
Generator Scheduling Model for Optimization using

Genetic Algorithm with Multiparent Crossover (Ga-

Mpc)

1stRudi Salman1, 2ndIrfandi2, 3rdArwadi3, 4thSayuti Rahman4

{rudisalman@unimed.ac.id1}

Departement of Electrical Engineering Universitas Negeri Medan, Medan, North Sumatera1,2,3

Department of Information Technology, Universitas Harapan Medan, Medan,North Sumatera4

Abstract. Electric power systems are made and run so that they can meet the

requirements of varying and growing electrical loads. The highest cost in operating an

electric power system is the cost of fuel. For this reason, it is necessary to use optimization

techniques to reduce these costs. Therefore, the optimization problem, namely minimizing

the operating costs of the electric power system, is a significant issue. One of the efforts to

reduce the operating costs of power plants is by optimizing the scheduling of power plants,

in this case, generator scheduling.”Generator scheduling aims to prepare a generator start-

up (ON) and shut-down (OFF) schedule hourly to confer previously estimated load

requirements while meeting specified constraints.”Mathematically, the generator

scheduling optimization problem is a very difficult nonlinear combinatorial optimization

problem. Thus, to resolve this issue, one way can be to use a Genetic Algorithm with

Multiparent Crossover (GA-MPC). A genetic algorithm is a method of random search that

provides optimal solutions to optimization problems.

This study aims to build a generator scheduling optimization model using GA-MPC. The

research was carried out at the Computer Laboratory of the Electrical Engineering

Education Department, using the Matlab software version R2008 as a simulation tool. The

IEEE standard electric power system with 5-Unit System was used for model testing.

The results showed that the generator scheduling model built using GA-MPC for generator

scheduling optimization was successfully carried out. This situation is quite good and

shows that GA-MPC can be implemented for generator scheduling optimization problems.

Keywords: Genetic Algorithm, Optimization, Generator Scheduling, Genetic Algorithm

with Multiparent Crossover

1. Introduction
The electric power system is designed and operated to meet the needs of an increasing

and varying electrical load on an ongoing basis [1]. To meet these load requirements, the

generator units in the system must work in parallel [6]. The biggest cost that an electricity

company must incur in operating a power system is the cost of generating fuel, namely the

generator. So, it is necessary to use optimization techniques to reduce or reduce these costs [9].

Thus, minimizing the power systems operating costs is very important [1]. One way to reduce

power system operating costs is by optimizing power generation schedules, which are referred

to as generator scheduling. Generator scheduling aims to prepare the most economical generator

start-up and shut-down schedule in an hourly time according to the needs of the previously

estimated load and meet constraints that have been set, including minimizing fuel [2].

ICIESC 2022, October 11, Medan, Indonesia
Copyright © 2022 EAI
DOI 10.4108/eai.11-10-2022.2325488

mailto:rudisalman@unimed.ac.id1

The generator scheduling optimization problem is a complex nonlinear combinatorial

optimization problem from a mathematical perspective [1][2][14]. To solve these problems,

several approaches have been taken, namely: a deterministic approach: branch and bound

methods [3], dynamic programming [7], and integer programming [15], but these techniques

require considerable computational time and computer memory. Then heuristic approaches, for

example, dynamic programming modification and, Lagrangian relaxation [10], priority list [13],

have been developed to reduce computational time and search space for solutions. However,

this technique is still far from a globally optimal solution. Next, to get a globally optimal

solution and a suitable computational time, metaheuristic techniques such as Genetic

Algorithms were developed [4]., Simulated Annealing [8] and Particle Swarm Optimization

[16].

 This research focuses on using a Genetic Algorithm to build a power generation

scheduling model. G.A. is a random search technique that is more likely to provide a near-

optimal solution [2]. One of the weaknesses of G.A. is premature convergence, namely the

achievement of local optimum values. This is caused when parent selection is only based on

individual quality, so the best parent genetic information tends to dominate genetic

characteristics in the population or lack diversity. In addition, the chromosome representation

does not change during the crossover process. The crossover operator is the heart of GA [12],

so the crossover operator must be able to exploit the search space information to produce new

offspring.

 Furthermore, offspring distribution should not be very narrow compared to their

parents. This will cause a loss of diversity resulting in local optimum. This is because, on the

other hand, if the distribution is too wide, it will cause the computation time to be slow. Finally,

to produce suitable offspring, exploitation and exploration must be appropriate [5].

1.1. Genetic Algorithm in Scheduling of Generators
 The first step for applying G.A. to the generator scheduling problem is to choose binary

strings (chromosomes) to represent candidate solutions to the problem [16]. In this paper,

chromosomes are created in the following way: if there are n number of generators in an electric

power system. The scheduling period is h hours; then, with the assumption that at every hour, a

certain generator can either be ON or OFF, the chromosomes used to represent the candidate

solutions of the scheduling problem are n x h bits in length.

 In such a chromosome, the first n bits describe the n generators ON-OFF states, a "1"

at the first bit indicates that the first unit is ON at the first hour, while a "0" indicates that the

unit is OFF. In some way, a chromosome of n x habits describes the operation states of n

generators at each hour over the scheduling period of h hours. The binary representation of a

candidate solution is shown below :

Fig.1 The binary representation of generator scheduling problem

 The generators' scheduling problem aims to reduce total production costs over the

scheduling period as much as possible. The creation costs comprise fuel, fire-up, and Shut-

down costs. The sum of the costs associated with each generator is the total cost.

Start-up costs can be divided into two categories. The hot start cost and the cold start cost are

these. The unit's hot start cost is considered if its downtime is less than or equal to its hard star

hour. Otherwise, the cold start of the team is counted.

1.2 Objective function

 The reduction of total costs is the goal of generator scheduling optimization. The

purpose of generator scheduling optimization is to reduce startup and fuel costs :

min 𝑇𝐶 ∑ ∑ (𝐹𝐶𝑖(𝑡) + 𝑆𝐶𝑖(𝑡))𝑛
𝑛=1

𝑡
𝑡=1 (1)

The thermal unit's fuel cost is expressed as a second-order function of each output unit :

𝐹𝐶(𝑡) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖(𝑡) + 𝐶𝑖𝑃𝑖
2(𝑡) (2)

Start-up cost :

𝑆𝐶𝑖(𝑡) = {
𝑆𝐶ℎ−𝑖 ∶ 𝑡𝑖

𝑜𝑓𝑓
≤ 𝑋𝑖

𝑜𝑓𝑓(𝑡) ≤ 𝐻𝑖
𝑜𝑓𝑓

𝑆𝐶𝑐−𝑖 ∶ 𝑋𝑖
𝑜𝑓𝑓(𝑡) > 𝐻𝑖

𝑜𝑓𝑓
 (3)

𝐻𝑖
𝑜𝑓𝑓

= 𝑡𝑖
𝑜𝑓𝑓

+ 𝑐 − 8 − 𝑗𝑎𝑚

1.3. Constraints

 During the optimization process, the following constraints must be met. All committed

units' generated power needs to meet load demand:

𝐷(𝑡) = ∑ 𝑃𝑖
𝑛
𝑖=1 (𝑡) (4)

A sufficient amount of spinning reverse is required to maintain system reliability:

∑ 𝐼𝑖(𝑡) 𝑃𝑖

𝑚𝑎𝑥𝑛
𝑖=1 ≥ 𝐷(𝑡) + 𝑅(𝑡) (5)

The output range of each unit is :

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑖

𝑚𝑎𝑥 (6)

A unit must be committed or decommitted at least once before it can be committed or

decommitted again:

{
𝑡𝑖

𝑜𝑛 ≤ 𝑋𝑖
𝑜𝑛(𝑡)

𝑡𝑖
𝑜𝑓𝑓

≤ 𝑋𝑖
𝑜𝑓𝑓(𝑡)

 (7)

where :

 𝑇𝐶 : Total cost

 𝑖 : Index of unit (i=1,2,3,…,n)

 t : Index of times (t = 1,2,3,…,t)

n : Number of unit

 𝐹𝐶𝑖(𝑡) : Fuel cost of i-th unit

𝐼𝑖(𝑡) : i-th unit status at hour t

𝑆𝐶𝑖(𝑡) : Start-up cost of i-th unit

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 : Fuel cost function coeffisients

𝑃𝑖(𝑡) : Output power of i-th unit at hour t

 𝑃𝑖
𝑚𝑎𝑥 : Maximum output power of i-th unit

 𝑃𝑖
𝑚𝑖𝑛 : Minimum output power of i-th unit

𝐷(𝑡) : Demand power at hour t

𝑅(𝑡) : System reverse at hour t

𝑋𝑖
𝑜𝑛(𝑡) : Duration during which i-th unit is continuously ON

𝑋𝑖
𝑜𝑓𝑓(𝑡) : Duration during which i-th unit is continuously OFF

 𝑡𝑖
𝑜𝑛 : Minimum up time of i-th unit

 𝑡𝑖
𝑜𝑓𝑓

 : Minimum down time of i-th unit

c-8-hour : Cold start hour oh i-th unit

1.4. Genetic Algorithm with Multiparent Crossover “(GA-MPC)”

 In GA-MPC, the initial population's population size (P.S.) is determined at random.

The best m people are selected from an archive pool based on their fitness function and

constraint violations. The best player is selected and placed in the selection pool following a

tournament selection procedure with a size three crossover. For the hybrid activity, with a

crossover rate (cr), for every three crossovers in the determination pool, three posterity are

produced, as portrayed previously. To escape any local minima and reach a better region in the

search space, we employ a diversity operator with a probability of p following the generation of

all offspring. After that, we combine all the offspring with the people from the archive pool, and

the best P.S. people are chosen to form a new population for the next generation[5].

Additionally, to increase diversity, if one person in the population is identical to another, one of

them is moved within the boundary with N (0,5u, 0,25u), u [0,1].
The steps of GA-MPC are follows :

Step 1: Create an initial random population of Population size for generation t = 0. Each

individual's (i) variables must fall within the following range:

𝑥𝑖
𝑗

= 𝐿 + [𝑟𝑎𝑛𝑑 𝑥 (𝑈𝑗 − 𝐿)]

where : rand ε [0,1], 𝐿𝑗 ≤ 𝑥𝑗 ≤ 𝑈𝑗 , 𝑗 = 1,2,3, … , 𝐷

Step 2: The best m people should be saved in the archive pool (A) and sorted by constraint

violations and objective function.

Step 3: Fill the selection pool (which includes all tournament winners) with a tournament

selection with size Three Crossover (randomly 2 or 3). The size of the selection pool ought to

be three times the population size.

Step 4: For each three consecutive individuals, if 𝑢 𝜖 [0,1] < 𝑐𝑟

a) Short these three individuals into” 𝑓(𝑥𝑖) ≤ 𝑓(𝑥𝑖+1) ≤ 𝑓(𝑥𝑥+2)

b) Replace one of the selected individuals with a random individual from the selection pool

if one of them is identical to another.

c) Calculate” “β= 𝑁(𝜇, 𝜎),where 𝜇 = 0.7, "and” 𝜎 = 0.1

d) Generate three offspring (𝑜𝑖) ∶
𝑜1 = 𝑥1 + [𝛽 𝑥 (𝑥2 − 𝑥3)]
𝑜2 = 𝑥2 + [𝛽 𝑥 (𝑥3 − 𝑥1)]
𝑜3 = 𝑥3 + [𝛽 𝑥 (𝑥1 − 𝑥2)]

Step 5: For each”𝑜𝑖
′𝑗

generate a random number 𝜖 [0,1], If 𝑢 𝜖 [0,1] < 𝑝, then 𝑜𝑖
′𝑗

= 𝑥𝑎𝑟𝑐ℎ
𝑖 ,

where integer arch 𝜖 [1, 𝑚].

Step 6 : If there is more than one individual, then

𝑥𝑖,𝑗𝑘 = 𝑥𝑖,𝑗𝑘 + 𝑁(0,5 𝑥 𝑢, 0,25 ∗ 𝑢), 𝑤ℎ𝑒𝑟𝑒 𝑢 𝜖[0,1]

Step 7: If the criteria for termination are met, stop; else set 𝑡 = 𝑡 + 1 and go to Step 2

1.5 The Diversity Operator

 A diversity operator was developed in [5] to boost population diversity. They were

utilized in this work. The new chromosome is chosen at random by the diversity operator from

the selection pool.

2. Method
 The following is a flowchart for scheduling simulation using a genetic algorithm with

multiparent crossover. From the flowchart, the initial population generation is the first step. The

second step is determining how to fit each individual in the population. The third step is to select

the parent chromosome. The fourth step is to cross and mutate the parent chromosome. Finally,

do the child's chromosomes meet the desired criteria in the fifth step? If yes, the process is

complete. Otherwise, the process will return to the second step.

Fig.2 Generator scheduling flowchart using genetic algorithm with multiparent crossover

3.”Results”
 To minimize total fuel costs, the proposed GA-MPC method is put through its paces

with 5-unit systems. MATLAB R2008 was used to write the proposed code, which runs on a

computer with an i5 core processor running at 2.3 GHz.The number of generations and

chromosomes is thought to be 40 and 200, respectively. The crossover probability (Pc) has lower

and higher values of 0.1 and 0.9, respectively. There are five generators and a load of 259 MW

in the current test system [5]. According to Fig. 2, the GA-MPC is the most affordable option.

Fig.2.Variation in Total Fuel Cost for a 5-unit System Based on Iteration Number

4. Conclusion
 A genetic algorithm with a crossover between multiple parents has been used to solve

generator scheduling optimization. With the help of diversity and multiparent crossover factors,

this algorithm finds the best solutions. On 5-generator systems, the GA-MPC is validated by

minimizing Total Fuel Cost.

References
[1] Agarwal, A and Pal, K, Optimization of Unit Commitment Problem using Genetic Algorithm,

International Journal of System Dynamics Applications 10 (3): July-September, pp.21-37 (2021)

[2] Ali Bukhari, S.B, Ahmad, A., Raza, S.A., Zaki, A, M., Genetic Algorithm Based Generator

Scheduling-A Review, World Applied Sciences Journal 30 (12): pp.1826-1838 (2014)

[3] Chen, C.L. and S.C.Wang., Branch-and-bound scheduling for thermal generating units. IEEE

Transactions on Energy Conversion, 8(2): pp.184-189 (1993).

[4] Dasgupta, D. and D.R. McGregor, Short term unit-commitment using genetic algorithms. Tools

with Artificial Intelligence. Proceedings., Fifth International Conference on, pp: 240-247 (1993).

[5] Elsayed, S.M, R.A. Sarker, D.L. Essam, GA with a New Multi-parent Crossover for Constrained

Optimization, Evolutionary Computation (CEC), IEEE Congress, pp.857–864 (2011).

[6] Joshi, G.K, and Mathur, S, Optimum Scheduling of Generators Using Genetic Algorithm,

International Journal of Computer Science and Network Security, 8 (6), pp.61-66 (2008).

[7] Lowery, P., Generating unit commitment by dynamic programming. IEEE Transactions on Power

Apparatus and Systems,5, pp. 422-426 (1966).

[8] Mantawy, A., Y.L. Magid, A and Selim, S.Z., A simulated annealing algorithm for unit commitment

IEEE Transactions on Power Systems, IEEE Transactions on, 13 (1): pp.197-204 (1998).

[9] Marsudi,D., Operasi Sistem Tenaga Listrik, Balai Penerbit dan Humas ISTN, Bhumi Srengseng

Indah, Jakarta Selatan (1990).

[10] Ongsakul, W. and N. Petcharaks, Unit commitment by enhanced adaptive Lagrangian relaxation.

Power Systems, IEEE Transactions on Power Systems 19(1): pp. 620-628 (2004).

[11] Ouyang, Z. and Shahidehpour, S., An intelligent dynamic programming for unit commitment

application. Power Systems, IEEE Transactions on Power Systems, 6(3): pp.1203-1209 (1991).

[12] Pulluri.,H,et. 2020, Genetic Algorithm with Multiparent Crossover Solution for Economic

Dispatch with Valve Point Loading Effects, Springer Nature Singapore Pte, Ltd (2020).

[13] Senjyu, T., K. Shimabukuro, K. Uezato and T.Funabashi, 2003. A fast technique for unit

commitment problems by extended priority list. IEEE Transactions on Power Systems, 18(2): pp.882-

888 (2003).

[14] Sundararajan., D.Subramanian., B.Subramanian., K and Krishnan., M, Generation scheduling

problem by intelligent genetic algorithm. Computers and Electrical Engineering, 39(1): pp.79-88

(2013).

[15] Takriti, S. and Birge, J.R. Using integer programming to refine Lagrangian-based unit

commitment solutions, IEEE Transactions on Power Systems 15(1): 151-156 (2000).

[16] Wong, Y., K. Cung., T.S. and Tuen., T.W, Genetic Algorithm Approach to Scheduling of

Generator Unit. Proc. of the 5th Int.Conf. on Advance in Power System Control, Operation and

Management, APSCOM, Hongkong (2000).

[17] Zhao, B., C. Guo, B. Bai and Y. Cao, An improved particle swarm optimization algorithm for unit

commitment. International Journal of Electrical Power & Energy Systems, 28(7): pp.482-490 (2006).

