy performs a load balancing between a JobManager and its JobManagers
candidate before considering a load balancing between the different JobManagers of a scheduler and
in extreme cases a load balancing between schedulers.

Figure 7 illustrates the improvement in mean response time obtained by our load balancing
model for different numbers of nodes by varying the number of jobs. We obtain a minimum average
response time gain of 35.77% and a maximum of 44.75% with an overall average of 40.37%.

Figure 8 shows the mean process latency improvement obtained by our load balancing model
for different numbers of nodes by varying the number of tasks. We obtain a minimum average
response time gain of 43.43% and a maximum of 52.06% with an overall average of 48.18%.



Table 3: Response time evolution

ASE  PSE  ASE
100 300 300

PSE  AS

500 500

Plateforms Number of submitted tasks
Nodes | Measure | 6000 | 7000 | 8000 | 9000 | 10000
PSE 27.83 | 28.21 | 28.58 | 28.95 | 29.31
100 ASE 16.36 | 14.92 | 15.29 | 16.15 | 16.65
Gain 41.22 | 47.11 | 46.5 | 44.21 | 43.21
PSE 24.57 | 2540 | 26.24 | 27.11 | 27.98
300 ASE 16.06 | 13.74 | 13.56 | 14.30 | 15.35
Gain 34.65 | 4592 | 48.34 | 47.23 | 45.16
PSE 21.31 | 22.11 | 2291 | 23.72 | 24.55
500 After 14.08 | 13.82 | 14.56 | 15.75 | 15.36
Gain 33.93 | 37.49 | 36.42 | 33.59 | 37.44
PSE 14.08 | 13.82 | 14.56 | 15.75 | 15.36
1000 ASE 12.86 | 12.69 | 13.37 | 13.81 | 13.14
Gain 33.35 | 36.89 | 36.15 | 36.69 | 41.99
160,
14
e Tasks number
. Ji" 10000
= 60, 80
20,00 B LT SETL, Lo (e & 8- 6

Response Time Performance

Fig. 7. Response time according tasks number variation

Figure 9 illustrates the mean running time improvement obtained by our load balancing model
for different numbers of nodes by varying the number of tasks. We obtain a minimum average
response time gain of 12.75% and a maximum of 16.46% with an overall average of 14.29%.



Table 4: Waiting time for jobs evolution

PSE  ASE
100 100

PSE  ASE
- o

Process Latency Performance

=t

PSE  ASE
500 500

ey

Plateforms Number of submitted tasks

Nodes | Measure | 6000 | 7000 | 8000 | 9000 | 10000
PSE 3478 | 35.18 | 35.58 | 35.97 | 36.36
100 ASE 18.03 | 16.62 | 19.39 | 16.86 | 20.73
Gain 48,17 | 52,75 | 45,5 | 53,12 | 42,98
PSE 35.48 | 36.38 | 37.32 | 38.23 | 39.20
300 ASE 19.32 | 16.95 | 16.79 | 17.55 | 18.73
Gain 45,56 | 53,41 | 55,02 | 54,09 | 52,22
PSE 25.03 | 25.84 | 26.65 | 27.47 | 35.48
500 ASE 1525 | 13.66 | 13.11 | 13.23 | 16.08
Gain 39,09 | 47,14 | 50,82 | 51,83 | 54,69
PSE 19.34 | 20.11 | 20.87 | 21.64 | 22.41
1000 ASE 12.88 | 12.17 | 11.80 | 11.25 | 10.57
Gain 33,4 | 39,47 | 43,46 | 48,02 | 52,82

Tasks number

100

. I P e --a= 6000

Fig. 8. Process Latency according tasks number variation.

From the different observations above, we can confirm that CLOAK-Reduce load balancing
strategy certainly presents better results with respect to the three performance indicators that were
the subject of this study. However, the irregularity of the time saving as a function of the number
of nodes and tasks may be due to underloaded or even inactive nodes as the tasks are submitted

according to a principle described in 3.1.1.




Table 5: Running time evolution

Plateforms Number of submitted tasks

Nodes | Measure | 6000 | 7000 | 8000 | 9000 | 10000
PSE 4.51 4.68 | 4.85 5.03 5.20

100 ASE 431 4.17 | 4.10 | 4.22 4.32

Gain 4,51 | 10,97 | 1544 | 1597 | 16,88
PSE 14.83 | 1596 | 16.97 | 17.99 | 19.01
300 ASE 12.63 | 13.52 | 13.98 | 14.86 | 15.75
Gain 14,83 | 15,28 | 17,61 | 17,4 | 17,16
PSE 12.11 | 13.02 | 13.92 | 14.84 | 15.79
500 ASE 10.64 | 11.19 | 11.87 | 12.72 | 13.28
Gain 12,11 | 14,1 | 14,776 | 14,3 | 15,92
PSE 9.93 | 10.80 | 11.68 | 12.61 | 13.52
1000 ASE 894 | 9.33 9.97 | 10.79 | 11.35
Gain 9,93 | 13,62 | 14,67 | 14,37 | 16,02

Tasks number

Lifetime

10,00 P il ol T -

= —

PSE  ASE PSE ASE PSE  ASE PSE  ASE
100 100 300 300 500 500 1000 1000

- — — o— 5000
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Fig. 9. Mean Running Time according tasks number variation

4 Conclusions and perspectives

This paper presented a new load balancing and task scheduling strategy for the CLOAK DHT. It
proposed a hybrid hierarchical and decentralised load balancing model. The simulation results show
an overall improvement of our three performance indicators. It confirms our theoretical approach re-
garding the load balancing strategy between multiple JobManagers in charge of job submission and
their circular replicas (candidate JobManagers) or even JobManagers of the same scheduler. Further-
more, inter-Scheduler load balancing gives the privilege of balancing between Schedulers and not a
global balancing of the whole system. The queue role assigned to the level O node. This removal of
the root in our load balancing strategy improves the balancing performance of the CLOAK DHT.

In perspective, we will perform simulations to highlight its performance in our CLOAK-Reduce
model. Then we will conduct a comparative study with distributed processing architectures using



tree structures.
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