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Abstract. A soil inspection provides information on the soil's fertility, an important 
starting point for determining soil fertility. Therefore, soil quality determination is essential 

in agricultural systems before planting. Image processing techniques associated with the 

computer vision model are widely used today, having applications in many branches of 

agriculture, closely related to technologies used in precision farming. This research aims 
to created an accurate model in image processing approaches for checking and categorizing 

soil quality based on external data detection. The visible and invisible strategies gathered 

using spectral technology were used to identify the exterior texture (computer vision). The 

Grey Level Co-occurrence Matrix (GLCM) approach was used to analyze picture texture, 
and then the Support Vector Machines (SVMs) method was used for classification. This 

study demonstrated that the model is an effective technique for evaluating soil moisture. 

Since the concealed texture features are not visible to the human eye, the experiment also 

shows that the invisible channels have promise in the classification model. 
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1 Introduction 

Agriculture is one of the most critical things in the world, including a strategic role in the growth 

of humankind. The essentials to grow harvest productivity, soil quality problems, or soil 

moisture handling has shown the use of modern farming approaches. Therefore, soil moisture 

is essential in agriculture, and plants may perish if there is a water deficit or oversupply. At the 

same time, this data is influenced by various external causes, most notably weather and climate 

change. That is why understanding the most effective methods for assessing soil moisture 

content is critical task. Even contemporary farmers have alternatives for monitoring soil 

moisture, such as sensors and sensing exterior textures. 

In recent years, it has reported several benefits in image processing techniques related to soil, 

food assessments, and classifications. The image processing approach associated with computer 

vision and hyperspectral cameras has been widely chosen in the agricultural sector, especially 
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in soil moisture inspection to obtain quality grades [1-3], because they have excellent prospects 

and are very useful [2]. This technique is also straightforward to use and has a rapid inspection 

rate. The soil moisture, such as water strain, water fluctuations, and surface displacement or soil 

displacement field, is measured using instrumentation [10], and the water rate in the soil is 

calculated using an image processing approach. The proposed model is light speckle 

autocorrelation and observed membrane [3]. Black and white color imaging techniques are 

executed to decide the residue cover over the soil surface, and wavelength and filters are 

identified. They claim that imaging methodology proposed success in replacing human 

investigating fields [4][12][14].  

Additionally, one inspection method used to estimate the water level of fruits and vegetables 

kept in various packing materials is hyperspectral imaging. The prediction maps, which display 

the model performance at the pixel level, were created from hyperspectral data. The study's 

findings demonstrate that hyperspectral imaging can be used to assess how various packing 

methods affect the water content of fruits and vegetables. Without touching the materials, the 

procedure allowed for a color examination duration of under a minute [7][17]. 

Next, the soil moisture is objectively evaluated in an investigation employing surface analysis 

based on curvelet transform. This examination stated that curvelet transforms textural 

components giving potential senses to estimate the water content of the soil [1-3]. The images 

were produced using a Charge Coupled Devices (CCD) coloring camera, and the investigation 

examined exterior textures. Furthermore, nearly earlier studies above indicated that surface 

image examination to quantify external texture differences from images is possible [9][14] 

because the image surface meditates the changes in intensity pixel significances, which may 

include information about the coloring and electromagnetic range of entities [6][9]. However, 

most of the techniques described above were designed to detect images exclusively from the 

visible range/spectrum (VS), such as RGB. Therefore that the whole variousness 

(heterogeneous) of colorings and surfaces is invisible, it will be challenging to apply [5,6] 

[14].On the other hand, it has been noted in several earlier investigations that the Near Infrared 

Spectroscopy (NIRS) technology used for the image processing approach still needs to be fully 

developed and faultless [4][9]. Moreover, the NIRS includes red-edge (invisible channel), an 

exciting technique introduced to visible range images to address the issue of image processing 

techniques on the RGB procedure [4,5]. The method, often known as a combination of visible 

and invisible channels, addresses challenges with image processing approach, such as 

restoration, augmentation, and identifying unseen pixels or concealed color texture [9]. 

Therefore, the initial goal of this work was to: first, investigate the features of soil moisture 

employing visible and invisible spectrum (channel), including image processing approaches 

such as image acquisition, image segmentation, and image feature extraction; second, use the 

Support Vector Machines (SVMs) method to classify soil moisture based on available water on 

the soil. 



 

 

 

 

2 Data and Methodology 

2.2 Data 

The imaging contracted with the camera includes red, green, and blue (RGB) colors (visible) 

and channels infrared/IR (invisible). This combination aims to obtain global features for 

distortion-free images, including narrow bars of green, red, and blue for RGB images. The 

process is aligned with all visible and invisible images of the image pixels [6] [9]. The image 

was taken on both channels (visible and invisible) at the same time through the different optical 

paths with the aim for providing a distinct partition of the hidden and visible parts into five 

separate channelers, i.e., red (668 nm center, 10 nm bandwidth), green (560 nm center, 20 nm 

bandwidth), blue (475 nm center, 20 nm bandwidth), and IR (840 nm center, 40 nm bandwidth). 

 

Fig. 1. Framework of experimental setup. 

Next, the examination was carried out on two types of soil samples, i.e., andosol and alluvial 

soils, collected from Samosir Island, Indonesia. The maximum water content of the two types 

of soils is 45% due to all the available pore space on the soil having been served with water at 

that value. This soil is directed as being saturated due to the 45% volumetric water range; the 

soil can no longer carry water [17]. Additionally, to prevent the impact the numerous 

environmental elements, such as air movement and relative humidity, as well as the properties 

of the soil itself, which affect the swiftness at which water will permeate the soil,  the soil were 

kept constant at 30 degrees temperature room. Next, the soil was put in front of the camera at 

the same spot and direction when taking pictures. A homogeneous lighting system and at 45 cm 

distance between the camera and the object were also maintained. In this work, for the first step, 

for every two types of soil, five images were taken at zero (0) hours, and in the next step, for 

every two types of soil, the five images were taken in each period, i.e., six hours, twelve hours, 

and twenty-four hours. 

 



 

 

 

 

2.2 Methodology 

Figure 1 shows the experimental procedure to examine the soil moisture. In the first step, the 

camera took images of two soil samples, and we next performed an image segmentation to 

remove avoided regions. Then an image acquisition technique employing the GLCM method 

was conducted by MATLAB Software (ver. R2019)., i.e., spectral data production and analysis. 

Finally, it is to classify the rate of moisture in each type of soil using the Support Vector 

Machines (SVMs) approach. 

 

2.2.1 Image Segmentation 

Since the picture contains an environment with pixels or textures representing an image's 

undesirable area, separating unwanted regions (background) from the scope of the appealing 

texture is required [15]. Generally, there are several processes termed image segmentation, and 

different techniques can be used, like edge-based segmentation (cropping), threshold-based 

segmentation, and color-based segmentation [6][8][13]. However, many previous studies 

suggested the segmentation technique is one model that is very easy to use and can improve 

promising results in the data analysis process.  

Therefore, in this experiment, the cropping segmentation technique is utilized for the separate 

parts or sections of images, as illustrated in Figure 1. We next performed the texture and 

characteristics analysis, then the undesirable regions (background) of the picture were extracted, 

and the pixel (surface feature) value was black color (#0000) [15]. It represents the cropping 

segmentation technique that dramatically decreases the portion of data and filters out ineffective 

information while keeping the critical element of consistency features in the good parts [13,14]. 

2.2.2 Extraction of Texture Images 

This work used the Gray-Level Co-occurrence matrix (GLCM) method for texture analysis. 

Gray-Level Co-occurrence matrix (GLCM) is an image texture analysis approach that denotes 

the association between two adjacent pixels with grayscale intensity, distance, and angle. Eight 

angles can be determined in GLCM, including angles 0 degrees, 45 degrees, 90 degrees, 135 

degrees, 180 degrees, 225 degrees, 270 degrees, or 315 degrees. GLCM uses a two-dimensional 

matrix with the identical dimension as the number of gray levels in an image, namely a 

quadrangular matrix with specific properties; GLCM can indicate the spatial allocation of gray 

grades using pixels from the nearest neighbors in the surface image [9]. The equation of the co-

occurrence matrix 𝐶𝐶𝑀 = 𝐶(𝐷𝑥,𝐷𝑦)(𝑁,𝑀) as follows [11]. 

 

, where 𝐼(𝑁,𝑀) is an image of length, 𝑁𝑥𝑀 is a location pixel (as a mentioned pixel), and while 

𝐷 = (𝐷𝑥,𝐷𝑦) offset is described as 𝐷𝑥 = 𝐷.𝑐𝑜𝑠(𝜃), 𝐷𝑦 = 𝐷.𝑠𝑖𝑛(𝜃), where 𝜃 is the offset that 

determines the directive of the matrix from the central pixel 𝑛𝑐𝑚𝑐 and D is the space from the 



 

 

 

 

pixel central 𝑛𝑐𝑚𝑐. Therefore, from the co-occurrence matrix 𝐶𝐶𝑀 and individually 𝜃 direction 

above, the contrast, correlation, energy, and homogeneity can be computed in equations (2), (3), 

(4) and (5) as follows [9][11]. 

 

,where i = sum of pixels in the vertical direction, j = is the pixels in the horizontal direction, 𝜇 

is the average of the likelihood matrix and 𝜎 is the standard deviations of the likelihood matrix. 

However, in our proposed approach, we determined just one neighboring pixel D, (D = 1), 

which are four possible spatial relationships (possible directions) as [0 1] for 0 degrees; [-1 1] 

for 45 degrees; [-1 0] for 90 degrees; [-1 -1] for 135 degrees. 

Although the spatial association between two adjacent pixels can be determined in numerous 

methods with various offsets and angles [9], our work uses a default between the pixel and its 

nearest neighbor to its right [9]. We present four potential spatial associations characterized and 

executed, as illustrated in Figure 1. 

 

2.2.3 Classification of the rate soil moisture 

 

In this study, the pixel features i.e., contrast, correlation, energy, and homogeneity, that have 

been obtained from the GLCM method are calculated. Then those spectral feature values, 

including the standard deviation, the average, kurtosis, and skewness, were introduced as 

variables input (independent variables) in the Support Vector Machines (SVMs) method for 

classification. In this scenario SVMs was used to predict moisture in the soil (dependent 

variable) using features (independent variables). The approach was made with a mapping 

function of SVMs classification, which scenario is independent variables to predict the 

dependent variable. In contrast, the mapping function used in the SVMs method is a decision 

boundary that differentiates between two or more classes [18]. 

The SVMs configuration in Weka Software that we used is briefly described here. The class of 

hyperplanes w.x) + b = 0 w ∈ RN, b ∈ R, which correspond to the determination function f(x) = 

sign((w.x) + b), is the foundation for SVMs classifiers. We can demonstrate that the hyperplane 

with the most significant margin of separation between the two categories is the ideal one. The 

actual use establishes the kernel procedure; the adaptation φ(.) is not specified explicitly. The 



 

 

 

 

change φ(.) is determined by a kernel procedure K(xi, xj), and its Eigenfunctions (an idea in 

practical analysis). It can be challenging to create eigen functions explicitly. 

Here we shortly present the SVMs established in Weka Software that we used. SVMs classifiers 

are based on the category of hyperplanes, (w.x) + b = 0 w ∈ RN, b ∈ R, resembling decision 

procedures f(x) = sign((w.x) + b). We can demonstrate that the optimal hyperplane is described 

as the one with the maximal margin of divergence between the two categories. In functional 

use, the establishes the kernel procedure; the change φ(.) is not explicitly declared. Provided a 

kernel procedure K(xi, xj), the change φ(.) is given by its Eigen procedures (an idea in the 

practical investigation). Eigenfunctions can be challenging to produce explicitly. Consequently, 

we define the kernel procedure without considering the precise adaptation. Thus, the Radial 

Basis Function (RBF) Network was used as the kernel procedure in this work. The hidden and 

output layers have highly different functions in the RBF procedure, and the corresponding 

weights also have quite diverse features. In addition, any of a variety of unsupervised learning 

approaches can be used to train (or set) the input to obscure weights, i.e., the basis procedure 

parameters {𝜇𝑖𝑗, 𝜎𝑗}, in order to apply RBF in SVMs [11][18]. 

Next, we determine the kernel procedure without concern about the actual change. The Radial 

Basis Function (RBF) Network was chosen as the kernel procedure in this work. In the RBF 

function, the hidden and output layers recreate separate roles, and the corresponding weights 

have different meanings and properties. Thus, to use RBF in SVMs, the input to hidden weights 

(i.e., basis function parameters {𝜇𝑖𝑗, 𝜎𝑗} can be designed (or established) using any of a number 

of unsupervised learning approaches [11][18]. The hidden-to-output weights are then learned 

while the input-to-hidden weights are located and kept constant. Since there is only one layer of 

weights {wjk} and only linear output activation procedures used in this second training phase, 

the weights can be efficiently determined analytically by solving a series of linear formulas. So, 

it can be completed fast without needing to perform a series of iterative weight updates, as in 

gradient descent learning [11]. 

3 Results and Discussion 

3.1   Characteristics of Texture Images 

In our approach, image processing techniques that combine visible and invisible channels are 

dependable when particular applications call for non-intrusive and non-contact methods 

(external inspection). To separate the elements consistently and reliably, each sample's 

characteristics are taken from its color vision and grouped for additional examination using the 

GLCM procedure. The GLCM method offers potential parameters for the analysis and 

computation of the fundamental properties of texture features [9]. 

 

To demonstrate the benefit of our suggested model and to catch transitions in surface features 

of the image in between time periods. The elements of the texture feature for visible channelers, 

i.e., blue, green, and red, and invisible channelers, i.e., IR, were analyzed as shown in Figures 2 

and 3. 



 

 

 

 

 
 

Fig. 2. The texture of contrast and correlation values across time periods. 

 

As seen in Figures 2 and 3, there is a tendency for the average values of the texture feature 

contrast, correlation, energy, and homogeneity for visible and invisible categories to change 

over time. Additionally, distinct texture elements could be distinguished, particularly in the 

invisible channelers (IR), which provided excellent contrast values after period changes. These 

findings imply that the method has made it possible to analyze this soil in regions of the infrared 

range that are hidden from the human eye. Therefore, this technique made it possible to 

distinguish soil moisture that is not visual to human eyesight. These results demonstrated the 

necessity of accurately combining data from visible and invisible channelers to witness the 

external change for the two soil types. 



 

 

 

 

 
 

Fig. 3. The texture of energy and homogeneity values across time periods. 

 

3.2   Change Over Time of The Characteristics Texture 

To further our analysis, we compared texture changes from 0 hours to the between period. Next, 

the standard deviation of surface changes between periods was calculated separately for the 

channeler's texture feature. As illustrated in Table 1, for andosol soil in the visible channels, the 

results provided that a more increased value occurs on the contrast and energy texture in the 

green, blue and red channels. While for alluvial soil in the visual media, the contrast and 

correlation texture obtained increased values in the green and red channels. In addition, the more 

elevated value appears on the energy and homogeneity texture for invisible channels for andosol 

soil. Furthermore, a higher value for alluvial soil in the invisible channels also appears on the 

contrast and homogeneity texture. 

 

Therefore, using the GLCM method, we argue that the visible and invisible channel delivers a 

helpful model to detect outer changes science does not see in the human eye, i.e., the IR channel. 

The integration of visible and invisible channels provides a better disparity of soil moisture 

change. So, we concluded that the co-occurrence analysis delivered a significant difference 

between periods for all textural features in both soils, including contrast, correlation, energy, 



 

 

 

 

and homogeneity for five channels (visible and invisible). In addition, the results provided are 

definitive and can potentially categorize soil moisture. 
 

Table 1.  Standard deviation value 

 

Channel 
Contrast Correlation Energy Homogeneity 

Andosol Alluvial Andosol Alluvial Andosol Alluvial Andosol Alluvial 

blue 0.019 0.021 0.032 0.003 0.034 0.023 0.010 0.010 

green 0.032 0.026 0.016 0.021 0.037 0.018 0.021 0.011 

red 0.022 0.038 0.015 0.009 0.052 0.037 0.025 0.013 

IR 0.009 0.034 0.008 0.006 0.026 0.018 0.020 0.010 

 

3.2   Classify The Soil Moisture 

The dataset is tested on two types of soil (andosol and alluvial), and two-dimensional GLCM is 

used, as was mentioned early in Section 2. Each test also had additional requirements, such as 

the minimum region size and the threshold value for the merge operation [9][16]. 

 

Next, soil moisture classification has been performed here with the SVMs method. Then, 

classify soil moisture rate according to period, i.e., ideal, average, fair, low, dry, and too dry. 

Then, we evaluated our proposed model's performance at classifying data using 10 k-fold cross-

validations in the Weka Application and training and testing for subsets of the data. 

 
Table 2. Result performance 

 

Type of Soil 
All 

Channels 

RGB 

Channels 

Invisible 

Channels 

Alluvial  87.43% 79.36% 85.71% 

Andosol 95.35% 87.36% 84.63% 

 

 

The classification of soil moisture performance can be seen in Table 2. As can be seen, all 

channels achieved a classification of alluvial soil moisture of 87.43%, visible channels achieved 

a classification of 79.36%, and invisible channels achieved a higher performance of 85.71%. In 

addition, the classification of soil moisture using andosol soil obtained 95.35% overall, 87.36% 

for visible channels, and 84.63% for invisible channels.  

This shows that the invisible channel successfully located the andosol soil's hidden texture 

features, which are not readily apparent to the human eye. The performance metric of texture 

data (textural elements) that have been acquired from the GLCM approach is calculated then 

those spectral components, including the standard deviation, mean, kurtosis, and skewness 

values were presented as variables input (independent variables) in Support Vector Machines 

(SVMs) method for classification the soil moisture.  



 

 

 

 

For training and testing data for all channels, 250 images data were used. The results were all 

calculated: True Positive Rate (TPR), False Positive Rate (FPR), recall, and precision. Table 3 

shows that for the classification of alluvial soil across all channels, the mean TPR for each type 

was 86.43%, the mean FPR was 3.41%, and the mean recall and precision were 87.62% and 

86.41%, respectively. While the mean per-type true positive rate for the classification of andosol 

soil for all channels was 94.34%, the false positive rate was 1.34%, and the recall and precision 

were 94.50% and 94.34%, respectively. 

 
Table 3 The metric performance  

 

Type soil 

True 

Positive 

Rate (%) 

False 

Positive 

Rate (%) 

Precision 

(%) 

Recall 

(%) 

Andosol 94.34 1.34 94.50 94.34 

Alluvial 86.43 3.41 87.62 86.41 

 

 

Based on the results, we identified all possible channels (both visible and invisible) for 

classifying soil moisture and produced positive classification outcomes. Therefore, as suggested 

by [9], using both visible and invisible channels can enhance the soil moisture category model 

in image processing approaches. 

4 Conclusion  

The gray-level pixels from nearest neighbors (GLCM) in the external surface image can be used 

to identify texture features precisely. The experimental results showed promising performance 

in classifying soil moisture using the Support Vector Machines (SVMs) method for the 

classification model. 

Although the image's texture features can be undetectable utilizing a visual system like RGB, 

they are a fundamental function of visualization techniques. Nevertheless, the context of the 

color investigation should be considered a crucial element when combining visible and invisible 

approaches to correctly interpret the data analysis in image processing techniques. 

The hereafter of image processing approaches involved in soil assessment is favorable, with 

agriculture technology becoming increasingly aware, analyzing, and managing variability in 

domains by conducting yield production practices at a suitable place and duration. This 

proposed model is an essential mechanism for the examination and control of the above 

parameters automatically. Therefore, our future work will be demanded to continue developing 

these approaches, creating a more rugged model that includes online techniques by employing 

a more significant type of soil with more comprehensive verification approaches. 
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