
EAI EndorsedTransactions
on Scalable Information Systems Research Article

1

An Experimental Study with Tensor Flow for
Characteristic mining of Mathematical Formulae from a
Document

K. N. Brahmaji Rao1,*, G. Srinivas2 and P. V. G. D. Prasad Reddy1

1Andhra University, Visakhapatnam, Andhra Pradesh, India
2ANITS, Visakhapatnam, Andhra Pradesh, India

Abstract

Through this article a deep learning technique is proposed for the extraction and classification of mathematical keywords
from textual documents. Extraction of math keywords from textual data is predominant problem as textual documents
contain a culmination of mathematical symbols and literals from natural language such as alphabets and words. Separation
of these textual words embedded in the mathematical formulae is a complex task. Our proposed technique solves this
critical problem of extracting mathematical keywords from textual documents using techniques such as stemming,
tokenization and clustering mathematical keywords based on a training set of mathematical keyword and formulae pairs.
The performance of the proposed technique is measured using the metrics such as retrieval time, Sensitivity, Accuracy,
FPR, FNR, and FDR are used for appraisal of the proposed technique.

Received on 17 January 2019, accepted on 20 May 2019, published on 10 June 2019

Copyright © 2019 K. N. Brahmaji Rao et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.10-6-2019.159097

*Corresponding author. Email:brahmaji77@gmail.com

1. Introduction

TensorFlow is used for the high performance of
numerical computation. It is an open source software
library. It is flexible for simple deployment of
computation across different platforms. It was developed
by Google Brain team within Google’s AI organization. It
is flexible for numerical computations used in many
scientific fields and gives strong support for machine
learning and deep learning.

Text can be classified as well as clustered by using
Tensorflow. The chief advantage of Tensorflow is that it
is a base documentation that can be used to generate Deep

Learning models directly. The text classification with
Tensorflow will be separated into numerous segments.

The first segment deals the text pre-processing and
formation of the container of words. Second segment
trains the text classifier and finally performs the testing
using the classifier [1,2,3,4,5,6,7,8].

1.1 Stemming

The procedure applied to a single word to obtain its root is
called stemming. The words that are used in a sentence
are often derived. To normalize our procedure, we would
like to trunk such words and end up with only root words
[4].

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

http://creativecommons.org/licenses/by/3.0/

2

For example, after stemming following words
“writing”, “written”, and “writer” ends up with their root
word “write”.

1.2 Tokenization

The words in a sentence are called Tokens. Tokenization
is a process of finding unique words in the text from a
given piece of text.

Tokenization splits the sentence “C Programming
Language” in to a set of token list [“C”, “Programming”,
and “Language”] [4].

1.3 Bag of Words

The Bag of Words is the process of generating an
exclusive list of words. It acts as a tool for characteristic
generation.

2. Steps involved in the retrieval of Math
formulae with TensorFlow

2.1 Training the Data
After the preparation of data, we have to train the model.
In the proposed approach, we first take a CSV file which
is a sample data. In the first column the file contains the
entire formula notation and the second column contains
related text for that. Likewise, we have to prepare huge
data sample. After preparing the huge data sample the
CSV file need to be converted in to JSON File by
importing required python libraries [4].

2.2 Loading and Pre-processing of Data
In this step, we load the attained JSON data that we have
created for training. Let us presume that we have that json
data stored in a file named “testdata.json”. After loading
the data, we would have to perform some required
operations called pre-processing for cleaning the data like
elimination of bag of words, tokenizing, stemming etc.
The exclusive stemmed words in all the sentences
provided for training are placed in one list. The other list
clutches the different categories. The “docs” list is the
output of this step which includes the words from each
sentence and which category the sentence fit in. The
document is ([“limit”, “x to 0”, “y to 0”], “sigma”) is an
example [4].

2.3 Convert the processed data to
Tensorflow requirements and instigate
Tensorflow text categorization

After the above two steps the documents are in text form,
a bag of words to be applied in order to translate the
sentence in to numeric array. As Tensorflow being a math
library accepts the data in the numeric form. A deep
Neural Network is developed and used for the training of
the proposed model. Now the categorization of
Tensorflow text document is performed on documents in
the right form [4].

2.4 Assessment of the Tensorflow
Categorization Model
After the completion of training, the text file should be
loaded into our program and then parse every line in the
text file with our neural network training model to check
with how much accuracy the model retrieves math
formulae.

During training, the model was able to correctly
classify all the sentences. The accuracy and efficiency of
retrieval depends on the size of the training document. For
example primarily we train our model with 25 lines of
text data and the testing is performed with a document
contains 10 lines of text file and the accuracy is around
98%. In this model we also calculated the time for
performing complete program and for the above
document with 10 lines of text its takes around 18-20
milliseconds. Depending on the size of text sample the
time and accuracy will increase [4].

CSV to JSON conversion

Figure 1. Procedure of TensorFlow based retrieval
of mathematical formulae.

K. N. Brahmaji Rao, G. Srinivas and P. V. G. D. Prasad Reddy

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

An Experimental Study with TensorFlow for Characteristic mining of Mathematical Formulae from a Document

3

Figure 2. Training model and testing with text file

3. Experimental Analysis and
Results
For calculating the efficiency of the text document first
the JSON file should be prepared for training. The JSON
file is prepared from CSV file which contains more than
120 different formulae. Now the JSON format is loaded
into our program to train the data. After training the data,
some sample text files are loaded for checking the
efficiency of program based on how the training sample
identifies formulae in the text file. The efficiency of
various sizes of test documents are matched with training
document and the results are tabulated in tables 1-3[9, 10,
11, 12, 13, 14, 15 ,16 ,17].

3.1 Efficiency

Efficiency is measured as the number of formulae
retrieved from the number of the number of formulae in
the training document. The efficiency of the proposed
math formulae retrieval system depends on the size of the
training data. The efficiency is increased with increased
number of math data in the training document.

Efficiency = (number of lines identified correctly/total
number of lines)*100 (1)

Table 1. The above tabulated value represents
overall Efficiency Measure with Tensorflow from a

document of 20 samples.

20 Number of
testing formulae

Number of
formulas
retrieved

Total efficiency

Addition 19 95%
Combination 19 95%
Differentiation 20 100%
Exponential 18 90%
Factorial 19 95%
Integral 19 95%
Limit 20 100%
Permutation 18 90%
Sigma 16 80%
Square root 16 80%
Square 16 80%
Trigonometric 19 95%

Table 2. The above tabulated value represents
Overall Efficiency Measure with Tensorflow from a

document of 40 samples.

40 Number of
testing formulae

Number of
formulas
retrieved

Total efficiency

Addition 38 95%
Combination 39 97.5%
Differentiation 40 100%
Exponential 38 95%
Factorial 39 97.5%
Integral 39 97.5%
Limit 40 100%
Permutation 36 90%
Sigma 34 85%
Square root 36 90%
Square 34 85%
Trigonometric 38 95%

Table 3. The above tabulated value represents
overall Efficiency Measure with Tensorflow from a

document of 60 samples.

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

K. N. Brahmaji Rao, G. Srinivas and P. V. G. D. Prasad Reddy

4

60 Number of
testing formulae

Number of
formulas
retrieved

Total efficiency

Addition 58 96.7%
Combination 60 100%
Differentiation 60 100%
Exponential 59 98.3%
Factorial 59 98.3%
Integral 58 96.7%
Limit 60 100%
Permutation 58 96.7%
Sigma 56 100%
Square root 58 100%
Square 57 95%
Trigonometric 59 98.3%

From the above tables 1-3 the efficiency of math formulae
retrieval with Tesorflow is measured and from the table it
is concluded that the efficiency is more if number of
samples increases. i.e. for example out of 20 lines of text
file if the program identifies around 19 lines then
efficiency of proposed model is 95%. The efficiency
always depends on the size of training sample.

3.2 Time Analysis

We conducted quite a few experiments to calculate the
time taken for preparing the training model and for testing
with various sizes of sample text files. In our
experimentation we prepared the training model with over
120 lines of text in JSON format. Now the sample text
files contains more than 20 lines are tested with the
training document and the output of the program obtained
within 40-60 milliseconds of time with high accuracy.
Note the time may vary from one computer to another
depending upon the ram and computer specifications the
time calculations for various sizes of testing formulae are
accessible in table 4-6 [9, 10, 11] From the above tables
3-6 it is clear that the training time and testing time
required gradually decreases as the number of formulae
increases.

Table 4. The above tabulated value represents time
taken for retrieving matched formulae with

Tensorflow from a document of 20 samples along
with testing time and training time.

20 Number of
testing
formulae

Number
of
formulas
retrieved

Training
Time in
ms

Testing
Time in
ms

Total
Time in
ms

Addition 19 41.00ms 1.33ms 42.33ms
Combination 19 41.00ms 0.43ms 41.43ms
Differentiation 20 41.00ms 0.48ms 41.48ms
Exponential 18 60.00

ms
1.23ms 61.23ms

Factorial 19 60.00 0.90ms 60.90ms

ms
Integral 19 63.20

ms
0.30ms 63.50ms

Limit 20 61.80
ms

0.09ms 61.89ms

Permutation 18 62.42
ms

0.06ms 62.48ms

Sigma 16 51.97
ms

0.13ms 52.10ms

Square root 16 58.54
ms

0.11ms 58.65ms

Square 16 58.40
ms

0.10ms 58.50ms

Trigonometric 19 51.07
ms

0.01ms 51.08ms

Table 5. The above tabulated value represents time
taken for retrieving matched formulae with

Tensorflow from a document of 40 samples along
with testing time and training time.

40 Number of
testing
formulae

Number
of
formulas
retrieved

Training
Time in
ms

Testing
Time in
ms

Total
Time in
ms

Addition 38 43.00ms 2.65ms 45.65ms
Combination 39 41.00ms 2.36ms 43.36ms
Differentiation 40 43.00ms 1.48ms 44.48ms
Exponential 38 64.00

ms
1.23ms 65.23ms

Factorial 39 63.00
ms

1.00ms 64.00ms

Integral 39 65.20
ms

0.32ms 65.52ms

Limit 40 63.80
ms

0.12ms 63.92ms

Permutation 36 65.42
ms

0.16ms 65.58ms

Sigma 34 55.86
ms

0.23ms 56.09ms

Square root 36 60.64
ms

0.31ms 60.95ms

Square 34 61.62
ms

0.30ms 61.92ms

Trigonometric 38 55.27
ms

0.10ms 55.37ms

Table 6. The above tabulated value represents time
taken for retrieving matched formulae with

Tensorflow from a document of 60 samples along
with testing time and training time.

60 Number of
testing
formulae

Number
of
formulas
retrieved

Training
Time in
ms

Testing
Time in
ms

Total
Time in
ms

Addition 58 43.05ms 2.79ms 45.84ms

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

5

Combination 60 41.15ms 2.41ms 43.56ms
Differentiation 60 43.22ms 1.61ms 44.83ms
Exponential 59 64.34ms 1.35ms 65.69ms
Factorial 59 63.41ms 1.12ms 64.53ms
Integral 58 65.27ms 0.32ms 65.59ms
Limit 60 64.01ms 0.12ms 64.13ms
Permutation 58 66.16ms 0.16ms 66.32ms
Sigma 56 56.01ms 0.23ms 56.24ms
Square root 58 60.77ms 0.31ms 61.08ms
Square 57 61.72ms 0.30ms 62.02ms
Trigonometric 59 55.34ms 0.10ms 55.44ms

3.3 Sensitivity Measure
Sensitivity is used to measure the ratio of actual math
keywords that are exactly matched with the training
document from the text file, supplied as an input. The
overall Sensitivity Measure with Tensorflow model is
presented in tables 7-9 and from the tables it is obvious
that with huge training data more number of matched
math formulae from the text document will be retrieved
results high sensitivity.
Sensitivity can be expressed as:

Sensitivity (S) = 𝑛𝑛(𝑇𝑇𝑇𝑇)
𝑛𝑛(𝑇𝑇𝑇𝑇)+𝑛𝑛(𝐹𝐹𝐹𝐹)

(2)

Where,

n(Tp) = Number of True Positives
n(Fn) = Number of False Negatives

Table 7. The above tabulated value represents
overall Sensitivity Measure with Tensorflow from a

document of 20 samples.

20 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) Sensitivity

Addition 19 1 95%
Combination 19 1 95%
Differentiation 20 0 100%
Exponential 18 2 90%
Factorial 19 1 95%
Integral 19 1 95%
Limit 20 0 100%
Permutation 18 2 90%
Sigma 16 4 80%
Square root 16 4 80%
Square 16 4 80%
Trigonometric 19 1 95%

Table 8. The above tabulated value represents
overall Sensitivity Measure with Tensorflow from a

document of 40 samples.

40 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) Sensitivity

Addition 38 2 95%
Combination 39 1 97.5%
Differentiation 40 0 100%
Exponential 38 2 95%
Factorial 39 1 97.5%
Integral 39 1 97.5%
Limit 40 0 100%
Permutation 36 4 90%
Sigma 34 6 85%
Square root 36 4 90%
Square 34 6 85%
Trigonometric 38 2 95%

Table 9. The above tabulated value represents
overall Sensitivity Measure with Tensorflow from a

document of 60 samples.

60 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) Sensitivity

Addition 58 2 96.7%
Combination 60 0 100%
Differentiation 60 0 100%
Exponential 59 1 98.3%
Factorial 59 1 98.3%
Integral 58 2 96.7%
Limit 60 0 100%
Permutation 58 2 96.7%
Sigma 56 4 93.3%
Square root 58 2 96.7%
Square 57 3 95%
Trigonometric 59 1 98.3%

3.4 False Negative Rate
FNR is the number of Math formulae those responding
negative on the test, means the formulae which are
wrongly retrieved as obtainable in tables 10-12. The data
in the tables illustrates that FNR value decrease with
increase in the number of formulae in the text document.

FNR-False Negative Rate= n(Fn)/ n(Fn)+ n(Tp) (3)

Table 10. The above tabulated value represents
overall FNR Measure with Tensorflow from a

document of 20 samples.

20 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False Negative
Rate

Addition 19 1 5%
Combination 19 1 5%
Differentiation 20 0 0%
Exponential 18 2 10%
Factorial 19 1 5%

An Experimental Study with TensorFlow for Characteristic mining of Mathematical Formulae from a Document

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

6

Integral 19 1 5%
Limit 20 0 0%
Permutation 18 2 10%
Sigma 16 4 20%
Square root 16 4 20%
Square 16 4 20%
Trigonometric 19 1 5%

Table 11. The above tabulated value represents
overall FNR Measure with Tensorflow from a

document of 40 samples.

40 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False Negative
Rate

Addition 38 2 5%
Combination 39 1 2.5%
Differentiation 40 0 0%
Exponential 38 2 5%
Factorial 39 1 2.5%
Integral 39 1 2.55%
Limit 40 0 0%
Permutation 36 4 10%
Sigma 34 6 15%
Square root 36 4 10%
Square 34 6 15%
Trigonometric 38 2 5%

Table 12. The above tabulated value represents
overall FNR Measure with Tensorflow from a

document of 60 samples.
60 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False Negative
Rate

Addition 58 2 3.33%
Combination 60 0 0%
Differentiation 60 0 0%
Exponential 59 1 1.66%
Factorial 59 1 1.66%
Integral 58 2 3.33%
Limit 60 0 0%
Permutation 58 2 3.33%
Sigma 56 4 6.67%
Square root 58 2 3.33%
Square 57 3 5%
Trigonometric 59 1 1.66%

3.5 False Positive Rate
FPR is the number of Math formulae, those responding
positive on the test, means the math formulae which are
correctly retrieved from the test document which are
available in the training document as shown in tables 13-
15. The value FNR is mainly dependent on false positives.
The number unwanted formulae retried with Tensorflow
is almost zero as the procedure of retrieval of math
formulae mainly depends on the training data.

FPR-False Positive Rate = n(Fp)/ n(Fp)+ n(Tn) (4)

Table 13. The above tabulated value represents
overall FPR Measure with Tensorflow from a

document of 20 samples.

20 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False Positive
Rate

Addition 0 0 0%
Combination 0 0 0%
Differentiation 0 0 0%
Exponential 0 0 0%
Factorial 0 0 0%
Integral 0 0 0%
Limit 0 0 0%
Permutation 0 0 0%
Sigma 0 0 0%
Square root 0 0 0%
Square 0 0 0%
Trigonometric 0 0 0%

Table 14. The above tabulated value represents
overall FPR Measure with Tensorflow from a

document of 40 samples.

40 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False
Discovery Rate

Addition 0 0 0%
Combination 0 0 0%
Differentiation 0 0 0%
Exponential 0 0 0%
Factorial 0 0 0%
Integral 0 0 0%
Limit 0 0 0%
Permutation 0 0 0%
Sigma 0 0 0%
Square root 0 0 0%
Square 0 0 0%
Trigonometric 0 0 0%

Table 15. The above tabulated value represents
overall FPR Measure with Tensorflow from a

document of 60 samples.
60 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False Positive
Rate

Addition 0 0 0%
Combination 0 0 0%
Differentiation 0 0 0%
Exponential 0 0 0%
Factorial 0 0 0%
Integral 0 0 0%
Limit 0 0 0%
Permutation 0 0 0%
Sigma 0 0 0%
Square root 0 0 0%
Square 0 0 0%
Trigonometric 0 0 0%

3.6 False Discovery Rate

K. N. Brahmaji Rao, G. Srinivas and P. V. G. D. Prasad Reddy

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

7

FDR is a much unfussy consideration. It is a ratio between
the number of unwanted math formulae retrievals in a text
document divided by total number of retrievals after
comparison with training document and are accessible in
tables 16-18. The value of FDR for different range of
samples is 0% means no unwanted formulae are retrieved
with proposed approach.

FDR - False Discovery Rate = n(Fp)/n(Fp)+ n(Tp) (5)

Table 16. The above tabulated value represents
overall FDR Measure with Tensorflow from a

document of 20 samples.

20 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False
Discovery Rate

Addition 19 0 0%
Combination 19 0 0%
Differentiation 20 0 0%
Exponential 18 0 0%
Factorial 19 0 0%
Integral 19 0 0%
Limit 20 0 0%
Permutation 18 0 0%
Sigma 16 0 0%
Square root 16 0 0%
Square 16 0 0%
Trigonometric 19 0 0%

Table 17. The above tabulated value represents
overall FDR Measure with Tensorflow from a

document of 40 samples.

40 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False
Discovery Rate

Addition 38 0 0%
Combination 39 0 0%
Differentiation 40 0 0%
Exponential 38 0 0%
Factorial 39 0 0%
Integral 39 0 0%
Limit 40 0 0%
Permutation 36 0 0%
Sigma 34 0 0%
Square root 36 0 0%
Square 34 0 0%
Trigonometric 38 0 0%

Table 18. The above tabulated value represents
overall FDR Measure with Tensorflow from a

document of 60 samples.
60 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False
Discovery Rate

Addition 58 0 0%
Combination 60 0 0%
Differentiation 60 0 0%
Exponential 59 0 0%
Factorial 59 0 0%
Integral 58 0 0%
Limit 60 0 0%

Permutation 58 0 0%
Sigma 56 0 0%
Square root 58 0 0%
Square 57 0 0%
Trigonometric 59 0 0%

3.7 Accuracy
The accuracy of a test is its ability to categorize the
retrieval of not needed and required math formulae
acceptably. The accuracy can be calculated with the
quantity of true positive and true negative in all assessed
cases as shown in tables 19-21. The Accuracy of retrieval
of math formulae increases with increase in number of
samples.

Accuracy ACC = n(Tp)+n(Tn)/n(Tp)+n(Tn)+n(Fp)+n(Fn)
(6)

Table 19. The above tabulated value represents
overall Accuracy Measure with Tensorflow from a

document of 20 samples.

20 Number
 of testing
 formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) 𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) Accuracy

Addition 19 0 0 1 95%
Combination 19 0 0 1 95%
Differentiation 20 0 0 0 100%
Exponential 18 0 0 2 90%
Factorial 19 0 0 1 95%
Integral 19 0 0 1 95%
Limit 20 0 0 0 100%
Permutation 18 0 0 2 90%
Sigma 16 0 0 4 80%
Square root 16 0 0 4 80%
Square 16 0 0 4 80%
Trigonometric 19 0 0 1 95%

Table 20. The above tabulated value represents
overall Accuracy Measure with Tensorflow from a

document of 40 samples.

40 Number
of testing
 formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) 𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) Accurac
y

Addition 38 0 0 2 95%
Combination 39 0 0 1 97.5%
Differentiatio
n

40 0 0 0 100%

Exponential 38 0 0 2 95%
Factorial 39 0 0 1 97.5%
Integral 39 0 0 1 97.5%
Limit 40 0 0 0 100%
Permutation 36 0 0 4 90%
Sigma 34 0 0 6 85%

An Experimental Study with TensorFlow for Characteristic mining of Mathematical Formulae from a Document

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

8

Square root 36 0 0 4 90%
Square 34 0 0 6 85%
Trigonometri
c

38 0 0 2 95%

Table 21. The above tabulated value represents
overall Accuracy Measure with Tensorflow from a

document of 60 samples.
60 Number
of testing
formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) 𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) Accuracy

Addition 58 0 0 2 96.7%
Combination 60 0 0 0 100%
Differentiation 60 0 0 0 100%
Exponential 59 0 0 1 98.3%
Factorial 59 0 0 1 98.3%
Integral 58 0 0 2 96.7%
Limit 60 0 0 0 100%
Permutation 58 0 0 2 96.7%
Sigma 56 0 0 4 93.3%
Square root 58 0 0 2 98.3%
Square 57 0 0 3 95%
Trigonometric 59 0 0 1 98.3%

3.8 Positive Predictive Value
Positive predictive value (PPV) is a measure of significant
occurrences amid the retrieved occurrences it is also
known as precision. The PPV value with the proposed
approach is 100% for different number of samples with
different dominating types of formulae as shown in tables
22-24.

Positive Predictive value (PPV) =n(Tp)/ n(Tp)+n(Fp) (7)

Table 22. The above tabulated value represents
overall PPV Measure with Tensorflow from a

document of 60 samples.

20 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False
Discovery Rate

Addition 19 0 100%
Combination 19 0 100%
Differentiation 20 0 100%
Exponential 18 0 100%
Factorial 19 0 100%
Integral 19 0 100%
Limit 20 0 100%
Permutation 18 0 100%
Sigma 16 0 100%
Square root 16 0 100%
Square 16 0 100%
Trigonometric 19 0 100%

Table 23. The above tabulated value represents
overall PPV Measure with Tensorflow from a

document of 60 samples.

40 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False Discovery
Rate

Addition 38 0 100%
Combination 39 0 100%
Differentiation 40 0 100%
Exponential 38 0 100%
Factorial 39 0 100%
Integral 39 0 100%
Limit 40 0 100%
Permutation 36 0 100%
Sigma 34 0 100%
Square root 36 0 100%
Square 34 0 100%
Trigonometric 38 0 100%

Table 24. The above tabulated value represents
overall PPV Measure with Tensorflow from a

document of 60 samples.

60 Number of
testing formulae

𝒏𝒏(𝑻𝑻𝑻𝑻) 𝒏𝒏(𝑭𝑭𝑭𝑭) False
Discovery Rate

Addition 58 0 100%
Combination 60 0 100%
Differentiation 60 0 100%
Exponential 59 0 100%
Factorial 59 0 100%
Integral 58 0 100%
Limit 60 0 100%
Permutation 58 0 100%
Sigma 56 0 100%
Square root 58 0 100%
Square 57 0 100%
Trigonometric 59 0 100%

Figure 2. Overall Accuracy Measure with Tensorflow
from a document.

K. N. Brahmaji Rao, G. Srinivas and P. V. G. D. Prasad Reddy

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Positive_predictive_value.html

9

Figure 3. Overall Sensitivity Measure with
Tensorflow from a document.

Figure 4. Efficiency Measure with Tensorflow from
the document.

4. Conclusion
In this article an approach which retrieves mathematical

formulae was projected. The efficiency of the wished-for

procedure presented in terms of time analysis and

accuracy. The proposed Tensorflow based math

classification retrieves all the math formulae that are

matched with data in the training document. The

efficiency of proposed method is evaluated in terms of

metrics like Sensitivity, Efficiency, Accuracy, PPV FDR,

FPR and FNR. As more number of matched formulae and

no unwanted formulae are retrieved with Tensorflow

based math classification it out performs in terms of

efficiency. The efficiency increases with increase in the

number of math formulae in training document. The

proposed method with Tensolflow produces best results in

terms of Sensitivity, Specificity, PPV, False Positive Rate

and False Negative Rate.

References
[1] K Ma, S Cheung Hui and K Chang, “Feature Extraction and

Clustering-based Retrieval for Mathematical Formulas”, The

2nd International Conference on Software Engineering and Data

Mining, pp. 372-377, 2010.

[2]S Harshanath Samarasinghe and S Cheung Hui, “Mathema-

tical Document Retrieval for Problem Solving”, International

Conference on Computer Engineering and Technology, pp.583-

587, 2009.

[3] J Misutka and L Galambos, “Mathematical Extension of Full

Text Search Engine Indexer”, Proc. 3rd International Conference

on Information and Communication Technologies: From Theory

to Applications (ICTTA 08), pp. 1-6April 2008.

[4] Web Link to TensorFlow, Last accessed on 15th may 2019

https://sourcedexter.com/tensorflow-text-classification-python/.

[5] B R Miller and A Youssef, “Technical Aspects of the Digital

Library of Mathematical Functions”, in Annals of Mathematics

and Artificial Intelligence, Springer Netherlands, pp. 121-136,

2003.

[6] H Zhang, T B and M S Lin, “An Evolutionary K means

Algorithm for Clustering Time Series Data”, Proc. International

Conference on Machine Learning and Cybernetics, pp. 1282-

1287, 2004.

[7] R Munavalli and M R MathFind, “A Math-aware Search

Engine”, Proc. Annual International ACM SIGIR Conference on

Research and development in information retrieval, pp.735-735,

2006.

[8] M Kohlhase, “Markup for Mathematical Knowledge”, An

Open Markup format for Mathematical Documents, Ver. 1.2,

Lecture Notes in Computer Science, pp. 13-23, Springer

Berlin,2006.

[9] G Appa Rao, K Venkata Rao, P V G D Prasad Reddy and T

Lava Kumar, “An Efficient Procedure for Characteristic mining

of Mathematical Formulas from Document”, International

Journal of Engineering Science and Technology (IJEST), Vol.

10 No.03, pp152-157, Mar 2018.

[10] G Appa Rao, G Srinivas, K Venkata Rao and P V G D

Prasad Reddy,” Characteristic mining of Mathematical Formulas

from Document - A Comparative Study on Sequence Matcher

and Levenshtein Distance procedure”, International Journal of

An Experimental Study with TensorFlow for Characteristic mining of Mathematical Formulae from a Document

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

10

Computer Sciences and Engineering, Volume-6, Issue-4, pp

400-403, Apr 2018.

[11] G AppaRao, G Srinivas, K Venkata Rao and P V G D

Prasad Reddy, “a partial ratio and ratio based fuzzy-wuzzy

procedure for characteristic mining of mathematical formulas

from documents”, IJSC- ICTACT Journal on Soft Computing,

Vol 8, Issue 4, pp 1728-1732, July 2018.

[12] M Peng, D Chen, Q Xie, Y Zhang, H Wang, G Hu, W Gao,

Y Zhang, “ Topic-Net Conversation Model ”, International

Conference on Web Information Systems Engineering, pp.483-

496, 2018.

[13] M Peng, Q Xie, Y Zhang, H Wang, X Zhang, J Huang, G

Tian, “ Neural Sparse Topical Coding ”, Proceedings of the 56th

Annual Meeting of the Association for Computational

Linguistics (volume 1: Long Papers), pp.2332-2340, 2018.

[14] M Peng, Q Xie, H Wang, Y Zhang, G Tian, ” Bayesian

Sparse Topical Coding ”, IEEE Transactions on Knowledge and

Data Engineering, pp.1080-1093, 2018.

[15] H Wang and Y Zhang, “An Efficient Framework for The

Analysis of Big Brain Signals Data”, Australasian Database

Conference, pp.199-207, 2018.

[16] M Peng, H Shi, Q Xie, Y Zhang, H Wang, Z Li, J Yong,

“Block Bayesian Sparse Topical Coding”, 2018 IEEE 22nd

International Conference on Computer Supported Cooperative

Work in Design((CSCWD)), pp.271-276, Nanjing, 2018.

[17] M Peng, J Zhu, H Wang, X Li, Y Zhang, X Zhang, G Tian,

“Mining event-oriented topics in microblog steam with

unsupervised multi-view hierarchical embedding”, ACM

Transactions on Knowledge Discovery from Data(TKDD) 12(3),

Article No.38, 2018.

K. N. Brahmaji Rao, G. Srinivas and P. V. G. D. Prasad Reddy

EAI Endorsed Transactions on
Scalable Information Systems

03 2019 - 06 2019 | Volume 6 | Issue 21 | e6

