
Towards a plant pathologies detection solution

Abou SANOU1, Jean Serge Dimitri OUATTARA2, Didier BASSOLE3, Abdoulaye SERE4, and Yaya TRAORE5

{aboudra1996@gmail.com1, jean.ouattara@ujkz.bf2, dbassole@gmail.com3 }

Université Nazi BONI 1, Université Joseph KI-ZERBO 2, Université Joseph KI-ZERBO 3.

Abstract. Agriculture is very important in Africa. But farmers are dealing with many plants
pathologies that keep agriculture from developing and boosting the economy. Current pathologies
diagnosis based on human screening is time consuming and expensive, while computer vision-
based models are efficiently promising.That is why we address the problem of identification of the
pathologies affecting agricultural crops with computer vision tools. Though the high variability
of symptoms due to the age of infected tissues, genetic differences, and light conditions in trees
reduces the precision of detection, we propose a method to achieve our goal.

Keywords: Plant pathologies, Computer vision, EfficientNet, ResNet, Deep Learning

1 Introduction

The problem we are dealing with is the lag time in the diagnosis of plants pathologies. These
pathologies can jeopardise crops and soil health if they are not detected early. Our challenge is to
create a model that could detect pathologies from images of plants leaves. We use an existing dataset
containing images of healthy and well-labelled infected leaves. The dataset consider 3 categories of
leaves : two with diseases (rust, scab) and one healthy. Our goal is to classify in an accurate way the
images of the leaves in one or multiple categories of diseases. Indeed one leave can have multiple
diseases and our model must be able to detect this kind of situation.

2 Preliminaries

Before any formal analysis of the data, we have to know the number of items and the variables
in the data set, the number of missing observations and the general assumptions the data suggest.
To answer these questions, an initial exploration of the dataset will allows us to become familiar
with the data that will handle. Data exploration or data description is a very important phase in any
machine learning project. This step allows us to get more details about the dataset which we will be
used to train our model.

We got the dataset from kaggle [1]. The database folder consists of 3642 images in jpg format.
Each image is in 2048 pixels * 1365 pixels with 3 channels(RGB). Added to these images, there are
three others files.

JRI 2021, November 11-13, Bobo-Dioulasso, Burkina Faso
Copyright © 2022 EAI
DOI 10.4108/eai.11-11-2021.2317975



• sample_submission.csv: this is the sample for the submission. We will start by simply looking
at a few random samples.

• train.csv: this file contains the training set with its labels. We will use it during the training of
the model.

• test.csv: this file will contains the test set.

After describing the files which constituted the dataset, we will explore it through statistical metrics.
Let’s start with the distribution of the dataset row (image) over the classes. To sum up this

information let’s draw a pie chart 1

Fig. 1. Distribution of items in categories

The number of photos is quite similar for each target, unless for multiple diseases class.



Fig. 2. Distribution of items in: Diseases or healthy

According to the plot 2, this dataset is pretty balanced.

Fig. 3. Distribution of item in RGB



Let’s explore the color distribution of images refers to figure 3:
Now, let see the distribution on the histogram, the distribution of color channel 4 :

Fig. 4. Distribution of color:

We can notice that the color distribution shape for each channel is quite similar with some
shifts. Of course the green one is the most prominent due to the dominance of the green colour
of the leaves. From this point, we can suppose that the model classifying process may rely on this
distribution. After the exploration of the data we will go on to the preparation of the data in order to
make it easy for the extraction of knowledge on the model.

2.0.1 Data pre-processing :

it is the concept aiming to slightly modify the original database in order to make it clean. A
clean database allows a more exhaustive learning and prevents more overfitting[2]. The different
techniques used in data augmentation and preparation have to rely on the specific application needs.
In the context of computer vision, we speak about image preparation. There are several techniques
coming from the potential, pictures environment related, image distortion. These can be due to the
diversity of devices leading to different processing of the the same captured picture. Weather con-
ditions or the point of view that the photograph has chosen for his pictures can also influence the
picture. The image pre-processing techniques aim to to simulate those diverging behaviours.

This is a crucial part for our study. Indeed, performing Image classification implies dealing
with high dimensions data. So in order to facilitate the training of the data in this crucial context, we



have to prepare images. We use the following process :
Canny edge detection is an edge detection algorithm as noticed by its name. It was created by

John F. Canny in 1986. The algorithm involves in several steps.

• Noise reduction: Since edge detection is susceptible to noise in an image, we remove the
noise in the image using a 5x5 Gaussian filter[3]. So recall the Gaussian function in one
dimension also call function of density:

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

Let’s assume that sigma is the standard deviation of the distribution (in our case of image).
The distribution is assumed to have a mean of 0. More simply will reduce the range of the
dataset around the mean 0; with the standard or (ecart-type) 1. Let’s notice that as well as
standard deviation is large the range of the distribution will be large. In our case we will use
the gaussian function on two dimensions as following :

P(x,y) =
1

σ
√

2π
e
−(x2+y2)

/
2σ2

Now let’s see how we are going to apply this distribution on our dataset or more clearly how
to bring back our distribution in normal distribution. Firstly we have to compute the standard
deviation and mean of each dimension of distribution of the images. After that, for each value
we can do the values minus the mean in order to get the mean of the distribution to 0. And
we have to divide the result value with the standard of derivation in order to get the standard
of derivation to 1. With these metrics we can define the Gaussian functions in the image field
this function is a kernel or matrix. After getting a Gaussian kernel which is a matrix, we have
to apply convolution operation between the kernel and each image or each channel of image.

• Finding Intensity Gradient of the Image [4]: First, the gradient in computer vision is the
directional change in image if we loop on coordinate. Now we have to compute edge gradient
and Angle of gradient. Let consider the image I represented in a matrix, the gradient in the
pixel with the coordinates x=c and y=r can be compute as follows :

dx = I(c+1,r)− I(c−1,r) dy = I(c,r+1)− I(c,r−1) (1)

This means calculating the partial derivative of the function represented in our case by the
matrix. I(x,y) is a luminosity in one channel The gradient magnitude is how strong is the
change of the luminosity if we can position it in image. To find the Intensity Gradient of the
Image, we need two metric : The gradient orientation and the Edge Gradient. The gradient
orientation is computed as followed :

θ = tanh−1 (dx2 +dy2) (2)

The magnitude or edge gradient equals :

Magnitude =
√

(dx2 +dy2) (3)



• Rounding : The gradient is always perpendicular to edges. So, it is rounded to one of the
four angles representing vertical, horizontal and two diagonal directions.

• Non-maximum suppression : After getting the gradient magnitude and direction, a full scan
of the image is done to remove any unwanted pixels which may not constitute the edge. For
this, we check every pixel for being a local maximum in its neighborhood in the direction of
the gradient.

• Hysteresis Thresholding: This stage decides which parts are edges and which are not. For
this, we need two threshold values, minVal and maxVal. Any edges with intensity gradient
greater than maxVal are considered edges and those lesser than minVal are considered non-
edges, and discarded. Those who lie between these two thresholds are classified edges or non-
edges based on their neighborhood. If they are near “sure-edge” pixels, they are considered
edges, and otherwise, they are discarded.

(a) Original Image

(b) Image Cropped with canny edge detection

The result of these five steps is a two-dimensional binary map (0 or 255) indicating the location
of edges on the image. With this method we reduce the size of the image to focus only on the leaf.
We cropped the Image as we can see on the following screen.

Flipping is a simple transformation that involves index switching on image channels. In vertical
flipping, the order of the lines is exchanged. In vertical flipping, the order of the lines is exchanged.
Let’s assume that "long" and the "lag" is the size of the In order to perform the horizontal flipping



the pixel (x, y) will be situated at coordinate (long - x + 1, y) in the new image.
The figure 6 illustrates as well as possible the flipping operation.

• Horizontal Flip :
HorizontalFlip : Ai j = Ai(long+1− j) (4)

• Vertical Flipping :
HorizontalFlip : Ai j = A(lag+1−i) j (5)

(a) Original Image

(b) Image flipped

Fig. 6. Illustration of Flipping

Gaussian blur and Compression : As we know that sometimes the image quality taken for
prediction can be a bad one, we have to consider the quality of this image by making our model
more robust. Blurring is simply the addition of noise to the image, resulting in a less-clear image.
The noise can be sampled from any distribution of choice, as long as the main content in the image
does not become invisible. Only the minor details get obfuscated due to blurring. We can also use
the image compression algorithms in order to decrease the image quality, in view to make the mode
The following image is set to 90% jpeg compression. To illustrate this operation in simply way, let’s
checkout the figure. 7



(a) Original Image

(b) Compressed Image

Fig. 7. Illustration of compression 10%

3 Method:

In order to choose the most efficient model for our task of classification, we have decided to
collect different benchmarks over recent papers which perform image classification in general and
more precisely which perform plant pathology’s detection tasks. In view of the constraints of the do-
main due to the low power of the device which will host this model, we have to find the most efficient
model which requires less memory space and computation power. To reach our goal, we read the fol-
lowing articles : [5], https://paperswithcode.com/task/image-classification
[6]. The resources present in a synthetic way the benchmarks on many state of art. Through these
papers and benchmarks, we keep on our notebook the following models: ResNet, and EfficientNet.
Before diving deep into these models let’s notice that in order to gain efficiency, we will train these
models in transfer learning context. Transfer Learning is the ability to reuse an trained model to
solve other problems. The main purpose of Transfer learning is efficiency during training. It has
been proven that training a model from scratch is more expensive than training a model from a
pre-training model. In our case, our model was pre-trained on http://www.image-net.org/
dataset. Let talk about the selected models :

3.1 ResNet :

ResNet stands for Residual network. This model appears in response to the gradient vanishing
problem[10] in Convolution Neural Network with a large depth. Let explain the context of apparition



of this model. In the past to increase accuracy of image classification tasks, the basic approach was
to scaling up the model. By adding more layers of convolution to the model or make greater the
width of the network. The following schema 8 will explain different kinds of scaling up of network.

Fig. 8. Illustration of scaling of Deep Neural Network : from [7]

But in this way, we need more and more power to compute the weights of this kind of network.
After a long time spent scaling up a single dimension at the same time(either channel, either width
either depth) of the networks in order to improve the accuracy of classification, a main problem has
been observed. This problem is the gradient vanishing problem [8]. As more layers using certain
activation functions are added to neural networks, the gradients of the loss function approaches zero,
making the network hard to train. Some activation functions, such as the sigmoid function, compress
a large input space into a small input space between 0 and 1, so a large change in the sigmoid function
input will result in a small change in the output. Consequently, the derivative becomes small. For a
shallow network with only a few layers using these activation’s function, this is not a big problem.
However, when multiple layers are used, the gradient can be too shallow for the training to perform
well. The gradients of the neural networks are determined using back-propagation. In very simple
terms, back-propagation is used to find network derivatives by moving layer by layer from the top
layer to the bottom layer. According to the chain rule, the derivatives of each layer are multiplied in



the network (from the final layer to the initial layer) to calculate the derivatives of the initial layers.
However, when n hidden layers use an activation like the sigmoid function, n small derivatives are
multiplied together. Thus, the gradient decreases exponentially as we propagate down to the initial
layers. A small gradient means that the weights and biases of the initial layers will not be updated
effectively with each training. As these initial layers are often crucial in recognising the essential
elements of the input data, this can lead to an overall inaccuracy of the entire network.

• The simplest solution is to use other activation functions, such as ReLU, which does not cause
a small derivative.

• Also, batch normalization layers can fix the issue. The problem is occurred when a large range
of input is mapped to a tiny one. Batch normalization reduces this problem by normalizing
the input.

• Another solution is the Residual network. It is characterized by the residual connections
straight to earlier layers. The residual connection directly adds the value at the beginning of
the block, to the end of the block (F(x)+x). This residual link does not go through activation
functions that "overwrite" the derivatives, resulting in a higher overall derivative of the block.

In view of these problems, we saw the creation of a new network called Residual neural network (
ResNet ) . The following figure 9 sums up the new approach :

Fig. 9. Resnet Minimum architecture:from [9]



The main idea of the ResNet is from Cortex visual of the Human. In fact they added the high-
way to the architecture. This highway (having the identity function on the input) will “amplify” the
output change according to the input change. In the ResNet context of scaling up CNNs, many vari-
ants have been created. To scale up the ResNet architecture we have to add more layers. For instance
From ResNet-18 to ResNet-200, we add more layers. The obtained network will be more accurate
if we can train it. Now let’s explain our own resnet model. We use ResNet-50. As mentioned in his
name it uses 50 layers. Now that our ResNet model has 23,858,500 parameters, 23,805,380 Train-
able parameters and non-trainable parameters: 53,120. On the top of this ResNet-50 we add one
layer of GlobalAveragePooling2D, another of 128 neurons with relu function for activation, another
one of 64 neurons with relu activation and the last one with 4 neurons with softmax activation to get
the output like a probability. The optimizer which we have used is the Adam optimizer. The results
that we got will be presented in the result section of the document.

3.2 EfficientNet :

Once the gradient vanishing problem was solved with the ResNet architecture, we noticed that
there is no formal way to scale up the network. In fact there is no formal way to choose which
dimension (width, depth or Resolution) scales in which distribution in order to increase the accuracy
and minimize the cost (computational cost, memory cost). Although we succeeded in training these
models, we can see that the accuracy will be saturated after a certain level of scaling. As shown in
the following figure 10.

Fig. 10. Accuracy over scaling on one dimension:from [7]

Let’s notice that with w = 5.0 (scaling on one dimension width) they got the saturation of
accuracy. With d=8.0 (scaling on one dimension width) we also get the saturation of accuracy and
with r=2.5 we get the saturation of accuracy. But the researchers noticed that in the following schema
with depth= 2.0 and r=1.3 the saturation event didn’t occurred.



Fig. 11. Impact on accuracy over scaling on multiple dimensions:from [7]

Each dot is a model with different width. Where here, they conclude that the right solution can
be scaling up the network on multiple dimensions (depth and resolution). The previous problems
or situations caused the creation of the new approach or technique of scaling up the network on
multiple dimensions. This technique (model) rethinks the way that we scale CNNs up. In addition,
this new technique has posed certain constraints to be satisfied.

• maximize the model accuracy for any given resource constraints.

• To systematically study model scaling and balance the network depth, width and resolution.

In more formal way : with the model N, the objective function will be

Fig. 12. Objective function :from [7]



With the following constraints:

Fig. 13. Constraints of equations: from [7]

To solve this problem EfficientNet proposes the Compound scaling method. This scaling
method tries to balance dimensions of width/depth/resolution by scaling with a constant ratio. Let’s
notice that this new approach uses an existing architecture and propose a way to efficiently scale up
this one with a Compound scaling method. This new approach states that :

2n more computational resources implies an + bn + c2 additional dimensions on the model.
The coefficient a, b and c are constants determined by a small GRID SEARCH on the original

small model. Let’s notice that an is the additional value to the depth dimension of the model , bn

is the additional value to the width dimension of the model and cn is the additional value to the
resolution dimension of the model. The following equation allows to get the different coefficients :

a+b2 + c2 ≈ 2 (6)

from the original paper that is formulated as following : Thanks to this new way, the researchers
realized the best accuracy with less parameters (less resources). As we can show on the following
figure 14 from original paper.



Fig. 14. Gain of performance on different models: from [7]

We can show on the first row, with EfficientNet-B0 there are 5.3M parameters and they got as
accuracy 77.1% and with ResNet-50 there are 26M and they got as accuracy 76.0 %. The gain of
the performance here is awesome.

We have used EfficientNetB7 adding GlobalAveragePooling layer, 3 Dense layer as following
:

• dense3 (Dense): with the following shape (None, 128) and parameters 327808

• dense4 (Dense): with the following shape (None, 64) and parameters 8256

• dense5 (Dense): with the following shape (None, 4) and parameters 260

The explaining of the adding layer is about under-fitting avoiding strategic. In fact, according
to the high dimension of the data, we add these layer to allow to the model to get more knowledge
from data. And the last layer is about the the numbers of output class for the classification problem.

We coupled this model with Self-Training Noisy student [10]. This technique allows us to
improve the accuracy of the model.



4 Simulation and discussion

4.1 Result

In this section we will present the result of our study. We start with accuracy and Epochs plot
in order to show how the accuracy will increase over the time.

Fig. 15. Dense Accuracy Plot over epochs

This plot 15 shows the convergence of the average. We got 0.97 as accuracy on the training
set and the 0.93 on the test set. With this last one we can see easily that the model works well on the



training than the training set. Obviously this is normal. Our DenseNet is a standard CNNs.

Fig. 16. Dense Loss Plot over epochs

This plot 16 shows the evolution of the loss value over the time. Obviously the loss converges
to 0 over contrary the accuracy.



Fig. 17. Dense Accurate with filter Plot over epochs

In this Network we add more filter in image in order to decrease the quality of this ones and we
train our dense with them. This manipulation is done in order to make the model more robust. The
figure 17 shows the accuracy gotten.



Fig. 18. Dense Loss with filter Plot over epochs

This is the plot 18 distribution over the epochs with the filter applied in the DenseNEt



Fig. 19. Resnet Accuracy with filter Plot over epochs

This plot 19 shows the distribution of the accuracy of the epoch with res-net. Obviously we
can notice this network make a lot of time before to converge in a test set. This is due to the effect
of the filter on the training set and also we didn’t apply these filters on the test set.



Fig. 20. EfficientNet Accuracy with filter Plot over epochs

This plot 20 shows the performance of the EfficientNet on this Dataset. As specified previously,
we have used EfficienNet-B7. We got a couple of the issues due the size of this network. We fixed
it, and we got as the accuracy 0.91 on the training set and 0.7 on the test set. We stop training
because we got the stack-overflow on Server. But fro, kaggle and others resources; EfficientNet is
the suitable network for this task.



Fig. 21. EfficientNet Loss with filter Plot over epochs

This plot represents the loss distribution of the EfficientNet-B7 on our dataset



Fig. 22. Learning rate distribution over epochs

4.2 Conclusion and Perspectives

Form different papers on the Plant pathology detection with Deep Learning that we browsed,
the most efficient model was the EfficientNet. But after long time on the subject with this dataset, we
can say that DenseNet (simple CNN) is more suitable for this specify dataset than the others models.
From This result, we can interpret that our dataset is not enough large, and our test server is not



powerful enough to train the ResNet and EfficientNet to beat the DenseNet. Given the performance
of our model on the training and test data, you can also be sure that we are not in an overfitting or
underfitting situation.

In order to be able to run this project, you can see my code at this link : https://github.
com/AbouOpenSource/plantPathology/

The perspectives of this article are numerous. Once the model have gotten a stable architecture,
we have to think about some mistakes linked to the production of this model. In fact, we have to
solve the problem that is characterized by the absence of one or more classes during the training
phase, but they are present during the test or production phase. More precisely, this problem is
characterized by the fact that once put in production our model can be used to predict on diseases
that it has never seen. To this end, we must implement strategies to better manage these situations.
This problem is known as zero-shot learning [11]. The next step once zero-shot learning handled
will be the thinking of the architecture of software. The next step would be to think about a software
architecture in order to inter-operate with client applications of any kind



References

[1] Guillian Z. Cornell Initiative for Digital Agriculture (CIDA). none. 2020. Available from:
https://www.kaggle.com/c/plant-pathology-2020-fgvc7.

[2] Ghojogh B, Crowley M. The Theory Behind Overfitting, Cross Validation, Regularization,
Bagging, and Boosting: Tutorial. arXiv. 2019. Available from: https://arxiv.org/
pdf/1905.12787.pdf.

[3] Gaussian Filtering. none. 2012. Available from: https://www.cs.auckland.ac.nz/
courses/compsci373s1c/PatricesLectures.

[4] Edge Detection with Gradients. none. 2020. Available from: https://www.youtube.
com/watch?v=j7r3C-otk-U.

[5] Foundation O. OpenCV Canny. OpenCV Foundation. 2021. Available from:
https://opencv-python-tutroals.readthedocs.io/en/latest/py_
tutorials/py_imgproc/py_canny/py_canny.html.

[6] Das P. THE 5 MOST AMAZING COMPUTER VISION TECHNIQUES TO LEARN.
analyticsinsight. 2020. Available from: https://www.analyticsinsight.net/
the-5-most-amazing-computer-vision-techniques-to-learn/.

[7] Tan M, Le QV. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
arXiv. 2019. Available from: http://arxiv.org/abs/1905.11946.

[8] Wang CF. The Vanishing Gradient Problem. medium.
2019. Available from: https://towardsdatascience.com/
the-vanishing-gradient-problem-69bf08b15484.

[9] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv. 2015.
Available from: https://arxiv.org/pdf/1512.03385.pdf.

[10] Xie Q, Luong MT, Hovy E, V Q. Self-training with Noisy Student improves ImageNet classi-
fication. arXiv. 2020. Available from: https://arxiv.org/pdf/1911.04252.pdf.

[11] Cacheux YL, Borgne HL, Crucianu M. Zero-shot Learning with Deep Neural Networks for
Object Recognition. arXiv. 2021. Available from: https://arxiv.org/pdf/2102.
03137.pdf.


