
1

Automation of Algorithmic Tasks for Virtual

Laboratories Based on Automata Theory

Evgeniy A. Efimchik1,*, Mikhail S. Chezhin1, Andrey V. Lyamin1

1ITMO University, Saint Petersburg, Russia

Abstract

In the work a description of an automata model of standard algorithm for constructing a correct solution of algorithmic

tests is given. The described model allows a formal determination of the variant complexity of algorithmic test and serves

as a basis for determining the complexity functions, including the collision concept – the situation of uncertainty, when a

choice must be made upon fulfilling the task between the alternatives with various priorities. The influence of collisions on

the automata model and its inner structure is described. The model and complexity functions are applied for virtual

laboratories upon designing the algorithms of constructing variant with a predetermined complexity in real time and

algorithms of the estimation procedures of students’ solution with respect to collisions. The results of the work are applied

to the development of virtual laboratories, which are used in the practical part of massive online course on graph theory.

Keywords: Assessment, Virtual Learning Environments, Massive Open Online Course.

Received on 10 November, 2015, accepted on 13 January, 2016, published on 10 March, 2016

Copyright © 2016 E. A. Efimchik et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.10-3-2016.151123

1. Introduction

The development of information technologies in

education resulted in a wide distribution of electronic

teaching instruments, virtual laboratories (VL) being one of

them. VL are electron media making possible the creation

and study of visual models of the real phenomena. This is

rather an extended determination taking into account the fact

that both real laboratory installations (the laboratory is

called distant in this case) and various mathematic and

imitation models may form the basis of the models. A large

number of information systems differing by aims,

application methods, and program structure comply with it.

A special feature of all VL may be their orientation to the

formation and checking of practical skills and experiences.

To determine the application field of the models and

methods given in this work we shall give a short

classification of VL.

One of the features of VL may be the type of tests

embedded in them: there are both algorithmic tests requiring

fulfillment of a rigid sequence of actions and logical

methods of solving and tests associated with creative

activity requiring accomplishment of intuitive jumps,

objects recognition, and use of heuristic solving methods

[1].

Another feature may be the program architecture of VL.

Autonomic VL are a united supplement [2,3], and the

functions of distributed VL are divided between several

individual modules interacting between each other with the

help of special Remote Laboratory Control Protocol (RLCP)

[4] or other network technologies [5].

An important marker is the presence and method of

automatic check of student’s solution, since this property

directly influences applicability of VL during independent

EAEAI Endorsed Transactions
on e-Learning Research Article

∗Corresponding author. Email: efimchick@cde.ifmo.ru

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

http://creativecommons.org/licenses/by/3.0/

E. A. Efimchik, M. S. Chezhin and A. V. Lyamin

2

work with electronic practical courses of electronic

information and education media. The automatic check is

especially important for massive open online courses.

Automatic estimation is often carried out by a method of

testing the black box: student’s solution is represented as a

system, which can be acted upon and its reaction can be

compared with what was expected [1,6,7]. One more

example of commonly used practice in the systems of

massive online courses may be the instrument of peer

assessment: after completing his own test the student must

check several solutions of other course participants selected

randomly [8]. The method of checking depends on the

character of the test: the black box test is convenient and

therefore widely used method of automatic check of the tests

concerning description of a designated algorithm in some

program or modelling language and a peer assessment is

used when student must present a work badly amenable to

automatic analysis – an essay, figure, or abstract.

One more property of VL is its wide application. Multi-

purpose VL [1,3], which can be used to carry out studies on

various topics, are usually substantially more scaled and

complex than specialized VL developed for solving

problems concerning one topic [2].

In [4] a model of a distributed VL of a standardized

structure with automatic checking students’ solutions, which

represents VL as a connected up modulus of electronic

information-education system, is given. This model allows

creation of unified medium of fulfillment for multiple VL on

the basis of AcademicNT system. Such a method appeared

to be appropriate for control over the software of small

specialized VL intended mainly for working with

algorithmic tests. We emphasize that student is not required

to describe the very algorithm, but he must reproduce its

actions correctly for a given variant. Preparation of the test

variants in the automatic way appeared to be an important

problem – it was decided to reject the traditional bank of

variants owing to its inherent drawbacks. In this case,

variants of tests must have a predetermined complexity to

ensure equal conditions for all students in the estimation of

achieved education results. The complexity of the test

variant in this context is a quantitative characteristic

reflecting the number of operations needed to be fulfilled for

obtaining a correct solution. It is necessary to distinguish the

complexity of the test variant from difficulty of the test. The

difficulty is associated with mastering the algorithm of

solving the test and is expressed by a percent from the

number of students being tested from a representative

selection, who fulfilled this test correctly. Nevertheless,

under condition of limited time the complexity of the test

influences its difficulty. Even knowing the algorithm of

solving the test you can fail to meet the schedule of its

fulfillment, if a given variant has an excessive complexity.

2. Automata Model of Reference Algorithm

In this work a method is proposed for formal

determination of variants complexity of for algorithmic tests

based on automation model of reference algorithm. Let us

assume that there is a certain algorithmic test t, which must

be solved with the help of reference algorithm a, and there is

a great number of variants V, for it:

V = {v1, v2, v3, …, vn}. (1)

Each element vi is a particular variant of the test with

specific data.

As an example let us concern ourselves with an algorithm

for Turing machine, which increases an integer by a unit.

The starting number is on the tape, written in binary digits

from left to right, in other cells this is an empty symbol, and

the head points to the eldest order of the number. Then with

the aim of increasing the number by a unit we must fulfill

the following sequence of actions:

 Move to the right till you meet the empty symbol;

 Shift to the left;

 If symbol in the current cell equals ‘1’, change it for ‘0’

and move to the left;

 If the value of the current cell equals ‘0’ or an empty

symbol, write down ‘1’ into the cell and complete the

work.

In this case the test t requires the actions of the reference

algorithm a to be reproduced, and starting state of Turing

tape is a variant of test vi. Here we should emphasize once

more that student must not write the program for Turing

machine but must reproduce the above described algorithm

correctly. He gains access to Turing tape, the possibility to

accomplish the requests for reading a symbol from a current

cell and the commands for shifting the head and writing the

symbol into a cell.

To develop VL with automated processes of constructing

the test variants and estimation of the student solutions for a

model test t with the help of algorithm a we suggest to

advance a special automation model M. As such model we

propose to use a combination of determined final automaton

with an output (controlling automaton) and a data

depositary, which it interacts (the control object) with. This

model is the development of a model of automated object

(AO).

The AO model consists of three main components:

controlling automaton, object of control and external

medium. At every step of the work the controlling

automaton forms a new state of the control object

(calculating state) on the basis of external medium action, of

current state of the control object and of the state of

controlling automaton (controlling state). Applying this

model to algorithmic tests, we find that at every step the

controlling automaton forms a record of correct solution s,

based on the data of test variant v and intermediate results of

previous steps fixed in the record of the solution. The test

variant is the object of external medium, and the state of the

control object must be considered as the record of the test

solution including intermediate results. This means that after

completing the work of controlling automaton the control

object must contain all information about the transfers

carried out by controlling automaton and about the sequence

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

 Automation of Algorithmic Tasks for Virtual Laboratories Based on Automata Theory

3

of control states attended by it. Then with the help of the

advanced model M we can obtain a correct solution for each

variant of the test v. In other words, there is a reflection ρM

of a great number of the test variants V to a multitude of

solutions S (ρM : V → S).

Figure 1 represents the AO for the algorithm of

increasing an integer by a unit described above. The solution

being formed is contained in the control object C. The

variant of the test V contains starting state of Turing tape,

which can be obtained with the help of the getTape inquiry.

A special attention must be paid to the structure of the

control object, since it must be designed in such a manner

that in the resulting calculating state all the intermediate

results were given. Hence, the object contains Turing tape,

which starting state can be found with the help of the

setTape command. The control over the tape is performed

by the head shift commands (left and right), the record of

symbols (write) and an inquiry for reading the symbol in the

current cell (read). Moreover, in order to save the

intermediate results a journal of accomplished commands is

added to the control object. Each time a shift of the head of

the symbol record is performed, a corresponding record is

added to the journal. Such a journal may be presented as one

more Turing tape, let us call it the tape of command journal,

with the aim of distinguishing it from the data tape. As the

automaton fulfills command to shift the head of the data

tape or to record a symbol, a symbol is written into the

current cell of the command journal, which designate this

command, then the head of the tape of the command journal

is shifted to the right. The structure of the control object is

given in Fig. 2. Table 1 contains description of commands

and inquiries of both test variant and solution being formed

in control object.

Figure 1. Automation model of the algorithm of
increasing an integer by a unit for Turing machine

Table 1. Commands of the test variant
and the solution being formed

Object Command Description

V: Test
variant

getTape() Turing tape with recorded binary
number and fixed head

C:
Solution

left() Shift of the head to the left

right() Shift of the head to the right

write
(symbol)

Installation of the symbol into the
current cell

read() Current symbol in a cell

setTape
(tape)

To install Turing tape

The model is loaded into the controlling automaton, the

operation of copying the state of Turing tape from the test

variant into the solution being formed is included into the

initiating stage in this case.

Assuming that student must adhere to the reference

algorithm a and its representation with the control object

initiated according to data of the variant and also an

interface for interacting with it. We can reason that in the

case, when the student reproduced the actions of the

algorithm correctly, his solution as a resulting calculating

state of the given control object must coincide with the

correct solution. Thus, after adding a unit to “11011” the

data tape must contain “11100” and the tape of the

commands journal – the sequence “right, right, right, right,

right, left, write ‘0’, left, write ‘0’, left, write ‘1’”.

The aforesaid interface must be designed in such a

manner that student could interact with the control object

with the help of the same commands as the controlling

automaton. The student has an access to the same

commands, which are used in the automation model in Fig.

1 – the head shift and symbol recording. Moreover, the

student only sees the content of the current cell, as well as

the controlling automaton, hence the variant solution is not

evident for him, and he must follow the given algorithm.

Figure 2. Structure of the control object of automation
model of the algorithm of increasing an integer by a

unit for Turing machine

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

E. A. Efimchik, M. S. Chezhin and A. V. Lyamin

4

3. Consideration of Collisions

The special feature of automation models under

consideration is the following: external actions on AO are

known to be determined first of all by the data of the test

variant. Moreover, some algorithms as known allow a

selection from several equivalent alternatives (collision)

during fulfillment, and then great number of correct

solutions may exist for one variant of the test. In this case

student’s solution may be correct, but not coinciding with

the solution constructed with the help of automation model.

To avoid such situation it is necessary that the automation

model takes into account student’s choice made in the

situation of collision. A correct solution is constructed with

the help of the controlling automaton as long as situation of

collision emerges. Then the information about the made

choice is selected from student’s solution and is added to

input action on the automaton at the next step of the work.

Then the solution record is constructed by usual manner up

to the emergence of the next collision. Therefore, we can

state that each component of the input action xE on the

controlling automaton really consists of the component xEV

resulting from the test variant and the component xEU

resulting from the student’s choice fixed in the solution

suggested by him:
 E EV EUX X X

. Therefore, in general

case, the reflection ρM of great number of test variants to a

multitude of solutions given as M must take into account

student’s choice in the situations of collision and it is

determined as function ρM : V × U → S, where U is the

multitude of the choices made by student in the situations of

collision.

In the example considered above the collisions are not

encountered, however they can appear, if the test was

changed a little and, for example, let the student set the head

into any number order besides the eldest from the beginning.

This means that the model of the control object given in Fig.

2 must be updated by adding one more element – a number

variables, which the information about the very number

order the student set the head must be written into. In this

case a modification of the automation model of the

algorithm given in Fig. 1 must be made: one more element

appears in the model – student’s solution U. The model U

and the model of the solution C coincide, however they have

various sets of commands. It is possible to find out which

number order the student set the head into with the help of

getInitPosition() inquiry of the student solution U. A

command for setting the head getInitPosition() is added to

the solution C, it is excited at the stage of initiation. The

modified automation model is given in Fig. 3.

4. Formal Determining of Complexity of
Algorithmic Tests

The complexity of the test variant cv can be determined as

the number of transfers completed by the controlling

automaton if the complexity of completing the transfers is

the same.

Figure 3. Automation model of the algorithm of
increasing an integer by a unit for Turing machine

taking account of collisions

This value can be obtained as the number of terms q of

the sequence Yv of controlling states visited by controlling

automaton in the process of constructing correct solution for

the test variant v:

1()
i

q

v r iY ,

(1)i i-r r iy = δ y ,x ,

vc q ,

(2)

where δ : X ×Y → Y is the transfers function of controlling

automaton of model M; xi is an input action on the

controlling automaton formed under the influence of variant

v in the i – cycle; ri is the index of visited controlling state.

In the case when the complexity of completing the

transfers cannot be considered the same, it is necessary to

determine function f of complexity of completing the

transfer ci to the state ir
y

from the state 1ir
y

 under the

action ix
.

Then the resulting complexity of the test variant will be

equal to the sum of complexities of transfers made by the

controlling automaton:

1()
i

q

v r iY ,

1i i-r r iy = δ y ,x ,

1
, ,

ii r r ic = f y y x

,

1

q

v

i

c = c

 .

(3)

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

 Automation of Algorithmic Tasks for Virtual Laboratories Based on Automata Theory

5

Using such a procedure, we can determine complexity of

any existing variant of the test, but this cannot solve the

problem of automatic construction of the test variants of a

designated complexity. It is necessary to examine the

automation model of algorithm for each test t in order to

answer the question, which properties of the test variants do

influence the complexity of the solution and how they

influence. The result of such examination must be the

function of the kind c = c(v), making possible the

calculation of the complexity as a function of properties of

the test variant. Let us call it complexity function.

In the example described above (without admission of the

collisions) the number of transfers completed by the

controlling automaton depends on two factors: l – the total

number of the number orders and z – the ordinal number of

the last number order equal to ‘0’. Automation model at the

stage of direct run passes all the number orders and at the

stage of reverse run completes one more transfer in order to

return to the last order and passes to the first order not equal

to ‘1’, hence the resulting complexity is: с = l + 1 + (l – z) =

2l + 1 – z. For example, if a number «1000000000» is

written in Turing tape, the complexity of adding a unit to it

will be с = 2 × 10 + 1 – 10 = 11. Really, the stage of reverse

run includes only one transfer. For the variant with number

«101111» the complexity is also equal to 11: с = 2 × 6 + 1 –

2 = 11, since in the stage of reverse run there will be five

transfers.

5. Automatic Variant Constructing and
Estimation of the Student Solution

Having the complexity function, we can compose the

algorithm of constructing the variants of algorithmic test

with a designated complexity. Thus, if it is necessary to

create the variant of the test for reproducing the above

described algorithm of the increment of binary number with

a designated complexity C, we can use the algorithm given

in Fig. 4. With the help of the pseudorandom numbers

generator (GPRN) we select the length of number L. It is

evident that it must be greater than half of the complexity

and less than the complete complexity minus 1. Function

randInt is used for this purpose and returns one of the

integers being in the range from the first argument to the

second argument (exclusively). The choice of a number is

based on GPRN, the sequence generated by it obeys the

even distribution. With the help of complexity function the

second argument Z – the ordinal number of the last number

order equal to ‘0’ is calculated (for convenience sake we use

the element numeration starting with a unit). We write ‘1’

into all the orders residing to the right from this order and

also to the first number order, we write the values obtained

with the help of randBinaryDigit function into the orders

between the first and the last. This function using GPRN

brings back either ‘0’ or ‘1’ with equal possibility. For

example, the variant with complexity 20 is required. We

select the length of the number from the interval [11, 19],

for example, 16. Then the ordinal number of the last order

equal to zero will be z = 2l + 1 – c = 2 × 16 + 1 – 20 = 13.

Figure 4. Algorithm of constructing the test variants

This means that for the orders from fourteenth to

sixteenth symbol ‘1’ is chosen. The first symbol also must

be ‘1’ in order to get a correct record of binary positive

integer, and the thirteenth order is ‘0’. For the orders from

the second to the twelfth any symbol can be chosen. The

resulting variant of the test will contain a binary line d

corresponding to the binary number, for example,

«1101000110100111».
The estimation of the student solution is based on the

procedure of verification – the solution is considered correct

if it coincides with the solution obtained with the help of

automation model. Both the student solution and the

solution obtained with the help of reference algorithm

represent the state of the control object – a structured

system, which may be examined. This allows the stages and

components of the solution to be separated and the order of

element-by-element comparison of the solutions to be

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

E. A. Efimchik, M. S. Chezhin and A. V. Lyamin

6

determined. Such a method makes possible not only

checking the correspondence of the student solution to the

correct solution, but also determination of the place and

nature of an error in the automatic mode, which in its turn

allows to accompany the comments of the estimation results.

Moreover, stage-by-stage verification allows the concept of

partial correctness of the solution to be introduced – if

several steps of solution are made correctly, instead of a

dichotomous scale “correct/not correct” we can use the scale

of estimation with several marks or based on an fuzzy logic.
In the studied example a correct state of the data tape

does not guarantee that the student exactly followed

necessary algorithm. This problem is accomplished by the

tape of the command journal – the student solution must be

considered correct if the sequence of student’s actions

coincides with the sequence fulfilled by the controlling

automaton. Otherwise, we can determine at what step the

divergence occurred, in order that a commentary could be

added to the result of estimation. If the majority of

commands is accomplished correctly, or in case of a wrong

state of the command tape the state of the data tape is

correct, student’s solution may be considered partially

correct. Then some kind of special series of rules can be

used to determine the mark. For example, if the values in the

interval [0, 1] are used, where 0 is a completely wrong

solution and 1 is a completely correct one, the following

rules of estimation may be used for partially correct

solutions:

 Basic mark is 0;

 If the state of the data tape is correct, 0.25 is added to

the basic mark;

 If more than a half of commands corresponds to the

correct solution, the basic mark is increased by 0.25 × r

/ n, where r is the number of correctly fulfilled

commands, and n is the total number of commands

accomplished by the controlling automaton.

Such rules, for example, allow us to guarantee that a

partially correct solution will be accompanied by the mark

of less than 0.25. Nevertheless, this is only an example,

under other conditions and requirements the rules of

estimating partially correct solutions may differ.

One more interesting problem is accounting of collisions

upon composing the variants and estimating the solutions.

Collisions may influence the complexity of the test variants.

If, as was mentioned above, the collisions are admitted in

the example under consideration allowing student to fix the

head into any number order at the beginning, the function of

complexity will lose its sense, since it is unknown in

advance how many commands will be accomplished at the

stage of direct run. In this case, the algorithms of composing

the test variants and estimating the solutions given earlier

lose their meaning and require correction.

It is evident for a student, if he is familiar with necessary

algorithm, that the most efficient way is to fix the head into

the extreme right number order. Then the stage of direct run

will take only one step. The stage of the reverse run will

remain unchanged in doing so. Assuming that the student

will always act in the most efficient manner for himself we

obtain a new function of complexity: c = 1 + 1 + l – z = 2 + l

– z. This is the minimal possible number of steps for

obtaining the variant solution. It is clear that the student can

also choose another variant of the head location, which will

result in an increase in the complexity of accomplishing the

variant. But, first, such a situation is impossible to be

foreseen, and, second, such a choice is illogical and may

testify for a weak familiarity with the algorithm.

The influence of collisions on the algorithm of

composing test variants is small – it is sufficient to change

the limits of generation for the length of the number, which

now must be greater than or equal to c – 2 and to use a new

formula for calculating z.

Collisions also influence the procedure of verification.

First, it will be necessary to modify the control object in

order to record in what exactly number order the student

fixed the head. Second, upon composing a correct solution

with the help of controlling automaton we have to take into

account student’s choice – the head must be fixed in the

same order as in the student’s solution upon initialization of

the data tape.

6. Conclusion

To summarize we can point out that automation model of

the reference algorithm allows the complexity of the variants

of algorithmic tests to be determined formally. Nevertheless,

to solve the problem of automatic construction of the test

variants with designated complexity it is necessary to

determine the complexity function, which characterizes the

dependence between the variant complexity and its

properties. Automation of composing variants with equal

complexity and estimation based on verification procedure

allows VL to be created for algorithmic tests functioning in

the completely automatic mode, which makes possible their

use in the preparation of massive online courses.

Automation model of reference algorithm allows us to

correlate student’s solutions with a corresponding correct

solution making possible to check all the intermediate

results and an exact answer to the question, whether the

student presented a correct solution, and also to indicate the

place of an error. This model gives us the method of formal

determination of the variant complexity of the algorithmic

test. The significance of this method consists in the fact that

on its basis the algorithms of constructing the test variants

with designated complexity are created. However, the field

of application of this model is limited by algorithmic tests

only.

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

 Automation of Algorithmic Tasks for Virtual Laboratories Based on Automata Theory

7

References

[1] Lyamin, A.V., Vashenkov, O.E. (2009) Virtual

environment and instruments for student olympiad on

cybernetics. In Proceedings of 8th IFAC Symposium on

Advances in Control Education, Kumamoto, Japan, pp. 95-

100.

[2] Tao, J., Jing-ying, Z., Lang, W. (2014) The thermal

simulation of electromechanical platform system. In

Proceedings of Transportation Electrification Asia-Pacific

(ITEC Asia-Pacific), 2014 IEEE Conference and Expo,

Beijing, pp. 1-4.

[3] Jaffry, D. (2014) Best Practices for Implementing

Modeling Guidelines in Simulink,

http://www.mathworks.com/company/newsletters/articles/

best-practices-for-implementing-modeling-guidelines-in-

simulink.html. Mathworks

[4] Efimchik, E.A., Lyamin, A.V. (2012) RLCP-Compatible

Virtual Laboratories. In Proceedings of The International

Conference on E-Learning and E-Technologies in

Education (ICEEE 2012), Lodz, Poland, pp. 59-64.

[5] Le Xu, Dijiang Huang, Wei-Tek Tsai (2014) Cloud-Based

Virtual Laboratory for Network Security Education. IEEE

Transactions on Education, vol. 57, iss. 3, pp. 145-150.

IEEE Press, New York (2014)

[6] Fu, Q., He, K., Ma, X. (2005) Research on Experimental

Skills Assessment Based on Computer Simulation

Technology. China Distance Education, Beijing, pp. 68-69.

[7] Rodríguez-del-Pino, J. C., Rubio-Royo, E., Hernández-

Figueroa, Z. J.(2012) A Virtual Programming Lab for

Moodle with Automatic Assessment and Anti-plagiarism

Features. In Proceedings of the International Conference

on e-Learning, e-Business, Enterprise Information

Systems, & e-Government, Las Vegas.

[8] Sterbini, A., Temperini, M. (2013) Peer-assessment and

grading of open answers in a web-based e-learning setting.

In Proceedings of Information Technology Based Higher

Education and Training, Antalya, Turkey, pp. 1-7.

EAI
European Alliance
for Innovation

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e6

