
A Service-oriented Architecture for the Provision and
Ranking of Student-Oriented CoursesH

Naseem Ibrahim1,∗

1Penn State Behrend, Erie PA, USA

Abstract

Research has long proved that student learn in different styles. Different students have different capabilities and needs. On
the other hands, in the last few years the popularity of online degrees has dramatically increased. In current online learning

elements including teaching method and assessments. But this contradicts the fact that different students have different
capabilities and constraints. Most institutions provide the same courses. A student should be able to select the course that
best matches his capabilities and constraints as long as it satisfies the required course outcomes. To achieve this goal,
this paper proposes the use of Service-oriented Architecture (SOA). This paper introduces an extended service-oriented
architecture and an extended service definition, which will enable the specification and provision of student-oriented
courses. This paper also proposes a student-oriented course composition approach and a student-oriented course ranking
approach.

Received on 30 September, 2015; accepted on 29 February, 2016; published on 10 March, 2016
Keywords: Student-oriented, SOA, Context, Service Model

Copyright © 2016 Author Naseem Ibrahim, licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.10-3-2016.151119

1. Introduction
Research in education [7][25] has long suggested that
students learn through different learning styles. These styles
include sequential, verbal, visual, active, reflective, sensing
and intuitive. It has long been proven that different students
have different capabilities and needs.

In the last few years, the high cost of education and
the increased number of adult students resulted in the wide
popularity of online degrees.

In the current education model, a school defines the classes
a student needs to complete to obtain a degree. For each
course, the instructor defines the elements of the teaching
process with respect to instruction method, assessment types
and schedule. But this contradicts the basic fact that different
students have different capabilities and needs. A student
should be able to choose a course from any institution. The
course that best matches its capabilities and constrains. The
only constraint is that the course should satisfy the required
outcomes. We call this model student-oriented learning.

HPlease ensure that you use the most up to date class file, available from
EAI at http://doc.eai.eu/publications/transactions/
latex/
∗Corresponding author. Email: nii1@psu.edu

To achieve the student-oriented learning model, this
research suggests the uses of Service-Oriented Computing
(SOC) [20]. SOC is a computing paradigm that uses service
as the fundamental element for application development
processes. An architectural model of SOC in which service
is a first class element is called Service-Oriented Architecture
(SOA) [14]. We believe a course can be represented
as a service and can be provided by a service-oriented
architecture.

Current service-oriented architectures in its current state
are not sufficient for achieving this goal. They focus on
functionality during service provision. Hence, in Section 2,
we propose an Extended Service-oriented Architecture
(ESOA) that supports the provision of student-oriented
courses.

In the newly introduced ESOA, a course is specified as
a service. Current services model functionality and some
nonfunctional properties. But that is not enough. A richer
service that is able to represent a student-oriented course is
needed. Hence, in Section 3, we extend the definition of a
service by including the concept Context to support the rich
definition of courses. We represent student capabilities and
constraints using "Context". Context has been defined [11]
as the information used to characterize the situation of an

1

EAEAI Endorsed Transactions
on e-Learning Research Article

model the school specifies the courses required to obtain a degree. For each course the instructor specifies the course

EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<nii1@psu.edu>

Naseem Ibrahim

Service Registry

Service ProviderService Requester

PublicationDiscovery

Execution

Figure 1. Traditional SOA Architecture

entity. This entity can be a person, a place, or an object. The
context representation and the logic of context proposed by
Wan [47] for reasoning about context-awareness are suitable
formalisms for enriching SOA modeling. The extended
service is defined formally to support formal verification.

In ESOA, a student should be able to specify all his
requirements, capabilities and constrains in a rich definition.
Hence, in Section 4 we introduce Student-oriented Course
Requirement Definition (SOCRD) language. SOCRD will
be used by course requesters to specify the students
requirements.

For a student to complete a degree, he should complete
the degree required outcomes by completing multiple courses.
This is basically a composition of courses. Hence, in Section 5
we introduce a course composition approach that composes
courses defined using our extended service. The composition
is formally defined to support formal verification.

In many cases multiple courses can partially meet the
requirements of the course requester. In such cases a ranking
is necessary. Hence, Section 6 introduces a ranking approach
that ranks courses while considering the requirements,
capabilities and constraints of a course requester.

Section 7 presents a brief study of related work. Section 8
provides an extended example. Finally, Section 9 presents
some concluding remarks and future work.

2. Extended SOA

Figure 1 illustrates the elements of a traditional Service-
oritened Architecture (SOA). It consists of three main
modules, the service provider, the service requester and the
service registry. The service provider publishes a service
definition in the service registry. The service requester
searches the service registry and selects from the published
services. After selecting a service, the service requester
interacts with the service provider by sending requests and
receiving responses.

In traditional SOA, the publication, discovery and
execution of services are heavily based on the functionality of
the services. The service provider publishes the functionality
of the service in the registry. The service requester searches
the registry looking for services that matches its requirements
in terms of functionalities. But such architectures are not
sufficient for the publication of our student-oriented courses.
Hence, this section introduces an Extended SOA (ESOA) that

Course
Registry

Course
lookup

LookupResult

Publish

U
se

s

Course
Mapper

D
ef

in
e

R
eq

ue
st

Student-oriented
Course
Definition

B
row

se

Course
Provider

Course
Requester

Student-oriented
Course Requirment
Definition

R
ec

ie
ve

C
an

di
da

te
s

U
se

s
Figure 2. Extended SOA Architecture

supports the publication, discovery and execution of student-
oriented courses.

ESOA enables course providers to define rich courses
for the provision of student-oriented courses. It also
enables course requesters to obtain courses that best match
their requirements while considering their capabilities and
constraints. Figure 2 illustrates the architecture of ESOA
which consists of the following elements:

• Course Requester: It is the entity that is requiring a
course. It represents the client side of the interaction. It
is usually a student who is looking for a course that best
meets his requirements while respecting the student’s
capabilities and constraints.

• Course Provider: It is the entity that provides a
course. Course providers publish course descriptions
on registries to enable automated discovery and
invocation.

• Student-oriented Course Requirement Definition:
In ESOA, a course requester is able to specify and
list all the course requirements, his capabilities and
constrains in a rich definition. This entity enables this
rich definition.

• Student-oriented Course Definition : To enable the
best possible matching and discovery of courses, course
providers has to publish a rich definition of a course.
Traditional definition of services that relay on service
functionality is not sufficient. Hence, a rich course
definition is required. This entity is responsible for
achieving this.

2 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

A Service-oriented Architecture for the Provision and Ranking of Student-Oriented Courses

• Course Registry: This entity is responsible for
enabling the discovery of student-oriented courses.
Course providers publish their rich course definition
in the course registry. The course mapper searches
the course registry looking for courses that matches
the course requester requirements while respecting the
course requester capabilities and constraints.

• Course Mapper: This unit is responsible for the
following three main responsibilities.

1. It is responsible for matching the requirements
of the course requester to the available course
in the course registry. The novelty in the
matching process is that is does not only focus
on the functional requirements, it takes into
consideration the capabilities and constraints of
the course requester.

2. It is responsible for ranking available courses
is case of multiple matches. The ranking
process considers the requirements of the course
requester.

3. It is responsible for the composition of courses in
case no single course is sufficient to satisfy the
requirements of the course requester.

3. Student-oriented Course Definition
As in any business interaction, a course provider has the main
goal of reaching the largest possible number of consumers.
A consumer for a course is the course requester or student.
To enable the discovery of the courses a provider can deliver,
the course provider publishes course information in a course
registry. This paper suggested the use of services.

In a traditional SOA, the service definition includes the
service functionality. But, in a student-oriented environment,
the publication of the course functionality is not enough.
Hence, traditional services are not sufficient for the
specification and publication of course information. To reach
the largest possible number of requester, a course provider has
to define his courses in a richer definition.

To enable such rich definitions, this paper extended
the definition of a service by including the concept
Context. Context is used to represent student capabilities
and constraints. Context has been defined [11] as the
information used to characterize the situation of an entity.
This entity can be a person, a place, or an object. The
context representation and the logic of context proposed by
Wan [47] for reasoning about context-awareness are suitable
formalisms for enriching SOA modeling. Beside context, this
paper adds nonfunctional properties and legal rules to the
definition of a function. All these elements are incapsulated
in what is called ExtendedService.

The rest of this section introduces the informal and
formal definition of ExtendedService. ExtendedService has
been formally defined to enable the formal composition and
verification of the composition results.

ExtendedService

ContextRule

ContextInfo

Dimension

Legalissues NonFunctioal Function

Signature

Precondition

Postcondition

MethodID

Parameter

Complex

Simple

OtherNF

hasA
is-A

n 1n

n

1

1

n Zero or manyConcept

1 Exactly one

Result

Address

Price

1

1

n

1

1

n

n
n

Value

Context Attributes

1 n

1

Figure 3. ExtendedService Structure

3.1. An Informal Definition of
ExtendedService
An ExtendedService is divided into the following parts, as
shown in Figure 3.

1. Functionality: Its definition includes the function
signature, result, precondition and postcondition. The
signature part defines the function identifier, the
invocation address, and the parameters of the function.
The function invocation has the same effect as in a
programming environment, since service function is an
autonomous program. Each parameter has an identifier
and a type. The result part defines the returned data of
the service function. The precondition should be made
true, either by the service provider or the consumer, in
order to make the function available. The postcondition
is guaranteed by the service provider to be true after
service execution.

2. Nonfunctional properties: The nonfunctional properties
associated with the service are listed in this section.
Pricing information, which can itself be a complex
property expressing different prices for different
amount of buying, is an example of nonfunctional
property.

3. Attributes: Every attribute is a type-value pair.
Attributes provide sufficient information that is unique
to a service. As an example, for providing a course the
appropriate attributes may include title of course and
institution name.

4. Legal issues: Business rules and trade laws that are
enforced at the locations of service provision and ser-
vice delivery are included in this section. Example poli-
cies govern refund, administrative charges, penalties,
and service requesters rights. Such rules are expressible
as logical expressions in predicate logic.

5. Context: The context part of the contract is divided
into context info and context rules. The contextual
information of the service provider is specified in

3 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

Naseem Ibrahim

Name: ProgrammingII
Precondition: ProgrammingI == true
Postcondition: ProgrammingII == true
Title: ProgrammingII
Description: This course continues the study
of basic programming concepts in Java.
Institute: USA University
Price: = 750$
Refund Condition: 100% refund if withdrawn in less
than 5 days from start.
Payment methods: Credit cards only
Payment schedule: Payment should be received by
5th day of classes.
Discounts: Students with GPA more 3.5 gets 20%
discount.
Context Info: [Location : New York] ^ [Duration:4
weeks] ^ [AssessmentType: Exams & Assignments] ^
[AssessmentLocation: Online] ^ [TeachingMethod:
Lectures] ^ [Attendence: Optional]
Context Rule: student-city in USA ^ age > 18

Functionality

Attributes

Nonfunctional

Legal Issues

Context

Figure 4. ProgrammingII ExtendedService

the context info section. The situation or context rule
that should be true for service delivery is specified
in context rules section. It is the responsibility of
the service requester to validate the context info for
obtaining the service, and it is the responsibility of the
service provider to validate the context rules at service
delivery time.

Example 1. Figure 4 illustrates an example of a service that
was modeled using the novel ExtendedService definition. The
service is for a Programming II course that is being provided
by USA University.

3.2. Formal Definition of ExtendedService
An ExtendedService is formally defined using a model-based
specification notation. The context information encapsulated
in the ExtendedService is written in the notation introduced
by Wan [47]. Because of this underlying formalism it
is possible to rigorously verify the claims made in
an ExtendedService. Below we briefly give the formal
representation of the ExtendedService elements.

Let C denote the set of all such logical expressions. X ∈
C is a constraint. The following notation is used in our
definition:

• T denotes the set of all data types, including abstract
data types.

• Dt ∈ T means Dt is a datatype.

• v : Dt denotes that v is either constant or variable of
type Dt.

• Xv is a constraint on v. If v is a constant thenXv is true.

• Vq denotes the set of values of data type q.

• x :: ∆ denotes a logical expression x ∈ C defined over
the set of parameters ∆. A parameter is a 3-tuple,

defining a data type, a variable of that type, and
a constraint on the values assumed by the variable.
We denote the set of data parameters as Λ = {λ =
(Dt, v, Xv)|Dt ∈ T, v : Dt, Xv ∈ C}.

1. Functionality: An ExtendedService provides a single
function. This functionality is defined to include the function
signature, result value, preconditions and postconditions.

Definition 1. A service function is a 4-tuple f =
〈g, i, pr, po〉, where g is the function signature, i is the
function result, pr is the precondition, and po is the post-
condition. A signature is a 3-tuple g = 〈n, d, u〉, where n :
string is the function identification name, d = {x|x ∈ Λ} is
the set of function parameters and u : string is the function
address, the physical address on a network that can be used
to call a function. For example, it can be an IP address. The
result is defined as i = 〈m, q〉, where m : string is the result
identification name and q = {x|x ∈ Λ} is the set of parameters
resulting from executing the ExtendedService. The precon-
dition pr and postcondition po are data constraints. That is,
pr :: z, z ⊆ Λ and po :: z, z ⊆ Λ

2. Nonfunctional properties: Typical nonfunctional proper-
ties associated with the service are pricing and maintenance
information. Pricing can be formalized as follows.

Definition 2. Nonfunctional property list is κ = 〈p, . . .〉,
where p is the service cost and . . . denote other nonfunctional
properties. The service cost p is defined as a 3-tuple p =
〈a, cu, un〉, where a : N is the price amount defined as a
natural number, cu : cT ype is currency tied to a currency
type cT ype, and un : uT ype is the unit for which pricing is
valid. As an example, p = (100, $, hour) denotes the pricing
of 100$/hour. Other nonfunctional properties can be similarly
defined using appropriate data types and included in κ.

3. Attributes: These include some semantic information
that is unique to a service.

Definition 3. An attribute has a name and type, and is
used to define some semantic information associated with the
service. As an example, each ExtendedService can be given
a unique identifier, a version number, and type of release.
They are defined as service attributes. The set of attributes
is α = {(Dt, vα)|Dt ∈ T, vα : Dt}.

4. Legal issues: As part of the contract in an ExtendedSer-
vice, a set of legal rules that constrain the contract may be
included.

Definition 4. A legal issue is a rule, expressed as a logical
expression in C. A rule may imply another, however no two
rules can conflict. We write l = {y|y ∈ C} to represent the set
of legal rules.

5. Context: Both context information and context rules are
formally specified in a contract. These two parts provide
context-awareness ability to ExtendedService.

Context information is formally specified, as defined
in [47], using dimensions and tags along the dimensions.

4 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

A Service-oriented Architecture for the Provision and Ranking of Student-Oriented Courses

In our research, we have been using the five dimensions
WHERE, WHEN. WHAT, WHO, and WHY. In general, it is
the responsibility of service providers to choose as many
dimensions and their names in order to present the contexts
associated with services. Assume that the service provider has
invented a finite set DIM = {X1, X2, . . . , Xn} of dimensions,
and associated with each dimension Xi a type τi . Following
the formal aspects of context developed by Wan [47], we
define a context c as an aggregation of ordered pairs (Xj , vj),
where Xj ∈ DIM, and vj ∈ τj .

A context rule is a situation which might be true in some
contexts and false in some others. For example, the situation
VERYWARM = T emp > 40 ∧ Humid > 70, is true only
in contexts where the temperature is greater than 40 degrees,
and the humidity is greater than 70.

Definition 5. A context is formalized as a 2-tuple β = 〈r, c〉,
where r ∈ C, built over the contextual information c. Context
information is formalized using the notation in [47]: Let τ
: DIM → I , where DIM = {X1, X2,...,Xn} is a finite set
of dimensions and I = {a1, a2, ..., an} is a set of types. The
function τ associates a dimension to a type. Let τ(Xi) = ai ,
ai ∈ I . We write c as an aggregation of ordered pairs (Xj , vj),
where Xj ∈ DIM, and vj ∈ τ(Xj).

Putting these definitions together we arrive at a formal
definition for ExtendedService.

Definition 6. A ExtendedService is a 5-tuple s =
〈f , κ, α, l, β〉, where f is the service function, κ is the
set of nonfunctional properties, α is the set of service
attributes, l is the set of legal rules and β is the context.

Example 2. Example 1 illustrated an informal represen-
tation of a simple ExtendedService. Below is the formal
representation of the same ExtendedService. Let p denote
the ExtendedService for providing Programming II course
who provides the services described in Figure 4. The formal
notation of the ExtendedService p is sp = 〈fp, κp, αp, lp, βp〉,
where the tuple components are explained below.

1. Function: fp = 〈gp, ip, prp, pop〉 where,

• Function signature: gp = 〈np, dp, up〉,
where np = (P rogrammingII) is the
name, dp = {(Location, string), (age, int),
(CourseList, string[])} are input data
parameters, and up = (XXX) is the address.

• Function result: ip = 〈mp, qp〉 , where
mp = (ResultP) is the name and the
set of output data parameters is qp =
{(P assedCourse, bool), (Balance, double)}.

• Function precondition: prp =
(P rogrammingI == true).

• Function postcondition pop =
(P rogrammingII == true).

2. Nonfunctional: κp = 〈pp〉, pp = 〈ap, cup, unp〉, where
ap = (750) is the cost, cup = (dollar) is the currency,
and unp = (course) is the pricing unit.

3. Attributes: αp = {(title = P rogrammingII),
(Description = T hiscourse...), (institute =
USAUniversity)}.

4. Legal: lp = {(Ref undFull if DropDate −
StartDate < 5Days), (P aymentMethod ==
Credit), (P aymentDate <= start +
5, (Discount 20% if GPA > 3.5)}.

5. Context: βp = 〈rp, cp〉, where rp =
{(studentCity in USA), (age > 18)} is the
context rule and cp = {(Location = NewY ork),
(Duration = 4weeks), (AssessmentT ype =
exams&Assignments), (AssessmentLocation =
Online), (T eachingMethod =
Lectures), (Attendance = Optional)} is the
contextual information.

4. Student-oriented Course Requirement
Definition
In a student-oriented learning model, the student who is a
course requester is aiming to get a course that best matches
his requirements and needs. In ESOA, the requirements and
constraints defined by the course requester are passed to
the Course Mapping Unit. A traditional service query using
a traditional query language that focuses on functionality
is not sufficient to specify the requester requirements and
constraints.

Hence, this section introduces Student-oriented Course
Requirement Definition (SOCRD) language. SOCRD enables
service providers to specify the required functionality, non-
functional requirements, constraints defined using context,
and required legal rules.

Below is an informal and formal definition of a request
defined using SOCRD. The formalism of SOCRD is
necessary to enable the formal verification of the matching
result generated by the Mapping Unit.

4.1. Informal Definition of SOCRD
Figure 5 shows the structure of a course request defined
using SOCRD. Each course request will consist of the
four parts required function, required legal issues, required
nonfunctional properties, and requester and consumer
context. The course requester is responsible for defining these
requirements.

The course requester can also assign a weight to each
requirement. This weight defines the priority of each
requirement and is used in ranking the set of candidate course
when the Course Mapping unit performs matching.

• Required Function: The required functional properties
defines the functionality required by the course

5 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

Naseem Ibrahim

Course
Request

Required
Legalissues

Required
NonFunctioal

Required
Function

n 1n

Required
Context

1

Figure 5. Course Request Structure

requester and is defined in terms of the functionality
preconditions and postconditions. For each element the
course requester can assign a weight.

• Required Nonfunctional Properties: The required
nonfunctional properties defines the nonfunctional
properties required by the course requester. The
definition of the nonfunctional properties in SOCRD
is identical to the definition of the nonfunctional
properties in ExtendedService. The only exception is
the addition of the weights.

• Required Legal Issues: This section contains the
required legal rules specified by the course requester.
Its definition is also identical to the definition in
ExtendedService with the addition of the weights.

• Required Context: This section includes the contextual
information of the course requester and provider. It also
uses the same definition of the contextual information
in ExtendedService. A weight value can also be added
to each requirement.

4.2. Formal Definition of SOCRD

The formal definition of the legal rules requirements is
identical to Definition 4. The formal definition of the required
context is identical to Definition 5.

The functional requirements is defined using preconditions
and postconditions. It is defined as follows:

Definition 7. The required function is defined as f̂ =
〈p̂r, p̂o〉, where p̂r is the set of preconditions of the
required function, and p̂o is the set of postconditions of the
required function. The formal definitions of precondition and
postcondition are identical to the one given in Definition 1.

The nonfunctional requirements lists the maximum
acceptable price. It is defined as follows:

Definition 8. The required nonfunctional property is defined
as κ̂ = 〈p̂〉, where p̂ is the maximum price required. The
formal definition of required price is identical to the definition
given in Definition 2.

Putting the definition of all the elements of a course
requirements and adding weight to it, will give us the formal
definition below.

Definition 9. A course request re is defined as re =
〈f̂ , κ̂, β̂, l̂,Ξ〉, where f̂ is a course required function,
κ̂ is the nonfunctional requirement, l̂ is the legal rules
requirements, β̂ is the required contextual information of the
course requester, and Ξ : (x ∈ {Low, BelowAverage,
Average, AboveAverage,High, Exact})→ (y ∈
{p̂r, p̂o, p̂, l̂, β̂)} is a function that assign weights to the
elements of the course request.

5. Course Composition
In ESOA, a course requester passes his requirements and
constrains defied using SOCRD to the Mapping Unit. The
Mapping Unit is responsible for matching the requester
request with ExtendedServices published in the Course
Registry. In some cases, a single course cannot satisfy the
requirements of the requester. In such cases, the Mapping unit
is responsible of composing two or more courses to satisfy the
requester requirements.

The rest of this section discusses the composition of
courses defined as ExtendedServices.

A review of available composition approaches, discussed
in the Related Works Section, shows that most available
service composition approaches are not formal. There are
a few exceptions, however these formal approaches focus
only on composing service functionalities. Hence, the are
not sufficient for the composition of courses defined as
ExtendedServices and there is a need for a new formal
composition method.

The composition method presented in this section is both
formal and complete. Formal composition constructs and
their semantics are defined. It is complete in the sense that
the composition is defined on all parts of ExtendedService,
not just on service functionality. The primary advantage of
formalism and completeness is that complex expressions of
composed ExtendedServices can be constructed and subjected
to formal analysis. Formal analysis is necessary because
service expressions are often complex, involving many
composition operators, and hard to do by manual inspection
at execution time.

The Course Mapping unit creates a course expression
involving the names of ExtendedServices and composition
constructs. All composition constructs in a course expression
have the same precedence, and hence a course expression is
evaluated from left to right. To enforce a particular order of
evaluation, parenthesis may be used. The result of evaluating
a course expression is an ExtendedService.

In the context of courses, two types of compositions are
necessary sequential and parallel. In sequential compositions
one course is a prerequisite for another course. In a parallel
composition two courses can be completed concurrently. The
following are the composition constructs for representing
sequential and parallel composition.

• Sequential Construct �: Given two ExtendedServices
A and B, the service expression A� B defines an
ExtendedServiceC which is the sequential composition

6 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

A Service-oriented Architecture for the Provision and Ranking of Student-Oriented Courses

of A and B. The intended execution behavior of the
ExtendedService C is the execution behavior of B after
the execution of A.

• Parallel Construct ||: Given two ExtendedServices A
and B, the course expression A||B defines the parallel
composition of A and B. The parallel composition A||B
models the concurrent executions of ExtendedServices
A and B. Therefore the resulting behavior of this
composite service should be the merging of their
individual behaviors in time order.

Below we let A = 〈fA, κA, αA, lA, βA〉, and
B = 〈fB, κB, αB, lB, βB〉 denote two ExtendedServices,
where fA = 〈gA, iA, prA, poA〉, fB = 〈gB, iB, prB, poB〉,
gA = 〈nA, dA, uA〉, gB = 〈nB, dB, uB〉, iA = 〈mA, qA〉,
iB = 〈mB, qB〉, κA = 〈pA〉, κB = 〈pB〉, βA = 〈rA, cA〉,
and βB = 〈rB, cB〉. The result of a composition is an
ExtendedService.

5.1. Sequential Composition
The sequential composition A� B of ExtendedServices
A and B is an ExtendedService, expressed as the tuple
〈fA�B, κA�B, αA�B, lA�B, βA�B〉 whose components are
defined below.

Function. : fA�B = 〈gA�B, iA�B, prA�B, poA�B〉,
gA�B = 〈nA�B, dA�B, uA�B〉, iA�B = 〈mA�B, qA�B〉,
where

gA�B :
nA�B = nA _ nB naming convention
dA�B = dA ∪ dB combine input data param-

eters
uA�B = {uA, uB} both addresses are neces-

sary

iA�B :
mA�B = mA _ mB naming convention
qA�B = qA ∪ qB combine output parame-

ters
prA�B = prA ∪

(prB \ poA)
if B requires more con-
straints

prA�B = prA if B doesn’t require more
constraints

poA�B = poA ∪ poB if poA is not used as an
input of B

poA�B = poB if poA is absorbed as an
input for B

Nonfunctional Properties. : κA�B = 〈pA�B〉 where,
pA�B = 〈aA�B, cuA�B, unA�B〉 where cuA�B = cuA = cuB,
unA�B = unA = unB, and

aA�B =


aA + aB normal pricing

max{aA, aB} promotional
min{aA, aB} special sale

Attributes. : αA�B = αA ∪ αB

Legal Issues. : lA�B = lA ∪ lB, defined as the union of
the issues of A and B.

Context. : We use the semantics of context union (t) and
sub-context (@), as defined by Wan [47]. These are defined
essentially using relational semantics. For ExtendedService
A the context is βA = 〈rA, cA〉. This means that rA is true
in context cA in order that A may be provided. Once the
service A has been provided, the context and rules that are
true in that context should be computed. Letting these rules
r ′A and the context c′A, we need to merge them with rB and
cB, βB = 〈rB, cB〉 to arrive at βA�B. With this rationale, we
define βA�B = 〈rA�B, cA�B〉, rA�B = r ′A ∪ rB, and cA�B =
c′A t cB, the smallest closure of contexts c′A and cB. It is
expected that c′A @ cB holds for most of the applications,
because anything outside of cB can be ignored.

5.2. Parallel Composition
The parallel composition A||B of the ExtendedServices
A and B is a ExtendedService, expressed as the tuple
〈fA||B, κA||B, αA||B, lA||B, βA||B〉 whose components are defined
below.

Function. : fA||B = 〈gA||B, iA||B, prA||B, poA||B〉,
gA||B = 〈nA||B, dA||B, uA||B〉, iA||B = 〈mA||B, qA||B〉, where

gA||B:
nA||B = nA _ nB naming convention
dA||B = dA ∪ dB combine input data parame-

ters
uA||B = {uA, uB} both addresses are necessary

iA||B:
mA||B = mAn _ mB naming convention
qA||B = qA ∪ qB combine output parameters
prA||B = prA ∪ prB preconditions are mutually

disjoint
poA||B = poA ∪ poB both postcondition sets are

available

Nonfunctional Properties. : κA||B = 〈pA||B〉, where
pA||B = 〈aA||B, cuA||B, unA||B〉 and:

aA||B = aA + aB
cuA||B = cuA = cuB
unA||B = unA = unB

Attributes. : αA||B = αA ∪ αB
Legal Issues. : lA||B = lA ∪ lB, defined as the union of the
issues of A and B.

Context. : βA||B = 〈rA||B, cA||B〉, where rA||B = rA ∪ rB, and
cA||B = cA t cB.

6. Student-oriented Course Ranking
In ESOA, the Course Mapper takes course requests from
the course requester and searches the course registry for
course that matches the requester requirements. In many
cases, multiple course might be available and in other cases

7 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

Naseem Ibrahim

no exact match is available. The mapper is responsible of
ranking the candidate courses. This section discusses the
ranking algorithm. The ranking process can be defined in the
following 3 steps.

6.1. Form Weight Vector
In formulating a course request the requester assigns a
weight to each property that is relevant for him. The mapper
extracts these weights and constructs the weight vector,
as in Equation 1, where Rw is the weight vector and
wi is the weight of property i as defined by the service
requester. Property i can be a precondition, a postcondition,
a nonfunctional requirement or a legal requirement. The
number of properties n depends on the request defined by the
course requester.

Rw = [w1, w2, w3, .., wn] (1)

A weight can be {Low, BelowAverage, Average, AboveAver-
age, High, Exact}. An ExtendedService that do not satisfy
Exact values are filtered when doing the matching. So the
possible weight values are {Low, BelowAverage, Average,
AboveAverage, High}. We assume in further discussion that
weight values are whole numbers in the range 1 . . . 5, where
1 denotes Low and 5 denotes High.

6.2. Construct Weight Matrix
By using the weight vectors constructed in Step 1, the weight
matrix for the candidate courses is constructed. This is shown
in Equation 2, where n is the number of properties defined
in Equation 1 and m is the number of the candidate courses.
Each column represents the weights of the properties in a
single course. Each row represents the weights of a single
property in the different courses.

Cw =


w1,1 w2,1 .. wm,1
w1,2 w2,2 .. wm,2
..
w1,n w2,n .. wm,n

 (2)

The value of the course property weight depends on the
property type. If a property j is a precondition, postcondition,
or a legal rule (without values), a weight wi,j is equal to 1,
if service i satisfies property j and is equal to 0 otherwise.
If property j is price, or legal rule (with values), wi,j is
calculated according to Equation 3, where z is the required
property value as defined in the service request and x is the
actual property value specified in the candidate courses.

wi,j =


1 if x ≤ z
1 − (x−z2z−z) = 2 − x

z if z < x < 2z
0 if x ≥ 2z

(3)

Equation 3 assumes that actual value that is more than double
the required value will be given a weight of 0. Anything that
is less than the required value will be given 1. And an actual

value between the required value and double the required
value will be given a weight that depends on how close the
actual value is to the required value. For example, if the
required price as defined in the course request is 500, an actual
course price of 550 should be given a better weight than a
price of 800.

6.3. Calculate Weights for Ranking

A single weight value for each candidate course is computed,
and the courses are ranked based on these weights. Equation 4
uses the results of steps one and two to calculate the raking
weight vector.

W = Rw × Cw (4)

The ranking weight vector W contains the weights of the
different candidate courses. These weights are used to rank
the courses. The candidate course with the highest weight
value is placed first in the candidate course list. The course
with the second highest weight value is placed second in the
candidate course list and so on for the rest of the candidate
courses.

Example 3. A course requester is looking for an Interme-
diate French course. The location of the course requester is
in New York City. The course requester is requiring that the
price be 500$ with a weight Average. The course requester is
requiring that the course provider should be 200 miles away,
with a weight High.

Two courses IntermediateFrenchA and Intermediate-
FrenchB provide the functionality required in by the course
requester. They don’t provide an exact match to the price
and location, but rather a partial match. The list of properties
will include: {RequiredP rice, RequiredDistance}. Hence,
the request weight vector is

Rw =
[
Average High

]
In numbers,

Rw =
[
3 5

]
Course IntermediateFrenchA (rsA) has a cost of rsAc =

400$ and is 300 miles away rsAd = 300miles. Course
IntermediateFrenchB (rsB) has a cost of rsBc = 600$ and is
200 miles away rsBd = 200miles. Hence, the course weight
matrix is defined, using Equations 2 and 3, as:

Cw =
[
wrsA,c wrsB,c
wrsA,d wrsB,d

]
where, wrsA,c = 1, wrsB,d = 1 and:

wrsA,d = 2 − 600
500

= 0.8

wrsB,c = 2 − 300
200

= 0.5

8 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

A Service-oriented Architecture for the Provision and Ranking of Student-Oriented Courses

The ranking weight vector will then be defined using
Equation 4 as:

W =
[
3 5

] [1 0.5
0.8 1

]
=
[
5.4 6.5

]
Hence, course IntermediateFrenchA scores 5.4 and ranked
second, while course IntermediateFrenchB scores 6.5 and
ranked first. Although the first course is more expensive, the
ranking reflected that fact that the course requester is more
concerned with the course provider location.

7. Related Work
The related work can be classified into three main
areas: related service models, related service composition
approaches and related service provision approaches.

7.1. Related Service Models

The modeling approaches can be classified based either on
the language, or the architecture or a combination of both.
The two main languages that have been used for modeling
services are UML [1, 32], and WSDL with the related Web
description languages [24, 31, 38, 51]. Architecture based
service modeling approach uses an Architectural Definition
Language (ADL) [10, 27] to describe services. There are a
few other methods [6, 16] which combine language and some
abstract architectural details for describing service features.

The UML-based language UML4SOA [48] supports a
model-driven development of SOA architecture. No precise
guidelines exist for creating such an architecture. This
approach relies mainly on the intuition of the developer, and
lacks formalism. The family of Web Services Description
Languages (WSDL) and OWL-S (including SWS) [29, 31,
51]) have been used to model services. Semantic embedding
of data is enabled by SWS, however these languages are not
formal. They do not provide any support for stating legal
rules, and offer no verification support.

The three architectural description languages SOADL [10,
27], SRML [16], and SOFM [6] provide formal notations for
modeling services. But they have no support for the context.

Analysis of related service models shows that while some
approaches are formal and others have limited support for
context, no single approach is formal and include context as a
first class element.

7.2. Related Composition Approaches

For the sake of placing our work in the right place among
others, we have chosen to discuss two types of service
composition approaches pursued in the literature. These
are (1) Web services based approaches, and (2) formal
approaches.

The two main Web Services approaches for syntactic
service composition are orchestration and choreography [43].
BPEL [9] is the most important orchestration approach while

WS-CDL [49] is an example of choreography approach. The
main difference between BPEL and WS-CDL is that WS-
CDL describes a global view of the observable behavior
of message exchanges of the participating service, while
BPEL describes the behavior from the point of view of the
orchestrator [43]. Neither approach is formal or consider
context in the composition process.

From the formal side, we choose Automata, Petri nets, and
Process Algebras approaches for comparison. We restrict to
a discussion on how compositions are done, assuming their
formal notations.

Many authors [33], [17], [30], [18], [13], and [12] have
used automata to model services and their compositions. One
group has used BPEL and another group has used WS-CDL.
The basic idea is to use a two-step transformation. In the
first step the BPEL or WS-CDL model is transformed to an
automaton. In the second step either UPPAAL [3] or SPIN [4]
model checker is used for model checking.

From the many published studies [35][34][26][39][23],
that use Petri nets we have chosen two categories of work
to review. One approach is to transform language models to
Petri nets, and the second approach is to enhance Petri nets
directly for service compositions. Although, both categories
are formal they lack the support for context.

Approaches that uses process algebra such as Calculus for
Orchestration of Web Services (COWS) [44], The Service
Centered Calculus (SCC) [5], and the Service Oriented
Computing Kernel (SOCK) [22], are formal but they also lack
the support for context composition.

7.3. Related Service Provision Approaches
The most notable related service provision approaches are
SeGSeC [19], eFlow [8], SELF-SERV [40], SHOP2 [50],
SWORD [37], Argos [2], FUSION [45], Proteus [21],
SPACE [28], StarWSCoP [42], METEOR-S [46],
SeCSE [36], DynamiCoS [41] and TSCN [15]. Most of
these approaches does not consider context in the provision
of services. The few that do provide no formal definition
of context and does not consider the relationship between
context and functionality. Hence, the formal verification of
compositions is not possible and they cannot be used in the
specification of our rich courses.

8. Example
Example 1 introduced an informal representation of an
ExtendedService for a ProgrammingII course that is being
taught by USA University. Example 2 presented a formal
representation of the same ExtendedService. This section
extends the previous example by introducing two new
ExtendedServices. The first new ExtendedService provides a
ProgrammingII course that is being taught by UK University.
The second new ExtendedService provides a DataStructure
course that is being taught by USA University. The informal
representation of the new ExtendedServices are presented in
Figures 6 and 7.

9 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

Naseem Ibrahim

Name: ProgrammingII
Precondition: ProgrammingI == true
Postcondition: ProgrammingII == true

Title: ProgrammingII
Description: This course continues the study
of basic programming concepts in Java.
Institute: UK University

Price: = 600$

Refund Condition: 80% refund if withdrawn in less
than 5 days from start.
Payment methods: Credit cards only
Payment schedule: Payment should be received by
5th day of classes.
Discounts: Students with GPA more 3.5 gets 20%
discount.

Context Info: [Location : London ^ [Duration:5
weeks] ^ [AssessmentType: Exams & Assignments] ^
[AssessmentLocation: Online] ^ [TeachingMethod:
Lectures] ^ [Attendence: Optional]

Functionality

Attributes

Nonfunctional

Legal Issues

Context

Figure 6. New ProgrammingII ExtendedService

Name: DataStructure
Precondition: ProgrammingII == true
Postcondition: DataStructure == true

Title: Data Strucure
Description: This course introduces the
concepts of data structure using Java.
Institute: USA University

Price: = 550$

Refund Condition: 100% refund if withdrawn in less
than 5 days from start.
Payment methods: Credit cards only
Payment schedule: Payment should be received by
5th day of classes.
Discounts: Students with GPA more 3.0 gets 15%
discount.

Context Info: [Location : New York] ^ [Duration:4
weeks] ^ [AssessmentType: Exams & Assignments] ^
[AssessmentLocation: Online] ^ [TeachingMethod:
Lectures] ^ [Attendence: Optional]
Context Rule: student-city in USA ^ age > 18

Functionality

Attributes

Nonfunctional

Legal Issues

Context

Figure 7. DataStructure ExtendedService

The formal representation of the DataStructure Extended-
Service is presented below:

Let ds denote the ExtendedService for providing DataS-
tructure course who provides the services described in Fig-
ure 4. The formal notation of the ExtendedService ds is
sds = 〈fds, κds, αds, lds, βds〉, where the tuple components are
explained below.

1. Function: fds = 〈gds, ids, prds, pods〉 where,

• Function signature: gds = 〈nds, dds, uds〉,
where nds = (DataStructure) is the

name, dds = {(Location, string), (age, int),
(CourseList, string[])} are input data
parameters, and uds = (YYY) is the address.

• Function result: ids = 〈mds, qds〉 , where
mds = (ResultDS) is the name and the
set of output data parameters is qds =
{(P assedCourse, bool), (Balance, double)}.

• Function precondition: prds =
(P rogramming |I == true).

• Function postcondition pods =
(DataStructure == true).

2. Nonfunctional: κds = 〈pds〉, pds = 〈ads, cuds, unds〉,
where ads = (550) is the cost, cuds = (dollar) is the
currency, and unds = (course) is the pricing unit.

3. Attributes: αds = {(title = DataStructures),
(Description = T hiscourse...), (institute =
UKUniversity)}.

4. Legal: lds = {(Ref undFull if DropDate −
StartDate < 5Days), (P aymentMethod ==
Credit), (P aymentDate <= start +
5, (Discount 15% if GPA > 3.0)}.

5. Context: βds = 〈rds, cds〉, where rds =
{(studentCity in USA), (age > 18)} is the
context rule and cds = {(Location = NewY ork),
(Duration = 5weeks), (AssessmentT ype =
exams&Assignments), (AssessmentLocation =
Online), (T eachingMethod =
Lectures), (Attendance = Optional)} is the
contextual information.

To illustrate the formal composition of ExtendedServices,
below is the sequential composition of the ExtendedService
presented in Example 2 and the DataStructure ExtendedSer-
vice:

Let p � ds denote the ExtendedService for provid-
ing Programming II and DataStructure courses. The for-
mal notation of the ExtendedService p � ds is sp�ds =
〈fp�ds, κp�ds, αp�ds, lp�ds, βp�ds〉, where the tuple compo-
nents are explained below.

1. Function: fp�ds = 〈gp�ds, ip�ds, prp�ds, pop�ds〉
where,

• Function signature: gp�ds =
〈np�ds, dp�ds, up�ds〉, where np�ds =
(P rogramming || +DataStructure) is the
name, dp�ds = {(Location, string), (age, int),
(CourseList, string[])} are input data
parameters, and up�ds = (YYY) is the address.

• Function result: ip�ds = 〈mp�ds, qp�ds〉 , where
mp�ds = (ResultP DS) is the name and the
set of output data parameters is qp�ds =
{(P assedCourse, bool), (Balance, double)}.

10 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

A Service-oriented Architecture for the Provision and Ranking of Student-Oriented Courses

Precondition: ProgrammingI == true
Priority: Exact
Postcondition: ProgrammingII == true
Priority: Exact
Price: = 750$
Priority: High

Refund Condition: 100% refund
Priority: Low

Context Info: [Location : New York]
Priority: Average

Required
Functionality

Required
Nonfunctional

Required
Legal Issues

Required
Context

Figure 8. Informal Course Request

• Function precondition: prp�ds =
(P rogrammingI == true ∧
P rogrammingII == true).

• Function postcondition pop�ds =
(P rogrammingII == true ∧
DataStructure == true).

2. Nonfunctional: κp�ds = 〈pp�ds〉, pp�ds =
〈ap�ds, cup�ds, unp�ds〉, where ap�ds =
(550 + 750 = 1300) is the cost, cup�ds = (dollar)
is the currency, and unp�ds = (course) is the pricing
unit.

3. Attributes: αp�ds = {(title = P rogramming || +
DataStructures), (Description =
T hiscourse..., andT hiscourse...), (institute =
USAUniversity)}.

4. Legal: lp�ds = {(Ref undFull if DropDate −
StartDate < 5Days), (P aymentMethod ==
Credit), (P aymentDate <= start +
5, (Discount 15% if GPA > 3.0))}.

5. Context: βp�ds = 〈rp�ds, cp�ds〉, where
rp�ds = {(studentCity in USA), (age > 18)} is the
context rule and cp�ds = {(Location = NewY ork),
(Duration = 4 + 5 = 9weeks), (AssessmentT ype =
exams&Assignments), (AssessmentLocation =
Online), (T eachingMethod =
Lectures), (Attendance = Optional)} is the
contextual information.

A user is looking for a ProgrammingII course, his
requirements are listed in Figure 8. His requirements can be
formally defined using SOCRD as follows:

Let rp denote the ProgrammingII course request. The
request is formally defined as rp = 〈f̂p, κ̂p, β̂p, l̂p,Ξp〉, where:

• f̂p={p̂r, p̂o〉 where p̂r = 〈(P rogrammingI == true)〉
and p̂o = 〈(DataStructure == true)}.

• κ̂p={(700, $, course)}.

• l̂p = {(Ref und == 100%)}.

• β̂p = {(Location == NewY ork)}.

• Ξp = {((a == 700), High), ((P rogrammingII ==
true), Exact), ((DataStructure ==
true), Exact), ((Ref und ==
100), Low), ((Location == NewY ork), Average)}

Two ExtendedServices provided ProgrammingII, the
ExtendedService presented in 1 and the ExtendedService
provided in this section. We will call these ExtendedServices
ES1 and ES2 respectfully, Because two ExtendedServices
provide the same course a ranking is necessary. Below is the
ranking of these two ExtendedServices according to the user
requirements.

EX1 and EX2 provide an exact match to the required
pre and post conditions. They don’t provide exact
match to price, discount and location, but rather
a partial match. The list o properties will include:
{RequiredP rice, RequiredRef und, RequiredLocation}.
Hence, the request weight vector is

Rw =
[
High Low Average

]
In numbers,

Rw =
[
5 1 3

]
Course EX1 (EX1) has a cost of EX1c = 750$,it is located

in New York, and has a refund amount of 100% EX1r = 20.
Course EX2 (EX2) has a cost of EX2c = 600$, it is located in
London, and has a refund amount of 80% EX2r = 80. Hence,
the course weight matrix is defined, using Equations 2 and 3,
as:

Cw =

 wEX1,c wEX2,c
wEX1,l wEX2,l
wEX1,r wEX2,r


where, wEX2,c = 1, wEX1,l = 1, wEX2,l = 0, wEX1,r = 1 and:

wEX1,c = 2 − 750
700

= 0.93

wEX2,r = 2 − 100
80

= 0.75

The ranking weight vector will then be defined using
Equation 4 as:

W =
[
5 1 3

]  0.93 1
1 0
1 0.75

 = [
8.65 7.25

]
Hence, course EX1 scores 8.65 and ranked first, while course
EX2 scores 7.25 and ranked first.

9. Conclusion and Future Work
It has long been proven that different students have different
capabilities and needs. Being able to adhere to the needs of
all students, might not be possible in traditional face-to-face

11 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

Naseem Ibrahim

classes. But when it comes to online education, achieving this
might be easier. To enable students to select courses that best
meets their requirements, the following should be achieved:

• A course provider should be able to publish a rich
definition of courses.

• A course requester should be able to define a rich
request of his requirements.

• A student-oriented framework should match the
students requirements with available courses.

The work presented in this paper utilizes SOA to achieve
the above goals. Courses are defined using context-aware
services, while student requests are defined using context-
aware queries. A context-aware framework is responsible
for the publication, discovery and provision of the student-
oriented courses.

In addition this paper has presented an extended service-
oriented architecture, a formal extended service model, a
formal composition theory, and a student-oriented ranking
approach.

We are currently working on a complete implementation of
the newly introduced architecture and associated tools.

References
[1] (2008) Service oriented architecture modeling

language (SOAML) - specification for the UML

profile and metamodel for services (UPMS), OMG
Submission document: ad/2008-11-01. Available at
http://www.omgwiki.org/SoaML/doku.php?id=specification.

[2] AMBITE, J.L. and WEATHERS, M. (2005) Automatic
composition of aggregation workflows for transportation
modeling. In Proceedings of the 2005 national conference on
Digital government research (Digital Government Society of
North America): 41–49.

[3] BEHRMANN, G., DAVID, A. and LARSEN, K.G. (2004) A
tutorial on UPPAAL. In Formal Methods for the Design of Real-
Time Systems: 4th International School on Formal Methods
for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004 (Springer–Verlag), LNCS 3185: 200–
236.

[4] BEN-ARI, M. (2008) Principles of the Spin Model Checker
(Springer).

[5] BOREALE, M., BRUNI, R., NICOLA, R.D., LANESE, I.,
LORETI, M., MONTANARI, U., SANGIORGI, D. et al. (2006)
Scc: a service centered calculus. In Proceedings of WS-FM
2006, 3rd International Workshop on Web Services and Formal
Methods, Lecture Notes in Computer Science (Springer): 38–
57.

[6] CAO, X.X., MIAO, H.K. and XU, Q.G. (2008) Modeling
and refining the service-oriented requirement. In TASE
’08: Proceedings of the 2008 2nd IFIP/IEEE International
Symposium on Theoretical Aspects of Software Engineering
(Washington, DC, USA: IEEE Computer Society): 159–165.

[7] CARVER, C.A., J., HOWARD, R. and LANE, W. (1999)
Enhancing student learning through hypermedia courseware
and incorporation of student learning styles. Education, IEEE
Transactions on 42(1): 33–38. doi:10.1109/13.746332.

[8] CASATI, F., ILNICKI, S., JIN, L.J., KRISHNAMOORTHY,
V. and SHAN, M.C. (2000) Adaptive and dynamic service
composition in eflow. In Proceedings of the 12th Int’l
Conference on Advanced Info. Systems Engineering (Springer-
Verlag): 13–31.

[9] CURBERA, F., KHALAF, R., MUKHI, N., TAI, S. and
WEERAWARANA, S. (2003) The next step in web ser-
vices. Commun. ACM 46(10): pp. 29–34. doi:http://0-
doi.acm.org.mercury.concordia.ca/10.1145/944217.944234.

[10] DAN, X., SHI, Y., TAO, Z., XIANG-YANG, J., ZAO-QING,
L. and JUN-FENG, Y. (2006) An approach for describing
soa. In International Conference on Wireless Communications,
Networking and Mobile Computing, WiCOM 2006: 1–4.

[11] DEY, A.K. (2001) Understanding and using
context. Personal Ubiquitous Comput. 5(1): 4–7.
doi:http://dx.doi.org/10.1007/s007790170019.

[12] DONG, J.S., LIU, Y., SUN, J. and ZHANG, X. (2006)
Verification of computation orchestration via timed automata.
In ICFEM06 (Springer–Verlag), LNCS 4260: 226–245.

[13] DYAZ, G., CAMBRONERO, M.E., PARDO, J.J., VALERO, V.
and CUARTERO, F. (2006) Automatic generation of correct
web services choreographies and orchestrations with model
checking techniques. In International Conference on Internet
and Web Applications and Services/Advanced International
Conference on Telecommunications, 2006. AICT-ICIW ’06.:
186 – 186. doi:10.1109/AICT-ICIW.2006.53.

[14] ERL, T. (2007) SOA Principles of Service Design (Upper
Saddle River, NJ, USA: Prentice Hall PTR).

[15] FAN, G., YU, H., CHEN, L. and LIU, D. (2009) An approach
to analyzing dynamic trustworthy service composition. In
GÓMEZ-PÉREZ, A., YU, Y. and DING, Y. [eds.] The Semantic
Web, Fourth Asian Conference, ASWC 2009, Shanghai, China,
December 6-9, 2009. Proceedings (Springer), Lecture Notes in
Computer Science 5926: 261–275.

[16] FIADEIRO, J.L., LOPES, A. and BOCCHI, L. (2006) A formal
approach to service component architecture. In BRAVETTI,
M., NÚÑEZ, M. and ZAVATTARO, G. [eds.] Web Services
and Formal Methods. LNCS, vol 4184 (Springer, Berlin
Heidelberg), 193–ï£¡213.

[17] FOSTER, H., UCHITEL, S., MAGEE, J. and KRAMER, J.
(2003) Model-based verification of web service compositions.
In Proc. of the eighteen IEEE international conference on
automated software engineerting ASE03: 152–163.

[18] FU, X., BULTAN, T. and SU, J. (2004) Analysis of
interacting bpel web services. In Proceedings of the
13th international conference on World Wide Web
(WWW ’04) (New York, NY, USA: ACM): 621–630.
doi:http://doi.acm.org/10.1145/988672.988756.

[19] FUJII, K. and SUDA, T. (2009) Semantics-based
context-aware dynamic service composition. ACM
Trans. on Autonomous and Adaptive Systems 4(2): 1–31.
doi:http://doi.acm.org/10.1145/1516533.1516536.

[20] GEORGAKOPOULOS, D. and PAPAZOGLOU, M.P. (2008)
Service-Oriented Computing (The MIT Press).

[21] GHANDEHARIZADEH, S., KNOBLOCK, C., PAPADOPOULOS,
C., SHAHABI, C., ALWAGAIT, E., AMBITE, J.L., CAI, M.
et al. (2003) Proteus: A system for dynamically composing
and intelligently executing web services. In Proceedings of the
1st International Conference on Web Services (Las Vegas, NV,
USA).

12 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

http://dx.doi.org/10.1109/13.746332
http://dx.doi.org/http://0-doi.acm.org.mercury.concordia.ca/10.1145/944217.944234
http://dx.doi.org/http://0-doi.acm.org.mercury.concordia.ca/10.1145/944217.944234
http://dx.doi.org/http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1109/AICT-ICIW.2006.53
http://dx.doi.org/http://doi.acm.org/10.1145/988672.988756
http://dx.doi.org/http://doi.acm.org/10.1145/1516533.1516536

A Service-oriented Architecture for the Provision and Ranking of Student-Oriented Courses

[22] GUIDI, C., LUCCHI, R., GORRIERI, R., BUSI, N. and
ZAVATTARO, G. (2006) Sock: a calculus for service oriented
computing. In Proceedings of the 4th International Conference
on Service-Oriented Computing, volume 4294 of LNCS
(Chicago, IL, USA: Springer): 327–338.

[23] HAMADI, R. and BENATALLAH, B. (2003) A petri net-
based model for web service composition. In Proceedings
of the 14th Australasian database conference (Darlinghurst,
Australia: Australian Computer Society, Inc.): 191–200.

[24] HERRMANN, M., ASLAM, M.A. and DALFERTH, O. (2007)
Applying semantics (wsdl, wsdl-s, owl) in service oriented
architectures (soa). In Proceedings of the 10th Intl. Protege
Conference (Budapest, Hungary).

[25] HEYWOOD, J. (2005) Learning Strategies and
Learning Styles (Wiley-IEEE Press), 119–151.
doi:10.1109/9780471744696.ch5, URL http://
ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=5271343.

[26] HINZ, S., SCHMIDT, K. and STAHL, C. (2005) Transforming
bpel to petri nets. In Proceedings of the International
Conference on Business Process Management (BPM2005),
volume 3649 of Lecture Notes in Computer Science (Springer-
Verlag): 220–235.

[27] JIA, X., YING, S., ZHANG, T., CAO, H. and XIE, D. (2007)
A new architecture description language for service-oriented
architecture. In Sixth International Conference on Grid and
Cooperative Computing (GCC 2007): 96 –103.

[28] JIN, C., WU, M. and YING, J. (2009) A structure-based
approach for dynamic services composition. Journal of
Software 4(8): 891–898.

[29] KASHYAP, V., BUSSLER, C. and MORAN, M. (2008) The
Semantic Web, Semantics for Data and Services on the Web
(Springer).

[30] KAZHAMIAKIN, R., PANDYA, P. and PISTORE, M. (2006)
Timed modelling and analysis in web service compositions. In
The First International Conference on Availability, Reliability
and Security (ARES 2006): 7. doi:10.1109/ARES.2006.134.

[31] MARTIN, D., PAOLUCCI, M., MCILRAITH, S. and ET AL,
M. (2004) Bringing semantics to web services: The owl-s
approach. In First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004) (San
Diego, California, USA).

[32] MAYER, P., SCHROEDER, A. and KOCH, N. (2008)
Mdd4soa: Model-driven service orchestration. In EDOC ’08:
Proceedings of the 2008 12th International IEEE Enter-
prise Distributed Object Computing Conference (Wash-
ington, DC, USA: IEEE Computer Society): 203–212.
doi:http://dx.doi.org/10.1109/EDOC.2008.55.

[33] MITRA, S., KUMAR, R. and BASU, S. (2007) Automated
choreographer synthesis for web services composition using
i/o automata. In IEEE International Conference on Web
Services (ICWS 2007): 364 –371. doi:10.1109/ICWS.2007.47.

[34] NARAYANAN, S. and MCILRAITH, S.A. (2002) Simulation,
verification and automated composition of web services. In
Proceedings of the 11th international conference on World
Wide Web (New York, NY, USA: ACM): 77–88. doi:http://0-
doi.acm.org.mercury.concordia.ca/10.1145/511446.511457.

[35] OUYANG, C., VERBEEK, E., VAN DER AALST,
W.M.P., BREUTEL, S., DUMAS, M. and TER

HOFSTEDE, A.H.M. (2007) Formal semantics and
analysis of control flow in ws-bpel. Science of

Computer Programming 67(2-3): 162–198. doi:http://0-
dx.doi.org.mercury.concordia.ca/10.1016/j.scico.2007.03.002.

[36] PENTA, M.D., BASTIDA, L., SILLITTI, A., BARESI, L.,
MAIDEN, N., MELIDEO, M., TILLY, M. et al. (2009) Secse–
service centric system engineering: An overview. In NITTO,
E.D., SASSEN, A.M., TRAVERSO, P. and ZWEGERS, A.
[eds.] At Your Service: Service-Oriented Computing from an
EU Perspective (The MIT Press), 241–272.

[37] PONNEKANTI, S.R. and FOX, A. (2002) Sword: A developer
toolkit for web service composition. In Proceedings of the 11th
International WWW Conference.

[38] ROMAN, D., KELLER, U., LAUSEN, H., DE BRUIJN, J.,
LARA, R., STOLLBERG, M., POLLERES, A. et al. (2005) Web
service modeling ontology. Applied Ontology 1(1): 77–106.

[39] ROSARIO, S., BENVENISTE, A., HAAR, S. and JARD, C.
(2006) Foundations for web services orchestrations: Func-
tional and QoS aspects, jointly. In Second International
Symposium on Leveraging Applications of Formal Meth-
ods, Verification and Validation (ISoLA 2006): 309 –316.
doi:10.1109/ISoLA.2006.8.

[40] SHENG, Q.Z., BENATALLAH, B., DUMAS, M. and MAK,
E.O.Y. (2002) Self-serv: a platform for rapid composition of
web services in a peer-to-peer environment. In Proceedings of
the 28th international conference on Very Large Data Bases
(VLDB Endowment): 1051–1054.

[41] SILVA, E., PIRES, L.F. and VAN SINDEREN, M. (2009)
Supporting dynamic service composition at runtime based on
end-user requirements. In Proceedings of the 1st Workshop on
User-generated Services (UGS2009) at the 7th International
Joint Conference on Service Oriented Computing, (ICSOC
2009) (Stockholm, Sweden).

[42] SUN, H., WANG, X., ZHOU, B. and ZOU1, P. (2003)
Research and implementation of dynamic web services
composition. In ZHOU, X., JÄHNICHEN, S., XU, M. and
CAO, J. [eds.] Advanced Parallel Processing Technologies, 5th
InternationalWorkshop, APPT 2003 (Springer-Verlag), Lecture
Notes in Computer Science 2834: 457–466.

[43] TER BEEK, M.H., BUCCHIARONE, A. and GNESI, S.
(2007) Formal methods for service composition. Annals of
Mathematics, Computing and Teleinformatics 1(5): 1–5.

[44] TIEZZI, F. (2009) Specification and Analysis of Service-
Oriented Applications. Phd thesis, Università degli Studi di
Firenze, Florence, Italy.

[45] VANDERMEER, D., DATTA, A., DUTTA, K., THOMAS, H.,
RAMAMRITHAM, K. and NAVATHE, S.B. (2003) Fusion:
A system allowing dynamic web service composition and
automatic execution. In Proceedings of the IEEE Int.
Conference on E-Commerce Technology (IEEE Computer
Society): 399.

[46] VERMA, K., GOMADAM, K., SHETH, A.P., MILLER,
J.A. and WU, Z. (2005) The METEOR-S Approach for
Configuring and Executing Dynamic Web Processes. Technical
report, LSDIS Lab, University of Georgia, Athens, Georgia.

[47] WAN, K. (2006) Lucx: Lucid Enriched with Context. Phd
thesis, Concordia University, Montreal, Canada.

[48] WIRSING, M., BOCCHI, L., FIADEIRO, J.L., GILMORE, S.,
HOELZL, M., KOCH, N., MAYER, P. et al. (2008) Sensoria:
Engineering for Service-Oriented Overlay Computers. In
DI NITTO, E., SASSEN, A.M., TRAVERSO, P. and ZWEGERS,
A. [eds.] At Your Service: Service Engineering in the
Information Society Technologies Program (MIT Press).

13 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

http://dx.doi.org/10.1109/9780471744696.ch5
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5271343
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5271343
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5271343
http://dx.doi.org/10.1109/ARES.2006.134
http://dx.doi.org/http://dx.doi.org/10.1109/EDOC.2008.55
http://dx.doi.org/10.1109/ICWS.2007.47
http://dx.doi.org/http://0-doi.acm.org.mercury.concordia.ca/10.1145/511446.511457
http://dx.doi.org/http://0-doi.acm.org.mercury.concordia.ca/10.1145/511446.511457
http://dx.doi.org/http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.scico.2007.03.002
http://dx.doi.org/http://0-dx.doi.org.mercury.concordia.ca/10.1016/j.scico.2007.03.002
http://dx.doi.org/10.1109/ISoLA.2006.8

Naseem Ibrahim

[49] WS-CDL (2005) Web Services Choreography Description
Language Version 1.0. Tech. rep.

[50] WU, D., PARSIA, B., SIRIN, E., HENDLER, J., NAU, D. and
NAU, D. (2003) Automating daml-s web services composition
using shop2. In Proceedings of 2nd International Semantic
Web Conference.

[51] ZAREMBA, M., KERRIGAN, M., MOCAN, A. and MORAN,
M. (2006) Web services modeling ontology. In CARDOSO, J.
and SHETH, A.P. [eds.] Semantic Web Services, Processes and
Applications (Springer), 63–87.

14 EAI Endorsed Transactions on

e-Learning
10 2015 - 03 2016 | Volume 3 | Issue 9 | e2

EAI
European Alliance
for Innovation

	1 Introduction
	2 Extended SOA
	3 Student-oriented Course Definition
	3.1 An Informal Definition of ExtendedService
	3.2 Formal Definition of ExtendedService

	4 Student-oriented Course Requirement Definition
	4.1 Informal Definition of SOCRD
	4.2 Formal Definition of SOCRD

	5 Course Composition
	5.1 Sequential Composition
	Function
	Nonfunctional Properties
	Attributes
	Legal Issues
	Context

	5.2 Parallel Composition
	Function
	Nonfunctional Properties
	Attributes
	Legal Issues
	Context

	6 Student-oriented Course Ranking
	6.1 Form Weight Vector
	6.2 Construct Weight Matrix
	6.3 Calculate Weights for Ranking

	7 Related Work
	7.1 Related Service Models
	7.2 Related Composition Approaches
	7.3 Related Service Provision Approaches

	8 Example
	9 Conclusion and Future Work

