
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Load Balancing Policies of Web Servers: Research

Analysis, Classification and Perspectives

Prabu U1,
*, Malarvizhi N2

, Amudhavel J3
, Sriram R4

 and Ravisasthiri P5

1
Department of CSE, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India, email: uprabu28@gmail.com

2
Department of CSE, IFET College of Engineering, Villupuram, Tamil Nadu, India, email: nmalarvizhi16@gmail.com

3
School of Computer Science and Engineering, VIT Bhopal University, M.P, India, email: info.amudhavel@gmail.com

4
Department of CSE, Rajiv Gandhi College of Engineering and Technology, Pondicherry, email: mail4ramz@gmail.com

5
Department of IT, RAAK College of Engineering and Technology, Pondicherry, email: ravisasthiri.p@gmail.com

Abstract

The usage of the internet has increased rapidly from the past few years. Thus it automatically increases the internet traffic.

In the internet, a web server always responds to the client or web browser's requests. The major feature of a web server is

to be available, scalable and predictable. So the core part to be concentrated is web server load balancing. Load balancing

plays a vital role in allocating the jobs to the web server based on its status. There are various policies available for web

server load balancing. Each of these policies came into existence based on the certain needs. In this paper, we have

examined the latest policies of web server load balancing.

Keywords: Web server, Load balancing, Load balancing policies.

Received on 31 January 2019, accepted on 14 May 2019, published on 10 June 2019

Copyright © U. Prabu et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons

Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any

medium so long as the original work is properly cited.

doi: 10.4108/eai.10-6-2019.159098

*Corresponding author. Email:uprabu28@gmail.com

1. Introduction

A web server is a computer which responds to the clients

or web browsers. The response is in term of the web

pages. A computer can become a web server when

software is installed to it and connected to the internet. In

today's world many software applications available for

web servers. Web server load balancing plays a vital role

in web server farms.

Load balancing is done in two versions namely static

and dynamic. Azar et al., was the first to analyze the static

version of load balancing using balls-and-bins model[1].

Vvedenskaya et al., dynamic version of load balancing

using the dynamic super market model. The dynamic

supermarket model is analyzed beneath under the SQ(d)

policy[2]. To dispatch the jobs uniformly among servers

application delivery controller is used [3].

The major reason for the load balancing of the servers

is to provide scalability, high availability and

predictability. Scalability is defined as the capability of

adapting load dynamically as it increases. This should not

impact the performance. High availability is defined as

the capability of being accessible and available even if

one or more system fails. Predictability is defined as the

capability of assuring and managing that the services are

delivered by considering the performance, availability etc.

[4-6]. DNS round-robin is used before the availability of

load balancing devices. But the disadvantage of DNS

round-robin is that it is not aware whether the server is

working or not. So the needs of the load balancing device

arise. Then the application delivery controller came into

existence. The jobs are dispatched to the server using

application delivery controller.

Message passing paradigm is used to implement the

traditional load balancing policies of web servers.

According to W. Winston[7] by allocating the workload

evenly between servers optimal response time can be

achieved.

Figure 1. demonstrates the load balancing with

distributed dispatchers. Using the Equal-Cost-Multi-

Path(ECMP) algorithm the requests are routed to a

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e7

http://creativecommons.org/licenses/by/3.0/

Prabu U. et al.

2

random dispatcher in a router. The service time of the

requests gets changed based on the amount of the data in

the requests.
Some of the scheduling policies for web server

clusters are Random method, Round Robin algorithm,
Weighted Round Robin algorithm, Shortest Queue
algorithm, Diffusive Load Balancing.

Figure 1.Distributed dispatchers for a cluster of
parallel servers

1.1. Motivation

Web servers are playing a major role in the today’s world.

To concentrate on the load balancing of the web server

has become the major thrust area. There are several

policies available for web server load balancing. Each of

these policies is framed by taking the servers and jobs into

consideration. Some policies may take only the servers

into consideration and perform load balancing process

while others may take jobs. So by extracting these facets

we can have an insight into each of the policies and their

considerations as well. This in turn will help us to grasp

and gather the actual things going on in the web server

farms for balancing the load.

1.2. Contribution

A research analysis on load balancing policies of web

servers is presented in this paper. Web servers are having

a major role in today's internet world. Without these web

servers communication among users through the internet

cannot be imagined. The policies of the web server load

balancing are discussed in depth. To the best of our

understanding, we admit this is the first research analysis

on the load balancing policies of the web servers.

1.3. Organization

The rest of this paper is organized as follows. Section 2
presents Load balancing policies of web server with each
of its advantages and disadvantages. Section 3 has the
discussion part the paper. Section 4 concludes the paper.

2. Load Balancing Policies of Web
Server

2.1. Cooperative Adaptive Symmetrical
Initiated Diffusion

SafiriyuEludiora et al.,[8] proposed a policy for load
balancing. It deals with the unregulated jobs or tasks
relocation among the servers. In the distributed
environment often there is wastage of bandwidth when

there is an unnecessary migration of the jobs.

The major difficulty faced by the load balancing
policies so far is to obtain the exact server for exchange of
jobs. The accomplishment of the load balancing policy is
based fully on the job relocation and bandwidth
minimization. Bandwidth minimization is not considered
as a major issue in the prior works. The job relocation
should be managed when load balancing policies are

deployed. In the Cooperative Adaptive Symmetrical

Initiated Diffusion (CASID) policy, both the sender and
receivers are servers such as web servers and database
servers. Once the communication is established between
servers, job relocation begins. The sending and receiving
servers are identified by the load threshold. The server
agents gather the server status. It consists of methods such
as IDLEServerBehaviour, BUSYServerBehaviour,
registerDFServices, MigrateJobCompleted, jobLoader,
jobLoaderFinishedMigrate, ServerIsIDLE. Job relocation
is carried out by the mobile agents. It consists of methods
such as ServerInteractionBehaviour, registerDFServices.
CASID policy aims to enhance the system throughput and
reduce the response time. The load threshold of the server
is calculated through the queue length. The servers know
each other's status as it broadcasts each other's status. The
beneficial job relocations are only allowed in this policy.
Thus this policy tries to minimize the bandwidth
utilization. The experimental results show that CASID
policy performs better than Platform for Load Balancing
(PLB).

2.2. Join-Idle-Queue

Yi Lu et al.,[9] proposed an algorithm for distributed load
balancing. This distributed load balancing takes place in
large systems. In this algorithm when the job arrives,
there is no overhead between the processors and
dispatchers while they communicate.

The JIQ algorithm is made up of two load balancing

systems namely primary and secondary. The

communication occurs between these two through a queue

called I-queue. An I-queue consists of idle processors.

The dispatchers can access the processors.

2.2.1 Primary Load Balancing
The primary load balancing system utilizes the details of
the idle servers which are in the I-queue. As soon as the
job arrives the dispatcher checks with the I-queue. If the I-

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e7

Load Balancing Policies of Web Servers: Research Analysis, Classification and Perspectives

3

queue consists of idle processors, the dispatcher picks the
earliest idle processor and assigns the job to it. If the I-
queue doesn't consist of idle processors, the dispatcher
assigns the job to any random server. As the processor
finishes the job assigned to it, it joins the I-queue. There is
a challenge that the job arrives the I-queue which doesn't
consists of idle processors but it is not aware of idle
processors in some other I-queue.

2.2.2 Secondary Load Balancing
Based on the load balancing algorithm as the processor
becomes idle, it selects any one of the I-queue and joins it.
In the secondary load balancing, two algorithms in the
reverse directions are considered namely JIQ-Random
and JIQ-SQ(d). JIQ-Random, at random chooses the I-
queue consistently. JIQ-SQ(d), d random I-queues are
chosen by an idle processor. An idle processor then joins
the queue which is of smallest length.

For dynamically scalable web server farms JIQ
algorithm is proposed. JIQ algorithm performs well than
SQ(d) algorithm[10-14]. The performance is observed in
terms of response time. On the critical path there is also
no communication overhead. The complexity of JIQ is
also less than SQ(d). At high load JIQ confirms that it will
be useful.

2.3. Join-The-Shortest Queue

SatheeshAbimannan et al.,[15] proposed an algorithm
to calculate the possible worst case when the job arrives
and joins the shortest queue. The modified power-series
algorithm is used to calculate the fixed queue length.

The servers are considered as homogeneous in the
web server farms. Thus all the servers have the same
service rate. In web server farms, the worst-case of JSQ
routing policy is analyzed. When a new job arrives and
joins the shortest queue it is supposed to be worst case
because the job would have started earlier if it joins other
queue. When the system load is extremely close to 1 in
homogeneous system and if there are more than three
servers, then the possibility of worst case surpasses 12.

2.4. Simulated Annealing Load Spreading
Algorithm

Bas Boone et al.,[16] proposed an algorithm for
autonomous service brokering. The algorithm is named as
Simulated Annealing Load Spreading Algorithm
(SALSA) and it is applied in QoS-aware load balancing.
To decrease the web server's load it balances the requests
and also sometimes drops the requests of the default users
selectively. By doing this, premium customers are
guaranteed with Service Level Agreement(SLA) and
default customers are provided with the best effort. The
intent of SALSA is to ensure that server is not
overloaded, to reduce the average waiting time of all
clients and to reduce the fraction of dropped requests.

Two types of requests are taken into consideration for
modeling the dissimilar user profiles. They are premium

requests and default requests. Premium requests should
not be dropped. Premium clients entail a SLA
guaranteeing. In a SLA guaranteeing the overall waiting
time for a request should be limited to a threshold. Default
clients are served with the best effort and don’t need
arithmetical guarantees. Default requests can be dropped
to make sure that premium requests are served and limited
to a threshold waiting time. As a result, for the acceptable
fraction a compromise should be done between default
client request drop and beyond threshold.

The correctness and performance of the SALSA is
evaluated thrice. The first evaluation is done with
different number of server setups for comparing it's
applicability with other load balancing algorithms. In the
second evaluation mechanism correctness is evaluated in
a extremely controlled simulation environment. The last
evaluation is done through an experimental setup. The
web service broker has to undergo a stress test. The
experimental setup is done to calculate the differences
among SALSA, priority queue and round robin
algorithms.

2.5. An Architecture for Scalable network
file systems

Hsien-Tsung Chang et al.,[17] proposed an
architecture for scalable network file systems. The
architecture is load balanced and fault tolerant. It also
explains about the free space and internal fragmentation
problem which are not concentrated in the Google File
System. The scalable network file system has three design
issues and it is presented here. In small files to reduce the
internal fragmentation a variable number of objects are
used. In the bucket servers to balance the load free space
and load balancing mechanism is used. To decrease the
disk I/O a mechanism is proposed which caches the
accessed data frequently. These mechanisms can
efficiently progress the performance of scalable network
file system. The proposed architecture consists of control
center, bucket servers and NFS(Network File System).
The file structures and directory is maintained by the
control center in the NFS. The file structures are
accumulated in the main memory. There are many
buckets in the file and each file has a bucketID which is
issued by the control center. The bucket servers store the
data of the bucket.

2.5.1 Control Center
Each bucketID's status is monitored by the control

center. When the load imbalances the control center starts
load balancing. Free storage space of each bucket server
is checked by the control center. From the available
bucket server the control center will duplicate the data if it
is less than three. The responsibility is taken by the
standby control center when the actual control center is
crashed.

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e7

4

Table 1. Recent Web Server Load Balancing Policies

Sl.
No

Author Names Paper Title Theme of the Paper Existing Policy
Policy /

Algorithm
Proposed

Advantages Disadvantages

1.
SafiriyuEludiora et
al., (2010)

A Load Balancing
Policy for
Distributed Web
Service

This policy deals with the
unregulated jobs or tasks
relocation among the servers.
The beneficial job relocations
are only allowed in this policy.
This policy tries to minimize the
bandwidth utilization.

Distributed
Dynamic Load
Balancing
Policy(DDLB),
Platform for
Load
Balancing(PLB)

Cooperative
Adaptive
Sym
metrical
Initiated
Diffusion
(CASID)

The experimental results
show that CASID policy
performs better than
Platform for Load
Balancing(PLB).

This policy considers load
balancing within DNS.

2. Yi Lu et al., (2011)

Join-Idle-Queue: A
novel load
balancing algorithm
for dynamically
scalable web
services

JIQ algorithm is proposed For
dynamically scalable web server
farms. The communication
occurs between processor and
dispatcher through a queue
called I-queue. An I-queue
consists of idle processors.

The Power-of -d
(SQ(d))
algorithm, Work
stealing and
work sharing

Join-Idle-
Queue

JIQ algorithm performs well
than SQ(d) algorithm. The
complexity of JIQ is also
less than SQ(d).

Load Balancing is done based
on only the idleness but job size
is not considered.

3.
SatheeshAbimannan
et al., (2010)

Join-The-Shortest
Queue Policy In
Web Server Farms

This algorithm calculates the
possible worst case when the
job arrives and joins the shortest
queue.

A numerically
stable algorithm
for two server
queue models

Join-The-
Shortest
Queue
Policy

Job is assigned to the
queue with the smallest
number of jobs. No
manipulation between
queues is permitted.

This policy focuses only on the
homogeneous systems.

4.
Bas Boone et al.,
(2010)

SALSA: QoS-
aware load
balancing for
autonomous
service brokering

It is an algorithm for
autonomous service brokering.
It is applied in QoS-aware load
balancing.

Round-trip load
balancing
algorithm,
Weighted round-
robin

Simulated
Annealing
Load
Spreading
Algorithm(S
ALSA)

SALSA performs better
than priority queue and
round robin algorithms.

Two types of requests namely
premium requests and default
requests are taken into
consideration and load is
balanced.

5.
Hsien-Tsung Chang
et al., (2014)

Scalable network
file systems with
load balancing and
fault tolerance for
web services

An architecture which is load
balanced and fault tolerant is
proposed. It explains about the
free space and internal
fragmentation problem which
are not concentrated in the
Google File System.

Frangipani’s File
System, xFS,
Minnesota’s
GFS and GPFS

Scalable
network file
systems

The results showed that
the proposed mechanism
improves the performance
of NFS for large web
services.

The bucket sizes used here are
fixed and not variable.

6.
Jianzhe Tai et al.,
(2014)

Load balancing for
cluster systems
under heavy-tailed
and temporal
dependent
workloads

The efficiency of ADAPTLOAD
and JSQ is inherited by ADUS.
According to the current size of
the job ADUS tries to divide it.

Random policy,
AdaptLoad

ADUS

ADUS attains major
performance by balancing
the system load and user
traffic in a cluster.

The algorithm is not able to self-
adjust its parameters to
transient workload conditions

Prabu U. et al.

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e7

5

2.5.2 Bucket Server
In the bucket server, the version number of each

bucket is stored. The data gets synchronized as the bucket
server restarts and contacts the control center. The
hardware information of the bucket server is registered
with the control server when it joins the NFS and a unique
bucket serverID is given to it. A new bucket server can be
easily inserted into the system when additional storage
spaces are required or one bucket server crashes. For a
large storage system, the maintenance time is saved by
this approach. The bucket server supports functions such
as reading, writing and transferring a bucket. To improve
the overall performance the bucket server caches the hot
spot.

2.5.3 Network File System
To provide a standard file access the NFS is combined

with the supported API. This is like a middleware. Since
all the data transmissions happens via NFS, NFS itself
becomes bottleneck.

2.5.4 Experiment

NFS has been setup with sixteen bucket servers and
one center server. Each server runs on Intel Q6600 as
CPU, FreeBSD 6.4 as operating system and 1TB hard
disk. The results showed that the proposed mechanism
improves the performance of NFS for large web services.

2.6. ADUS

Jianzhe Tai et al., proposed ADUS[18] a novel load
balancing policy. The efficiency of ADAPTLOAD[19]
and JSQ[20] is inherited by ADUS. According to the
current size of the job ADUS tries to divide it. Based on
the load, servers are ranked accordingly. ADUS attains
major performance by balancing the system load and user
traffic in a cluster. This is achieved by dispatching same
size jobs to the servers based on their ranks. The small
jobs are always given to less loaded servers.

2.6.1 ADUS Algorithm
1. Initializes the priority list and job size boundaries.

2. When every job completes,

2.1 All the servers are sorted in the non-decreasing
order of system load and priority list is updated

 2.2 Size boundaries are updated such that work is
equally divided into N areas.

3. For each arriving job,

3.1 Based on the job size boundary direct it to server
based on the priority server.

The algorithm is planned to get refined in future where
the window size can self-adjust. It is also planned to apply
this policy to real-time systems such as data centers and
clouds. In large-scaled cluster environments for resource
allocation, it is expected that ADUS will be an efficient
approach.

3. Discussion

From the Table 1, We can deduce that every policy varies

based on the criteria taken into consideration.

SafiriyuEludiora et al.,[5] takes job relocation into

consideration and load balancing occurs inside the DNS.

Yi Lu et al.,[6] considers I-queue and load balancing is

done based on the idleness of the server but the job size is

not taken into account. SatheeshAbimannan et al.,[12]

focuses only on the worst case analysis of job and his

policy considers only the homogeneous systems. Bas

Boone et al.,[13] considers two types of requests for load

balancing but performs better than priority queue and

round robin algorithms. Hsien-Tsung Chang et al.,[14]

presents load balancing of the file system like similar in

google file system. Here the network file system is

considered. Jianzhe Tai et al.,[15] considers the current

size of the job in the clusters but the algorithm is not able

to adjust its parameter of temporary workload conditions.

So here we analyze that there is no policy that takes all

these things into consideration. But all these policies are

resulting good in the experimental evaluations.

4. Conclusion

In this paper, we have discussed about various load

balancing policies and its research perspectives. There are

lot of policies so far in existence for web server load

balancing among which some of them are analyzed.

These policies are framed based on the criteria such as

jobs, job queues, server idleness and load on the server.

But all these criteria were not integrated in a single policy.

Each policy concentrates on either any one of these

criteria and a few more than that. Additional researches

are required on these policies such that each policy

balances the load based on all these criteria which in turn

provides the proper load balancing across the web server

farms. Thus each policy can be extended further which

provides optimization when load balancing process takes

place.

References

[1] Azar, Y. Broder, A. Karlin, A. Upfal, E. (1994) Balanced

allocations. In SIAM Journal on Computing 593–602.

[2] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich

(1996) ,Queueing system with selection of the shortest of

two queues: An asymptotic approach". Probl. Inf. Transm

volume: 32(1) 20–34.

[3] Salchow, KJ (Ken) . Load Balancing 101: The Evolution to

Application Delivery Controllers.

[4] Li M., Sun X., Wang H., Zhang Y. (2009), Optimal

Privacy-Aware Path in Hippocratic Databases. In: Zhou

X., Yokota H., Deng K., Liu Q. (eds) Database Systems for

Advanced Applications. DASFAA 2009. Lecture Notes in

Computer Science, vol 5463. Springer, Berlin, Heidelberg,

volume: 5463 441-455.

[5] Le Sun,Jiangan Ma,Hua Wang,Yanchun Zhang,Jianming

Yong (2018), Cloud Service Description Model: An

Load Balancing Policies of Web Servers: Research Analysis, Classification and Perspectives

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e7

6

Extension of USDL for Cloud Services, IEEE

Transactions on Services Computing, volume: 11(2) 354-

368.

[6] Yuanyu Zhang, Yulong Shen, Hua Wang, Yanchun Zhang,

Xiaohong Jiang (2018), On Secure Wireless

Communications for Service Oriented Computing, IEEE

Transactions on Services Computing, volume: 11(2) 318-

328.

[7] Winston, W. (1977), Optimality of the Shortest Line

Discipline, Journal of Applied Probability, volume: 14(1)

181-189.

[8] Safiriyu Eludiora, Olatunde Abiona, Ganiyu Aderounmu,

Ayodeji Oluwatope, Clement Onime, Lawrence Kehinde

(2010), A Load Balancing Policy for Distributed Web

Service , Int. J. Communications, Network and System

Sciences volume: 3 645-654.

[9] Yi Lu, QiaominXie, Gabriel Kliot, Allan Geller, James

R.Larus, Albert Greenberg (2011), Join-Idle-Queue: A

novel load balancing algorithm for dynamically scalable

web services, Performance Evaluation, Elsevier.

[10] Vvedenskaya, N.D. Dobrushin, R.L. Karpelevich, F.I.

(1996), Queueing system with selection of the shortest of

two queues: an asymptotic approach, Probl. Inf.Transm.

volume: 32 (1) 20–34.

[11] Mitzenmacher, M. (1996), The power of two choices in

randomized load balancing, Berkeley.

[12] Bramson, M. Lu, Y. Prabhakar, B. (2010), Randomized

load balancing with general service time distributions,

ACM Sigmetrics.

[13] Graham, C. (2000), Chaoticity on path space for a

queueing network with selection of the shortest queue

among several, J. Appl. Probab., volume: 37 198–211.

[14] Luczak, M. McDiarmid, C. (2006), On the maximum

queue length in the supermarket model, Ann. Probab.,

volume: 34 (2) 493–527.

[15] SatheeshAbimannan, Kumar Durai, A.V.Jeyakumar,

Krishnaveni.S (2010), Join-The-Shortest Queue Policy In

Web Server Farms, Global Journal of Computer Science

and Technology, volume: 10(4).

[16] Bas Boone, Sofie Van Hoecke, Gregory Van Seghbroeck ,

NielsJoncheere , Viviane Jonckers, Filip De Turck, Chris

Develder, Bart Dhoedt (2010), SALSA: QoS-aware load

balancing for autonomous service brokering, The Journal

of Systems and Software, Elsevier.

[17] Hsien-Tsung Chang, Yi-Min Chang, Sheng-Yuan Hsiao

(2014), Scalable network file systems with load balancing

and fault tolerance for web services, The Journal of

Systems and Software, Elsevier.

[18] Jianzhe Tai , Zhen Li, Jiahui Chen, Ningfang Mi (2014),

Load balancing for cluster systems under heavy-tailed and

temporal dependent workloads, Simulation Modelling

Practice and Theory, Elsevier.

[19] Zhang, Q. Riska, A. Sun, W. Smirni, E. Ciardo, G.

(2005), Workload-aware load balancing for clustered web

servers, IEEE Trans. Paral. Distrib. Syst., volume: 16

219–233.

[20] Nelson, R. Philips, T. (1998), An approximation for the

mean response time for shortest queue routing with general

interarrival and service times, Perform. Eval. Elsevier,

volume: 17 123–139.

Prabu U. et al.

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e7

