
Bridging the Gap Between Security Tools and SDN
ControllersH

Li Wang and Dinghao Wu∗

College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA

Abstract

Software-Defined Networking (SDN) is a promising paradigm to improve network security protections.
However, current SDN-based security solutions can hardly provide sufficient protections in a real SDN
network, due to several reasons: 1) they are implemented at either the centralized SDN controllers or the
decentralized network devices, which are subject to a performance limitation; 2) their designs are confined
by the SDN network characteristics and can only provide limited security functions; and 3) many solutions
have deployment challenges and compatibility issues. In this paper, we propose SecControl, a practical
network protection framework combining the existing security tools and SDN technologies, to produce a
comprehensive network security solution in an SDN environment. We implement a SecControl prototype
with OpenFlow and evaluate its effectiveness and performance. Our experiment shows that SecControl can
cooperate with many mainstream security tools and provide effective defense responses over SDN-supported
networks.

Received on 16 November 2018; accepted on 19 December 2018; published on 21 December 2018
Keywords: Software-defined networking (SDN), Network Function Virtualization (NFV), OpenFlow, SDN security 
application, SDN controller
Copyright © 2018 Li Wang and Dinghao Wu, licensed to EAI. This is an open access article distributed under the 
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits 
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.10-1-2019.156242

1. Introduction

Software-Defined Networking (SDN) has gained much
attention in both academia and industry [24]. By decou-
pling the control logic from the closed and predesig-
ned network devices, SDN enables the reprogramming
capability of network devices. Previously, traditional
network devices can only work as they are manufactu-
red, and all their traffic control and forwarding functi-
ons are not changeable once produced. With SDN, the
traffic control functions and traffic forwarding functi-
ons are divided as control plane and data plane. The
separation of control plane and data plane provides a
powerful and flexible network structure for various
network applications.

HA preliminary version [39] of this article appeared in Proceedings of
the Workshop on Applications and Techniques in Cyber Security (ATCS),
co-located with the 13th EAI International Conference on Security and
Privacy in Communication Networks (SecureComm ’17), Niagara Falls,
Canada, October 22–25, 2017.
∗Corresponding author. Email: dwu@ist.psu.edu

A lot of network-related research has been conducted
with SDN, such as network management [9, 10, 21],
network QoS [15], network load balancing [18, 40],
and content delivery system [41]. Similarly, researchers
tried to take advantage of SDN technologies to
devise new network security solutions as well. Many
innovations [34–37] tried to provide better security
services over software-defined networks, and they are
provided either at the centralized controllers or the
distributed inline network devices.

However, the existing SDN-based security solutions
can hardly compete with traditional security solutions
due to various reasons. First, they are designed
with limitations inherently. When security functions
are implemented at centralized controllers [35], the
processing capabilities of controllers will become
a potential bottleneck; when security functions are
deployed at network devices[37], it can hardly provide
a comprehensive protection over the network. Second,
most of them are focusing on maximizing the
control flexibility of SDN. Maximizing network control
flexibility does not necessarily lead to strengthened

1

Research Article
EAI Endorsed Transactions  
on Security and Safety

EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1

http://creativecommons.org/licenses/by/3.0/
mailto:<dwu@ist.psu.edu>


Li Wang and Dinghao Wu

network protection ability. Third, the existing SDN-
based security solutions are mainly on a certain aspect
of network protection [20], which can hardly satisfy the
general network protection requirements. Last, many
of them have deployment challenges and compatibility
issues.

As a result, the current SDN-based security solutions
cannot provide the same protection capabilities as
traditional security tools can provide over SDN
networks. Actually, the key innovations brought by
SDN are over network control instead of security
processing capability. Network protection demands
more powerful security processing capabilities, such as
packet payload inspection, traffic pattern analysis, and
so on. Therefore, we need a practical network security
solution which can provide competitive security
protection and, at the same time, can take advantage of
the flexible control over SDN networks.

Traditional security tools, like firewalls and intru-
sion detection systems, have strong security proces-
sing capabilities in protecting traditional network infra-
structures, and each type of security tool is specialized
to deal with a certain type of security threat. They are
composed together to form a comprehensive network
security solution. However, traditional security tools
can hardly be used directly in software-defined net-
works because of the following reasons: 1) existing secu-
rity tools are designed under the traditional network
infrastructure, which does not fit into SDN network
structure; 2) most security tools are devised to deal with
a certain type of security threat. Their exclusive designs
decide they can only be used individually and cannot
cooperate with each other; and 3) there is no interface
on existing security tools to let them take advantage of
SDN benefits.

In this paper, we propose SecControl, a new
network protection framework bridging the gap
between security tools and SDN technologies, to
provide sufficient protection capabilities in an SDN
environment. Our goal is to design a practical and
comprehensive network security solution over SDN
networks by leveraging existing security tools and SDN
control flexibility. Unlike existing SDN-based security
solutions, SecControl is designed on a new security
control layer above SDN controllers, which releases
SDN controllers from security processing pressure.
SecControl is able to perceive the real-time security
threats, generate real-time defense reactions, and adjust
corresponding network behaviors dynamically. With
SecControl, security engineers can easily add different
security tools into the protection boundary and make
use of their detection abilities to serve the entire
network. Our method can be applied on mainstream
SDN platforms without difficulty.

In summary, the main contributions of SecControl are
as follows.

• We propose a novel network protection frame-
work for software-defined networks, which com-
bines the existing security tools and SDN techno-
logies. Our framework retrofits and reuses the
existing security tools in the SDN context, which
avoids re-development of many security defense
functionalities.

• Our method equips an SDN network with strong
security processing capabilities in an economic
way. Existing security tools can be used to protect
SDN networks without difficulty.

• SecControl layer provides an additional layer
above SDN controllers, which release controllers
from security processing pressures. SecControl
has a full security view of the protected network
domain, which enables SecControl to offer a
unified protection.

• We design a practical method to dynamically
translate defense responses into SDN rules to
adjust network behaviors. We provide a set of
SDN primitives, namely drop, forward, reflect,
isolate, and copy, and these primitives can be
translated to OpenFlow flow rules automatically.

• SecControl separates the security processing logic
from the security enforcement components. With
our method, a SecControl domain can receive
remote protection instructions from other Sec-
Control domains, which enables a unified Sec-
Control protection over different SDN networks.

The remainder of the paper is organized as follows.
We introduce the challenges of SecControl in Section
2. In Section 3, we discuss SecControl’s architecture
and how it is designed. Section 5 describes a
SecControl prototype implementing with OpenFlow.
The evaluation is presented in Section 6. In Section 7,
we talk about a few insights obtained from this work.
We briefly summarize the related work in Section 8.
Finally, a conclusion is given in Section 9.

2. Challenges
Our goal is to design a practical network security
solution in SDN networks by employing the security
processing capabilities of traditional security tools and
SDN technologies. To achieve it, we need to answer
several research questions.

RQ1. How Does SDN Improve Network Security
Protection?

Network security was once regarded as a subset
of network management problem [10]. The key
innovation of SDN is separating control plane and data
plane which maximizes the network control flexibility.

2 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

However, Maximizing network control flexibility does
not necessarily lead to the strengthened network
protection ability. We may need to think how can we use
SDN to improve security. For example, how to assign
security responsibilities to control plane and data plane?
How to dynamically adjust network behaviors against
security threats?

RQ2. How to Fit Traditional Security Tools into SDN
Networks?

Although traditional security tools have powerful
security processing capabilities, they cannot be used
in an SDN environment directly. The reasons are
summarized as follows: 1) traditional security tools are
invented for traditional network infrastructure, which
can hardly fit into the SDN structure; 2) these tools do
not have interaction interfaces for using SDN features
to improve security; and 3) seldom can existing security
tools share threat information with each other since
they are designed individually, and that is a weak
point in defending SDN networks. Based on the above
reasons, we need to answer how to fit existing security
tools into SDN networks? For example, How do we
place security tools in an SDN network? How can
we collect threat information from traditional security
tools?

RQ3. How Can We Combine Them Together?
To make use of the protection capabilities of

traditional security tools and maximize the SDN
benefits in securing networks, we need to make
them work together. Consider most security tools
are designed for traditional networks instead of SDN
networks, there are several practical issues when
combining them together. The first issue is the current
security tools are heterogeneous, and their detection
results are not compatible. For instance, a host-based
intrusion detection system will be mainly monitoring
system behaviors, while a firewall will be interested in
suspicious network activities. The log generated by the
two tools can hardly join together for further security
analysis. The second issue is we lack an interaction
mechanism for security tools to communicate with
SDN networks. We want to employ real-time threats
information to adjust network behaviors dynamically.
The last issue is we need a unified method to
translate the semantics of threat information into
SDN rules. For example, how do we extract effective
threats information from heterogeneous security event
information? Given a certain security threat, how do we
adjust network behaviors for an effective defense? How
do we distribute defense decisions in an SDN network?

3. System Architecture
In this section, we introduce the SecControl architec-
ture. We first give an overview of SecControl. Then, we

illustrate the three-layer structure of SecControl as well
as the main functions. Last, we explain how SecControl
works.

3.1. Overall Architecture
SecControl seeks to make use of existing security tools
to build up a practical protection framework to maxi-
mize SDN benefits in protecting production networks.
Through collecting various threats information from
various security tools, SecControl converges heteroge-
neous security alerts to one point. By using specific
security analysis and detection algorithms, SecControl
identifies attack evidence, accesses an overall security
situation, and generate corresponding defense respon-
ses. Figure 1 shows the SecControl architecture. As
can be seen from the figure, SecControl architecture
is divided into three layers, Threat Collecting Layer,
SecControl Layer, and SDN Controller Layer. Each layer
plays a different role in the SecControl protection fra-
mework. The Threat Collecting Layer is in the upper
part, which is composed of various security tools and
Threat Collecting Agents. Consider SecControl aims
to provide an overall protection framework, it needs
to provide enough compatibility supports to various
security tools. Each security tool will be attached a
customized Threat Collecting Agent which is devised to
cooperate with this tool. As Figure 1 shows, a security
tool is represented by a blue rectangle, and the small tri-
angle stands for the attached Threat Collecting Agent.
The Threat Collecting Layer collects security events and
send them to the SecControl Layer, and the SecControl
Layer will transform the threat information into defense
responses. After the defense responses are translated
into specific SDN rules, they will be passed down to the
SDN Controller Layer. The SDN Controller Layer will
distribute the SDN rules to corresponding SDN devices
for enforcement. The work flow will be given in next
subsection.

The Threat Collecting Layer includes two parts, tra-
ditional security tools and Threat Collecting Agents,
whose responsibility is gathering effective security
event information from various security tools. Due to
that existing SDN solutions are weak in enhancing secu-
rity processing abilities of SDN networks essentially, we
try to borrow the existing powerful security tools to
provide SecControl stronger security processing abili-
ties. The security tools are deployed for detecting secu-
rity threats, while the Threat Collecting Agents are for
collecting the latest security event information detected
by these tools. The function of Threat Collecting Agents
is to provide a uniform interface to fit the traditional
security tools into the SecControl Layer. As Figure 1
shows, each security tool will be assigned a Threat
Collecting Agent, which is equipped with customized
interfaces for recording detection information on that

3 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Li Wang and Dinghao Wu

...
Security Threats

Step 1

Step 3

... ...

... ... ...

Threat Collecting Layer

SecControl Layer

SDN Controller Layer

Firewall NIDS HIDS

SecControl Node

AntiVirus System Log
Remote

SecControl Node

SDN Controller

SDN Device

SDN Controller SDN Controller

SDN Device SDN Device SDN Device SDN Device SDN Device

Figure 1. The SecControl Architecture

tool. The collected information will go through a pre-
processing procedure which transforms heterogenous
and unorganized information into a uniform format.
After the threat information is preprocessed and orga-
nized, then it will be sent to the SecControl Layer for
further processing.

The SecControl Layer is located in the middle of the
other two layers, which contains only one component,
the SecControl Node. The SecControl Node is the key
component in our framework, which is designed to
bridge the connection between the security tools and
SDN controllers. When receiving security event records
from the Threat Collecting Layer, the SecControl Node
will keep running a series of standard steps. The
standard steps include converging all the collected
security events, correlating related alerts, analyzing
alert information, and abstracting attacking evidence.
After that, the SecControl Node will decide how to
make a defense response to the detected security threats
over SDN networks. The responses will be given in SDN
rules, and these SDN rules will be distributed to the
related SDN controllers for enforcement. As a result,
SecControl adjusts the network behaviors based on the
security threats. Our work is mainly on this layer, and
there are a lot of research questions to be solved. More
details about how we design the inside process of the
SecControl Node is presented in the next section.

The SDN Controller Layer is responsible for enfor-
cing the SDN rules for our protection framework, which
is formed by many SDN controllers. The SDN control-
lers we use here are just standard SDN controllers.
When receiving SDN rules from the SecControl Node,
a controller will check its local device list to locate the
related network devices. Then, the controller will notify
the corresponding network devices and send out the
latest SDN rules. The new SDN rules will be installed
and enforced at SDN network devices. The revolutio-
nary design of SDN is decoupling the functions of cur-
rent network devices into control plane and data plane.
The control plane is implemented as an SDN controller,
while the data plane is deployed as new SDN network
devices. In SDN networks, every SDN controller will
be connecting at least one or more network devices,
and these devices will be maintained and managed
by this SDN controller. Network devices will share
state information with their controllers, and controllers
will collect statistic information from network devices.
When there is an update request, the SDN controller
will send out SDN rules to the related network devices
to update data plane rules.

4 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

3.2. How SecControl Works

The working process of SecControl is shown in Figure
1. There are four steps: (1) The security threats are
detected by security tools and the detection results are
recorded and processed by Threat Collecting Agents
(ThreatCA). (2) The preprocessed threat information is
sent from ThreatCA to the SecControl Node. (3) The
SecControl Node converges and analyzes the threat
information to decide how to make a defense response
over SDN networks. Based on the defense response,
new SDN rules are generated. (4) The SecControl
Node distributes the generated SDN rules to the
corresponding SDN controllers for enforcement. After
the four steps, the network devices behaviors in the
SDN networks are modified based on the detected
security threats.

In step one, security threat information is generated
by various security tools. Consider existing security
tools are divided into several types and each type of
security tools is designed for a certain special security
purpose, different security tools will be targeting
different security threats. For example, firewalls focuses
on filtering unwanted network traffic, while intrusion
detection systems concentrate on detection system
anomalies. It is very common to have different security
event formats in different security tools. As a result,
we need to customize ThreatCA for different security
tools. And the security event information recorded by
ThreatCA will be featured with various formats. To
simplify SecControl Layer’s work, ThreatCA is also
responsible for preprocessing the recorded information
and transform it into a uniform format in step one. It
will be much easier for SecControl Layer to analyze the
collected information with a unified format.

The collected threat information will be sent
to SecControl Layer in step two. However, before
sending threat information to the SecControl Node,
ThreatCA has to extract effective information from
the heterogeneous detection results, which can greatly
simplify the work of the SecControl Node. To help
reduce the workload of the SecControl Node, ThreatCA
needs to be capable of recognizing alert information
from various security tools. And it should be able to
dismiss the format difference in detection results and
extract effective threat characters based on the main
functions of security tools. For example, a processed
firewall alert could be (firewall, network position, alert
level, threat source, detection time, ...). Actually, the
preprocessing of threat information can be quite
complicated. More details will be given in the design
section.

Step three happens inside of the SecControl Node,
where defense choices are made and SDN rules are pro-
duced. After receiving threat information from Threa-
tCA, SecControl Node will be analyzing security threats

information under given detection algorithms. Since
different protection environments may have different
sensitivities on security attacks, security engineers can
equip SecControl Node with different security analy-
sis and detection algorithms to decide whether the
protected environment is facing attack threats or not.
The security analysis and detection algorithms can be
modified and replaced in different defense situations,
which ensure the SecControl framework is able to
provide a comprehensive and flexible protection on
the target network environment. Based on the analysis
result, SecControl can tell what defense responses can
be made and how to generate the corresponding SDN
rules to adjust the network behaviors. We summarize
the defense reactions into several types. For each type
of reaction, we transform the reaction into a set of SDN
rules, which decide how we adjust network behaviors
based on the threat information. The generated SDN
rules will be distributed to corresponding SDN control-
lers in step four.

The last step is to distribute the generated SDN rules
to the SDN Controller Layer. SecControl Layer will
maintain a list which records the location information
of all the controllers in the protected SDN networks.
The SecControl Node will be aware of the controller
layout in the protected SDN networks, which ensures
the SDN rules can be sent to the related controllers.
When the SDN rules are transmitted, the transmission
process will be protected and secured. There will be
a secure protocol between the SecControl Node and
controllers to protect their communications.

4. SecControl Design
SecControl takes advantage of threat detection abilities
of security tools to change network behaviors. Our
design work focuses on bridging the gap between
security tools and SDN controllers. Most questions
raised in motivation part will be answered in this
section.

4.1. SecControl Components
The SecControl framework is composed of four
components, as shown in Figure 2. The first component
is Threat Collecting Agent, which is running outside
of the SecControl Node and responsible for collecting
various security event information from security tools.
The second one is Threat Analyser, which is in
charge of converging and analyzing the collected
threat information and decides corresponding defense
responses. The third component is SDN Rule Engine,
whose responsibility is transforming the generated
defense responses to specific SDN rules. The last
component, SDN Rule Distributer, is designed for
distributing the SDN rules to SDN controllers (SDN

5 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Li Wang and Dinghao Wu

SecControl Node

Defense Responses

SDN Rule Uniform 
Format Interface

Threat Analyzer SDN Rule Engine

General SDN 
Rules

SDN Rule 
Distributer

Threat Collecting Agent

Threat Information

SDN Rules
to

Controller

Platform-Specific 
SDN Rules

Figure 2. The SecControl Components

Rule Distributer should have a full picture of the SDN
controllers).

Threat Collecting Agent. This is running outside of the
SecControl Node. ThreatCA functions like a specially
designed agent dealing with security tools. Its position
should be close enough to the security tool it targets, in
order to reduce the threat collection latency. The inputs
of the ThreatCA are various detection results collected
from different security tools, while the outputs of
the ThreatCA are well-structured threat information,
which can be directly used for other components. To
complete the security threats SecControl can react,
we need to collect as much security threats as we
can through ThreatCAs. Consider existing security
tools are separately targeting different threats, their
detection results could be quite different. To handle
different detection results, we need to provide each
type of security tools at least one specialized ThreatCA,
ensuring all the detection results can be handled.

The purpose of ThreatCA is to provide effective thre-
ats information to Threat Analyzer. As we mentioned
in Section 3, traditional security tools are individually
designed for different protection purposes, and their
detection results could be very different. If Threa-
tCA sends raw detection results to Threat Analyzer
directly, it is hard for Threat Analyzer to conduct secu-
rity analysis efficiently. Threat Analyzer has to extract
effective information from raw data first, then analyze
the results, which will greatly reduce the performance
of SecControl Node.

We design a preprocess function on ThreatCA. The
preprocess function is responsible for transforming
the raw detection results to a uniform format which
can be used by Threat Analyzer for security analysis
purpose. For each TreatCA, it is designed specially to
understand the raw detection results of the security
tool it is attached. To release the Threat Analyzer from

tedious format details, we present the detection results
in a uniform format (the format is IDEMF [2]) so that
Threat Analyzer can use the unified interface to deal
with all detection results from different sources. All
the ThreatCAs take different raw detection results and
generate the processed detection results in the same
format. Through this way, we can greatly reduce the
workload for Threat Analyzer. There are several options
for our choices. More details about the uniform format
content will be given in Section 5.

Threat Analyser. The preprocessed threat information
will be sent to the Threat Analyser. The Threat
Analyzer will be analyzing threats, assessing security
situations, and deciding defense responses. As a key
component of SecControl, Threat Analyzer provides
strong supports for entire framework to deal with
various security threats. To deal with various security
threats, we are trying to design Threat Analyser a
configurable, adaptable, and extendable module for
different protection purposes. Security engineers are
able to adjust defense strategies in Threat Analyzer
to practice different security analysis and detection
algorithms.

In fact, analyzing threat information in a large
number of detection records is quite complicated, and
a lot of algorithms have been proposed [25, 30]. The
analyzing results can be affected by many factors.
For example, the same set of network traffic may
lead to different alert information for using different
defense strategies. In productive networks, people
use different criterions to decide whether there is
a security threat. Security engineers usually design
customized security analysis algorithms for their Threat
Analyzers. Consider the threat analysis algorithms
depend on actual security policies, we will not provide
concrete algorithms. Here, we introduce three common
security analysis principles based on our experiences.

6 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

Many practical security analysis algorithms could be
generated following these three principles.

Time-based Threat Correlation: As its name implies,
time-based threat correlation analyzes detected threats
according to their detection time-stamps. Time-stamp
is an important attribute of a detected security event,
which has an immediate relation to the happening
time of the security event. Most time-driven attacks,
like DDoS and network scan attacks, are identified by
time intervals. Time-based threat correlation can help
us detect time-related attacks happening on different
targets. For example, computer worms may broadcast
their propagation traffic in a very short time to reach
as many nodes as they can. When a computer worm
is attacking, we may experience a time period while
network traffic is featured with multi-nodes to multi-
nodes. We can detect these malicious activities with
time-based threat correlation.

Target-based Threat Correlation: Target-based
threat correlation studies threat records by a certain
target. Here, a target could be a physical machine, a
virtual machine, or even an operating system. To avoid
being detected by security tools, some experienced
attackers may cooperate to star an attack to a target
simultaneously. For example, distributed network scans
can hardly be detected by a firewall or an IDS due to
the network scan is not finished by a single attacker.
Target-based threat correlation can help us to dig all
the detection results together to figure out potential
attacks on one target.

Experience-based Threat Correlation: Experience-
based Threat Correlation identifies security threats
based on work experience of security engineers. In
a real protection environment, a smart attacker may
use complex strategies to compromise a target node,
which can bypass the detection of most security tools.
When the compromise is detected, security engineers
will go to the audit information, correlate related
information, and restore the attacking process reversely.
The restoring process is based on the security engineers’
experience. After time to time, security engineers are
able to locate the suspicious events based on their
experience. The experience of security engineers could
be concluded as practical threat detection algorithms,
which can provide more choices in real network
protections.

When dealing with a real defense environment, these
principles can be used together for detecting more
advanced attacks. Except for the above principles,
security engineers can design their own detection
algorithms to detect a certain security threat. Many
research has been done on correlation-based security
analysis algorithms [11, 13, 38]. Security engineers
can easily customize these algorithms and deploy
them in SecControl Node for specified security
threats. Once a security threat is identified, the

Threat Analyzer will choose a predefined defense
response as a reaction against the security threat.
In different protection scenarios, defense responses
mean different actions. For example, on a firewall,
a defense response could be blocking the threaten
traffic; while on a host system, a defense response
could be isolating a suspicious executable file. In
SecControl, we focus on network level response, which
means we adjust network behaviors through SDN
technologies as defense response on potential attacks.
Similarly, Threat Analyzer allows the defense responses
be defined in a flexible way. Just like security analysis
and detection algorithms, the defense responses should
be configurable to fit different defense scenarios as well,
and security engineers can dynamically map security
threats to different defense responses.

In this paper, all the defense responses will be
adjusting current behaviors of SDN networks in order
to minimize the property loss and maximize the
security benefits. How to choose a proper defense
response, just like how to customize a Threat Analyzer,
is also depending on security policies. We will give
several examples in Section 6. Once a defense response
is fixed, it will be sent to the SDN Rule Engine and then
translated into basic SDN primitives.

SDN Rule Engine. SDN Rule Engine, as the name
suggests, generates the corresponding SDN rules for
the SecControl framework. Just as we mentioned
previously, the defense response generated by ThreatCA
will be focusing on adjusting network behaviors.
Network behaviors will be adjusted through controllers
over SDN network. Controllers send out SDN rules to
individual network devices, where the SDN rules are
enforced and the network behaviors are adjusted. In
SecControl, SDN Rule Engine translates the defense
responses into SDN rules. We design a systematic
method to achieve the translation process through using
SDN primitives, which stands for the basic network
operations when dealing with security threats. We
define five SDN primitives based on the network flow
features. They are Drop, Forward, Reflect, Isolate, and
Copy. The five SDN primitives can be used individually
or in combination to deal with various security threats.

The five SDN primitives are as follows:

1. Drop, which means discarding the identified
network traffic. This primitive is usually used to
block unwanted network traffic.

2. Forward, which just tells the network devices to
pass the identified traffic to its destination based
on the existing SDN rules. When we do not want
to do any operation on the identified network
traffic for passing certain network device, we use
forward.

7 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Li Wang and Dinghao Wu

3. Reflect, changes the destination of the identified
network traffic both for inbound and outbound
directions. For example, A wants to build up a
connection with B. When A’s connection traffic is
reflected to C, A will be connected with C instead
of B. After this, C will use B’s network address and
communicate with A, and A knows nothing about
this. Reflect primitive can be used in deploying a
shadow server or a honeypot.

4. Isolate, limits the identified traffic to a certain
host or network area. When a node (or a node
group) is identified as a source of an attack, we
use this primitive to confine its network activities.

5. Copy, duplicates the identified packets, which is
usually used for monitoring or logging use. Most
current network devices have been equipped with
this primitive. It could be used for real-time traffic
analysis and other purposes.

The five SDN primitives can be used in combination,
repeatedly, and in any sequence to form a wanted
defense response. Each defense response will be
translated into one or several SDN primitives. For
example, a defense response may require directing the
suspicious source to a honeynet, where the suspicious
traffic will be recorded and analyzed. In this situation,
the defense response will be translated into two SDN
primitives, reflect and isolate. The suspicious traffic will
be first reflected to a honeynet and then isolated in the
honeynet area.

Usually, each SDN rule contains one SND primitive,
which represents the specific action of this rule. Some
SDN primitives, like drop and forward, have been
supported on most SDN platforms. For those SDN
primitives that cannot be well supported, we may need
additional translation processes to turn these primitives
into corresponding SDN rules which can be executed
on specific SDN platforms. For each SDN platform, we
can design a set of interfaces for transforming SDN
primitives to SDN rules. The generated SDN rules will
be handled to the SDN Rule Distributer.

SDN Rule Distributer. The generated SDN rules will
be sent to SDN controllers through the SDN Rule
Distributer. SDN network employs a distributed
structure which is formed with SDN controllers and
network devices. In an SDN network, network devices
are divided into groups and each group is connected
and managed by a controller, and a controller cannot
directly operate on a network device that is not
connected to it. Since SecControl has no privileges to
operate network devices directly, we need to distribute
SDN rules to SDN controllers first, then have SDN
controllers send SDN rules to correct network devices
for execution.

Device

List 1

For 

Controller 

1

SDN Rule 

Distributer

...

Controller 1

Device

List 1

Device

List 2

For 

Controller 

2

...
Device

List n

For 

Controller 

n

... ...
Controller 2

Device

List 2

Controller n

Device

List n

Figure 3. The SDN Rule Distributer

To ensure the SDN rules can be delivered to their
destination correctly, the SDN Rule Distributer should
have a full picture of the SDN networks. As can be seen
in Figure 3, the SDN Rule Distributer stores a local
copy of network device lists for all SDN controllers.
Through the local copy of network device lists, the SDN
Rule Distributer knows how to distribute SDN rules to
correct SDN controllers.

Consider different network vendors may use different
SDN rule formats on their SDN platforms, before
sending out SDN rules, the SDN Rule Distributer
may need an additional interface to transform SDN
rules for a given SDN platform. In our prototype
implementation, we use OpenFlow to build up SDN
networks, and the defense responses are translated into
OpenFlow flow rules. More details can be referred in
Section 5.

We may need to consider another practical problem
on SDN controller. Consider these SDN rules are
generated with different criterions, there could be
inconsistencies among these SDN rules. A lot of
research has been done on how to update SDN rules
on SDN controllers with consistencies [3, 20, 26]. Since
how to consistently update SDN rules on controllers
is another research problem and is not one of our
contributions, we assume the inconsistency problem on
SDN rules is well solved in our design.

4.2. Communication
To work as an integrated protection framework,
the SecControl components need to cooperate and
communicate with each other. We need to design inside
communication mechanisms for SecControl as well.

Based on the workflow of SecControl, we need
two communication mechanisms which reside in
step two and step four separately. In step two,
the Threat Collecting Agents need to communicate

8 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

Open vSwitch

Snort IDS

Host C

Linux 

Firewall

iptable

NOX Controller

Host A

Host B

SecControl Node

Threats Collecting Agents

192.168.1.153

192.168.1.154

192.168.1.152

Figure 4. A SecControl Prototype

with the SecControl Node to send collected security
event information, and that communication can be
happening all the time. The other communication
happens between the SecControl Node and SDN
controllers, which serves to distribute SDN rules and
maintain network devices information. Besides, we also
need another communication mechanism among the
SecControl Nodes, which enables the exchange of SDN
rules between different SecControl Nodes.

We can achieve the step two communication like any
typical network application by using TCP/IP protocols.
The Threat Collecting Agents can send security events
information over TCP or UDP protocol, which both
can be used for network transportation purpose. The
communication between the SecControl Node and
SDN controllers is a little bit different. Except for
distributing SDN rules, it is also used to synchronize
network device information. Because it is related to
device information update on SDN controller, it should
be extended with existing SDN protocols. Similarly,
the communication among SecControl Nodes can be
implemented like any typical network application over
TCP/IP. The implementation details will be given in
Section 5.

5. A SecControl Prototype
We develop a prototype of the SecControl framework.
For a proof of concept purpose, we implement both
SecControl Node and SDN controller together. We chose
to modify and extend an open source SDN controller,
NOX [17], to finish all the related functions. Our
implementation includes all the necessary functions for
the SecControl components and is able to show the
effectiveness of SecControl protections.

The SecControl Node is implemented on NOX version
0.9.0 with OpenFlow v1.0. NOX is an open source
OpenFlow controller in C++/Python, which can be used
to manage OpenFlow switches. We implemented the

<IDMEF-Message version="1.0">

<Alert ident="abc123456789">

<Analyzer analyzerid="analyzer1">

<Node category="dns">

<location>HTTP Server</location>

<name>host.domain.org</name>

</Node>

</Analyzer>

<CreateTime ntpstamp="0xbc72b2b4.0x00000000">

2020-05-19T15:31:00 -08:00

</CreateTime>

<Source ident="abc01">

<Node ident="abc01-01">

<Address ident="abc01-02" category="ipv4-addr">

<address>192.168.1.100</address>

</Address>

</Node>

</Source>

<Target ident="vic01">

<Node ident="vic01-01" category="dns">

<name>www.example.com</name>

<Address ident="vic01-02" category="ipv4-addr">

<address>192.168.1.50</address>

</Address>

</Node>

<Service ident="vic01-03">

<portlist>1-1024</portlist>

</Service>

</Target>

<Classification origin="vendor-specific">

<name>portscan</name>

<url>http://www.vendor.com/portscan</url>

</Classification>

</Alert>

</IDMEF-Message>

Figure 5. A Scan Detection in IDEMF

Threats Analyzer in Python and SDN Rule Engine in
C++. The Threat Analyzer module is running as an
OpenFlow application on NOX, while the SDN Rule
Engine is inserted as an extension of NOX. We modified
the built-in functions, send_openflow_command and
install_datapath_flow, of NOX to implement the
SDN Rule Distributer.

We pick three most used security tools for a
demonstration purpose. They are Snort IDS, Linux
iptables, and Linux system logs. Snort IDS is a popular
open source IDS; Linux iptables is a kernel-supported
firewall tool on Linux system; Linux system logs are
native log system of Linux system which is often used
for audit purposes. Each tool is attached a customized
ThreatCA. Because the three tools use different alert
formats, we implement three different ThreatCAs to
collect security threat information. Besides, to simplify
the protection, we categorize security events into attack
events and suspicious events. The attack events should
be reacted with a defense response instantly, while
suspicious events need further analysis before deciding
a defense response. When a ThreatCA meets an attack
event, it just tags the event and sent it to Threat
Analyzer to get an instant defense response. For the
suspicious events, the ThreatCA extracts the critical

9 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Li Wang and Dinghao Wu

FlowAction generateOFActions(defenseResponse){

FlowAction flowaction;

switch (defenseResponse) {

case drop:

addAction(flowaction,drop);

case forward:

addAction(flowaction,forward);

case reflect:

addAction(flowaction,reflect);

case isolate:

addAction(flowaction,isolate);

case copy:

addAction(flowaction,copy);

}

return flowaction;

}

Figure 6. Translate Five SDN Primitives into OpenFlow Flow
Actions

information of the events and put them in a unified
format, Intrusion Detection Exchange Message Format
(IDEMF) [2]. IDEMF provides a unified format and
structure that allows the security detection results can
be transferred among different parties. A scan detection
involving three nodes can be demonstrated in IDEMF as
shown in Figure 5.

The collected IDEMF messages are stored in a
local DB for further analysis. If a defense response
is determined, it will be translated into OpenFlow
flow rules. In OpenFlow, each flow rule will have a
set of attributes, such as match field, counter, timeout,
actions, and so on, to match network flows. The
actions field contains an action set, which indicates
the operations to be executed for the matched
network traffic. To enforce the SDN primitives at
the OpenFlow switches, we translate the five SDN
primitives into compatible OpenFlow actions. Figure
6 shows generateOFactions() function translating
five SDN primitives to the OpenFlow flow rule actions.
Finally, the new flow rules are sent to switch through
function install_datapath_flow (self, dp_id,

attrs, idle_timeout, hard_timeout, actions,

buffer_id, priority, inport, packet).

6. Prototype Evaluation
In this section, we evaluate the SecControl prototype
with respect to effectiveness and extendibility. The
evaluation testbed is deployed as shown in Figure 4.
It is running on a desktop with an Intel Core i7-
3370 3.4Ghz processor and 16GB RAM. We use
KVM, Open vSwitch [1, 32], NOX [17], Linux firewall
iptables, Snort IDS, and Linux built-in log system to
construct a SecControl protected virtual network. The
evaluation environment is built on a virtual network
192.168.1.0/24. The physical machine is running
CentOS 6.0 with kernel 2.6.32 and qemu-kvm-0.15.1
for virtualization. The three hosts are running as guest
OSes with CentOS 6.0 as well. As can be seen in

Figure 4, all the nodes are in a virtual network and
connected by an Open vSwitch. We have security tools,
Snort 2.9.7.5, iptables 1.4.7, and Linux Syslog systems,
running at host machine. Each security tool is attached
with a Threat Collecting Agent (each blue triangle in
Figure 6 stands for a ThreatCA), and the ThreatCAs are
communicating with the SecControl Node through the
virtual network.

6.1. Effectiveness
We demonstrate the effectiveness of the SecControl
framework with several security threats, regular scan
threat, and payloads specific attacks. As Figure 4 shows,
host A, and host B are attacking machines, and host
C is the victim machine (for some attacking scenarios,
we may deploy more attacker nodes). We use attacking
machines to send out attack traffic to the victim
machine.

Regular Scan Threat. Regular network scan is typically
conducted by a single attacker to locate easy targets in
an open network environment, like a public network.
In our network environment, we assume an attacker
owns host A 192.168.1.152, and he wants to sniff the
network status of host C 192.168.1.153. We configure
Snort with a scan detection rule: alert tcp any

any -> $HOME_NET any (msg: "TCP SYN"; flow:

stateless; flags:S; detection_filter:track

by_dst, count 100, seconds 5; sid:1000001;

rev:1). We tag the detected scan threats as attack
events and configure primitive reflect as default defense
response to a scan threat. All the scan traffic for host C
will be reflected to host B 192.168.1.154. We open port
22, 23, 25, 80, 111, and 443 on B, and 22, 25, and 111
on C. Figure 7 shows the reflecting process, from which
we can see the scan results are from host B instead of
host C. That is, the scan traffic is successfully reflected
to B.

An Attack with Specific Payloads. When an attacker
knows a specific vulnerability of a target machine,
he can attack the target machine by sending a
well-designed exploit. The attacking exploit sent
through network packets is called malicious payloads.
Malicious payloads can help the attacker take over
the victim machine and gain an absolute control over
it. We install an old Windows 2000 OS on host C
192.168.1.153 and open the vulnerable service SMB
on port 445, which holds a dangerous vulnerability
through which an attacker can easily obtain a remote
shell with admin privileges. We configure the Snort
to match the signature of the attacking payload
windows/vncinject/bind_tcp. We choose block as the
default defense response if any malicious payload is
matched. Correspondingly, the block defense response
is translated to primitive drop on the controller. We

10 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

Reflect to B

Figure 7. A Simple Network Scan

use host A 192.168.1.152 as the attacking machine.
The attacking payload is sent with metasploit, a
penetrating test tool. Figure 8 shows the metasploit

console window. The result shows the exploit fails due
to a connection timeout, which proves we successfully
block the attacking traffic to host C.

6.2. Extendibility
We demonstrate the extendibility of the SecControl fra-
mework by using different security analysis principles.
We use time-based threat correlation and target-based
threat correlation to identify several advanced attacks,
which usually may not be easily detected by existing
security tools. And, we show the scalability of the Sec-
Control framework by deploying multiple SecControl
instances over different SDN networks, and our results
show different SecControl instances can cooperate to
offer protections across SDN networks.

Distributed Scan Threat. Distributed Scan is an advanced
and hidden network scan, which is achieved by multiple
scanning sources. Smart attackers can take multiple
attacking sources to start a distributed scan, in order
to bypass existing security tools. In this attacking
scenario, we use host A and host B to start a distributed
port scan on host C. Our target port range is 0-500.
Host C is opening port 22, 25, and 111, while host
D has port 22, 25, 80, 111, and 443 open (we add
one more host D as a honeypot to communicated
with the reflected scan traffic. Host D share the same
configuration with host B). We choose redirect defense

response to deal with the distributed scan, and it is
translated to reflect primitive. To detect the distributed
scan threat, we extend the security analysis process of
Threat Analyzer by following the target-based threat
correlation principle. We configure Snort to record all
the traffic. Figure 9 shows the results of distributed
scan. From the scan result of A and B, we can see
the port 80 and 443 is open, which shows D is the
real scanned node and the distributed scan traffic is
successfully reflected to D.

Step-Stone Attack. Step-stone attack is another advan-
ced attack [7]. To reduce the risks of being detected,
attackers choose to start an attack on step-stone nodes
instead of his own machine. Step-stone nodes are imme-
diate nodes taken by attackers. Through step-stone
nodes, an attacker can get more accesses or convenien-
ces in taking over the target node. Following the time-
based threat correlation principle, we design a two step-
stones attack detection algorithm. We use redirect and
block as the defense response for the step-stone attack.
In our defense, the attacker node will be blocked, and
the step-stone node will be redirected to a honeypot.
We use host A as the attacker’s machine and host B as
the step-stone to attack host C. As the attacking side
on host A, we first open and login a shell remotely on
host B, then we use B as a step-stone to send malicious
payloads to host C. We record all the outside connecti-
ons of host B, including the connection between A and
B. We configure Snort to record the SSH connections
between A and B. The remote login attempt is recorded

11 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Li Wang and Dinghao Wu

Figure 8. An Attack with Specific Payloads

Figure 9. A Distributed Network Scan

in the system log of host B. Targeted by the detection
algorithm, the SSH traffic is tagged as attack traffic. The
results show SecControl detected the step-stone attack
and the host B’s traffic is successfully reflected to the
honeypot node.

Cooperations among SecControl Nodes. We show the sca-
lability of the SecControl framework with multiple
SecControl deployments. We use two physical machi-
nes, and each physical machine is deployed with one
SecControl instance. Two SecControl frameworks are
running in two different virtual networks. We configure
routing information of two virtual networks so that they

12 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

can communicate with each other. In our evaluation,
we manually send a set of OpenFlow rules from one
SecControl Node to the other, and the result shows
the other SecControl Node can successfully receive and
enforce the OpenFlow rules. However, there could be an
information inconsistency problem when we have more
different SecControl Nodes. In order to send SDN rules
to the proper SecControl Node, every SecControl Node
should have a full picture of all other SecControl Nodes’
network positions and their network device lists. A lot
of algorithms studied in distributed computing can be
borrowed and used in this scenario. Consider this is not
the focus of this paper, we will not elaborate further on
this.

6.3. Overhead
SecControl is a practical network security solution
aiming to provide a comprehensive protection for SDN
networks. Since SecControl uses different strategies and
algorithms to deal with different security threats, we
can hardly find a unified method to evaluate its overall
performance. We evaluate the time interval between a
SecControl flow rule leaves NOX and the flow takes
effect in the network. For the forward primitive, the time
interval is 7.542 ms; for the drop primitive, the time
interval is 13.152 ms; for the reflect primitive, the time
interval is 17.684 ms. Besides, consider our evaluation
testbed is deployed on one physical machine and all the
involved nodes share the same set of physical resources,
we should be able to shorten the time interval value if it
is conducted on a more powerful machine.

7. Discussion
We discuss some limitations of the SecControl fra-
mework in this section. First, SecControl may have a
delay reaction issue when providing defense responses.
This is a common issue for many monitor-based secu-
rity tools for there is always a delay between threat
detection and defense reaction. Also, the network effi-
ciency may affect the protection effect of SecControl.
Consider security events are transmitted over network
between the Threat Collecting Agents and the Sec-
Control Node, the network transmission efficiency can
affect SecControl’s protection effect. In some protection
scenarios, security engineers may require an instant
response on a detected threat. A possible way to alle-
viate this issue is to build an exclusive network channel
between the Threat Collecting Agents and SecControl
Node. Further, to improve the performance of security
event collecting, we may design built-in threat col-
lecting interfaces on security tools.

Second, SecControl relies on existing security tools to
gather security events and generate defense responses.
We may face an accuracy issue because the accuracy
of the security threat information is not exactly

guaranteed. Almost all mainstream security solutions
follow a detection-based protection policy, and the
protection is affected by detection accuracy. Consider
the current detection algorithms are not perfect, the
detection results may suffer false positive and false
negative issues. Therefore, SecControl may produce
inaccurate defense responses. One possible solution
is to manually record the real attacks and pick up
corresponding defense responses. We believe a lot of
further research can be done on this issue.

Third, consider the SecControl framework relies on
a distributed architecture, it may suffer all possible
issues that can happen in a distributed network
environment. For example, a potential issue is the single
failure problem. If the SecControl Node is down, our
protection will be discontinued. In fact, single failure
and all other related issues have been well researched in
the distributed system field. We can just take whatever
comes to our protection scenarios and adopt these
solutions.

8. Related Work
Security Incident and Event Management (SIEM) [29,
31] is a set of technologies which are used to gather,
analyze and present information from network and
security devices. SIEM is designed to collect security-
related information from all kinds of devices and
applications such as firewalls, IDS, antivirus, and so
on. When an attack happens, security engineers will
turn to SIEM for a complete record of that attack
for security investigations and audits. SIEM mainly
focuses on monitoring and tracing purposes. Compared
with SecControl, although SIEM is capable of collecting
and analyzing security threats, it does not provide
interaction interfaces for the latest SDN networks.

OpenFlow is currently one of the most popular
SDN protocols, which has been widely accepted
both in academia and industry. It originates from a
series of research on enterprise network management
architecture, which includes SANE [10], Ethane [9],
and ONIX [22]. SANE is proposed to solve enterprise
network security problem by providing fine-grained
network connection control. In a SANE protected
enterprise network, all the network subjects by
default are not allowed to visit any network services
unless being authorized. The initial implementation
of SANE relies on a network service directory, which
maintains an access control list for all the registered
network services. The restricted design and clean-slate
implementation make SANE difficult to deploy and
test. Ethane is a greatly improved enterprise network
architecture based on SANE, which mainly extends
SANE in three aspects. Ethane first recognizes network
security as a subproblem of network management,
and believes the security goal can be achieved by

13 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Li Wang and Dinghao Wu

defining better management policies; Ethane supports
incremental deployment, and that makes it a more
practical network management solution; Ethane has
both software and hardware implementations which
provide more hands-on experience for future SDN
research. Following Ethane, ONIX is devised to provide
a production-level network control paradigm. ONIX
extends Ethane and broadens its control functions to
network discovery, devices statistics collecting, and
failure recovery mechanism. Different from Ethane,
ONIX aims to break the stable architecture of the
traditional network and build a new distributed
network control plane. Furthermore, ONIX creatively
suggests building network management applications
over network control plane, which provides valuable
references for the following SDN controllers.

SecControl can be regarded as a “controller” of
the SDN controllers. It releases the security related
computation logic from typical SDN controllers that
should focus on managing low-level network devices.
NOX [17] and POX [27] are two twin open source
OpenFlow controllers implemented in C++ and Python
respectively. They provide a set of APIs for upper-
level network applications to dynamically change
the flow tables of OpenFlow switches. However,
the current OpenFlow structure is problematic and
may meet some issues when deploying in a large
scale network. Researchers propose different SDN
controller solutions to fit existing controllers into large
scale deployments, like HyperFlow [4], Pratyaastha
[23], DISCO [33], ElastiCon [14], and ONOS [6].
These methods enhance the existing controllers by
adding more supports on scalability, device state
synchronization, controller cooperation, fault tolerance,
and other functions. Relying on SDN controllers, many
network relevant applications have been innovated.
Heller et al. [19] propose to reduce the energy
consumptions by improving network infrastructures
of data centers through centralized SDN controllers.
Curtis et al. [12] suggest to use SDN controllers to
optimize flow management to further achieve a better
overall network performance.

SecControl combines traditional security tools and
SDN technologies to provide a practical network
security solution. For one hand, SecControl makes use
of security processing abilities of existing tools; for the
other hand, SecControl maximizes the security benefits
of taking SDN technologies. Shin et al. propose FRESCO
[35], a modular security application development
framework for OpenFlow networks. FRESCO provides
a fine-grained framework to implement security
functions as OpenFlow applications. However, it
requires security engineers to reimplement all security
functions to fit FRESCO design, which brings a lot
of engineering work. Besides, consider FRESCO is
implemented at controller side, it is greatly confined

by the processing capabilities of the controller. As a
result, the security functions requiring complicated
computation and analysis can hardly be deployed
with FRESCO. AVANT-GUARD [36] aims to improve
the data plane performance in order to provide SDN
security applications a more scalable and responsive
OpenFlow infrastructure. It designs a connection
migrations mechanism to improve OpenFlow’s weak
points and protect OpenFlow devices from saturation
attacks. However, AVANT-GUARD does not change
the fact that the SDN controller could be a potential
bottleneck in security applications. Different from
FRESCO and AVANT-GUARD, OpenFlow Extension
Framework (OFX) [37] modifies the software system of
network hardware devices to allow SDN applications
dynamically load software modules. OFX achieves a
good performance because it is running on switch
hardware directly. However, not all security services
can provide effective protections on a switch hardware.
Compared with existing SDN security innovations,
SecControl neither introduces heavy workload to SDN
controller nor brings negative effects to existing security
tools.

Except for the SDN security application frameworks,
researchers also extended the individual security tools
in SDN environments. FlowGuard [20] is designed
to achieve a firewall running over SDN networks.
FlowGuard is capable of checking suspicious network
flows and verifying network-wide firewall policies.
However, it just provides basic firewall functions and
cannot be extended with other security functions.
Similarly, some research modifies traditional intrusion
detection systems to fit SDN environments. Mehdi
et.al [28] suggest using SDN to solve home network
security problems. They provide four prominent
traffic anomaly detection algorithms to detect security
threats on SDN controllers. This innovation provides
an example of applying SDN technologies in home
network security solution.

Some researchers also try to innovate security
functions with Network Function Virtualization (NFV)
[5]. Aaron et al. design OpenNF [16], a control plane
architecture to enable the reallocation of flows within
NF instances. Through OpenNF, network operators
are able to create rich control applications, including
firewall, NAT, traffic loadbalancer, and so on. OpenBox
[8] is designed to decouple the control plane of
middleboxes from their data planes and unify the
data plane through service instances. It provides a
set of interfaces and protocols to communicate with
SDN controllers and middleboxes. OpenBox introduces
a uniform platform for network admins to design
network applications cross SDN network devices
and middleboxes. Similarly, these NFV innovations
focus on a universal network architecture for general
network applications instead of security applications.

14 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1



Bridging the Gap Between Security Tools and SDN Controllers

SecControl can be regarded as a “controller” of
the SDN controllers. It releases the security related
computation logic from typical SDN controllers that
should focus on managing low-level network devices.
NOX [17] and POX [27] are two twin open source
OpenFlow controllers implemented in C++ and Python
respectively. They provide a set of APIs for upper-
level network applications to dynamically change
the flow tables of OpenFlow switches. However,
the current OpenFlow structure is problematic and
may meet some issues when deploying in a large
scale network. Researchers propose different SDN
controller solutions to fit existing controllers into large
scale deployments, like HyperFlow [4], Pratyaastha
[23], DISCO [33], ElastiCon [14], and ONOS [6].
These methods enhance the existing controllers by
adding more supports on scalability, device state
synchronization, controller cooperation, fault tolerance,
and other functions. Relying on SDN controllers, many
network relevant applications have been innovated.
Heller et al. [19] propose to reduce the energy
consumptions by improving network infrastructures
of data centers through centralized SDN controllers.
Curtis et al. [12] suggest using SDN controllers to
optimize flow management to further achieve a better
overall network performance.

9. Conclusion
In this paper, we propose a new network protection
framework bridging the gap between existing security
tools and SDN technologies, to produce a practical
and comprehensive network security solution for SDN
environments. SecControl integrates the capabilities of
existing security tools and combines SDN controls to
obtain an optimized SDN network security solution.
We demonstrate the capability of SecControl by
implementing a prototype with the OpenFlow protocol
and evaluate its effectiveness and performance impacts
with common security threats. Our experiments show
that SecControl can cooperate with many mainstream
security tools and provide effective defense responses
over SDN-supported networks.

References
[1] Open vSwitch. http://openvswitch.org/.
[2] RFC4765. The Intrusion Detection Exchange Mes-

sage Format (IDEMF). https://www.ietf.org/rfc/

rfc4765.txt.
[3] E. Al-Shaer and S. Al-Haj. Flowchecker: configuration

analysis and verification of federated openflow infra-
structures. In The 3rd ACM Workshop on Assurable
and Usable Security Configuration, SafeConfig, Chicago, IL,
USA, 2010.

[4] B. Balis. HyperFlow: A model of computation,
programming approach and enactment engine for

complex distributed workflows. Future Comp. Syst.,
2016.

[5] J. Batalle, J. F. Riera, E. Escalona, and J. A. Garcia-
Espin. On the implementation of nfv over an openflow
infrastructure: Routing function virtualization. In Future
Networks and Services (SDN4FNS), pages 1–6. IEEE,
2013.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,
and G. M. Parulkar. ONOS: towards an open, distributed
SDN OS. In Proceedings of the third workshop on Hot topics
in software defined networking, HotSDN, 2014.

[7] A. Blum, D. X. Song, and S. Venkataraman. Detection of
interactive stepping stones: Algorithms and confidence
bounds. In Recent Advances in Intrusion Detection:
Proceedings of 7th International Symposium, RAID, France,
2004.

[8] A. Bremler-Barr, Y. Harchol, and D. Hay. Openbox: a
software-defined framework for developing, deploying,
and managing network functions. In Proceedings of the
2016 conference on ACM SIGCOMM. ACM, 2016.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking control of the enterprise.
SIGCOMM Review, 2007.

[10] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, and S. Shenker. SANE: a
protection architecture for enterprise networks. In
Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, 2006.

[11] F. Cuppens and A. Miège. Alert correlation in a
cooperative intrusion detection framework. In IEEE
Symposium on Security and Privacy, 2002.

[12] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: scaling flow
management for high-performance networks. In
Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, 2011.

[13] H. Debar and A. Wespi. Aggregation and correlation
of intrusion-detection alerts. In Recent Advances
in Intrusion Detection, Proceedings of 4th International
Symposium, RAID Davis, CA, USA, 2001.

[14] A. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and
R. R. Kompella. Elasticon: an elastic distributed sdn
controller. In Proceedings of the 10th ACM/IEEE sympo-
sium on Architectures for networking and communications
systems, 2014.

[15] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M.
Tekalp. OpenQoS: An OpenFlow controller design for
multimedia delivery with end-to-end quality of service
over software-defined networks. In Asia-Pacific Signal
and Information Processing Association Annual Summit
and Conference, APSIPA, 2012.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. Opennf:
Enabling innovation in network function control. ACM
SIGCOMM Computer Communication Review, 2015.

[17] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: towards an
operating system for networks. Computer Comm. Rev.,
2008.

15 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1

http://openvswitch.org/
https://www.ietf.org/rfc/rfc4765.txt
https://www.ietf.org/rfc/rfc4765.txt


Li Wang and Dinghao Wu

[18] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown,
and R. Johari. Plug-n-Serve: Load-balancing web traffic
using OpenFlow. ACM Sigcomm Demo, 2009.

[19] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown. ElasticTree:
Saving energy in data center networks. In Proceedings of
the 7th USENIX Symposium, NSDI, 2010.

[20] H. Hu, W. Han, G. Ahn, and Z. Zhao. FlowGuard:
building robust firewalls for software-defined networks.
In Proceedings of the third workshop on Hot topics in
software defined networking, HotSDN ’14, 2014.

[21] H. Kim and N. Feamster. Improving network
management with software defined networking. IEEE
Communications Magazine, 2013.

[22] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Pou-
tievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,
T. Hama, and S. Shenker. Onix: A distributed control
platform for large-scale production networks. In Procee-
dings of the 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2010.

[23] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-
Jacobson. Pratyaastha: an efficient elastic distributed
SDN control plane. In Proceedings of the third workshop on
Hot topics in software defined networking, HotSDN, 2014.

[24] B. Lantz, B. Heller, and N. McKeown. A network
in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM Workshop on Hot
Topics in Networks. HotNets, 2010.

[25] A. Lazarevic, L. Ertöz, V. Kumar, A. Ozgur, and
J. Srivastava. A comparative study of anomaly detection
schemes in network intrusion detection. In Proceedings of
the Third SIAM International Conference on Data Mining,
2003.

[26] R. Mahajan and R. Wattenhofer. On consistent updates
in software defined networks. In Twelfth ACM Workshop
on Hot Topics in Networks, HotNets-XII, 2013.

[27] J. Mccauley. POX: A Python-based OpenFlow controller.
http://www.noxrepo.org/pox/about-pox/, 2014.

[28] S. A. Mehdi, J. Khalid, and S. A. Khayam. Revisiting
traffic anomaly detection using software defined networ-
king. In Proceedings of the 14th International Symposium
on Recent Advances in Intrusion Detection, RAID, 2011.

[29] D. Miller, S. Harris, A. Harper, S. VanDyke, and
C. Blask. Security information and event management
(SIEM) implementation. McGraw Hill Professional, 2010.

[30] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network
intrusion detection. Network, IEEE, 1994.

[31] M. Nicolett and K. M. Kavanagh. Magic quadrant for
security information and event management. Gartner
RAS Core Reasearch Note (May 2009), 2011.

[32] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending networking into the virtualization
layer. In Eight ACM Workshop on Hot Topics in Networks
(HotNets-VIII), HOTNETS, 2009.

[33] K. Phemius, M. Bouet, and J. Leguay. DISCO: distributed
multi-domain SDN controllers. In IEEE Network
Operations and Management Symposium, 2014.

[34] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson,
and G. Gu. A security enforcement kernel for OpenFlow
networks. In Proceedings of the first workshop on Hot topics
in software defined networks. ACM, 2012.

[35] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong,
G. Gu, and M. Tyson. FRESCO: Modular composable
security services for software-defined networks. In
20th Annual Network and Distributed System Security
Symposium, NDSS, 2013.

[36] S. Shin, V. Yegneswaran, P. A. Porras, and G. Gu.
AVANT-GUARD: scalable and vigilant switch flow
management in software-defined networks. In ACM
SIGSAC Conference on Computer and Communications
Security, CCS, 2013.

[37] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith.
Enabling practical software-defined networking security
applications with OFX. In 23th Annual Network and
Distributed System Security Symposium, NDSS, 2013.

[38] F. Valeur, G. Vigna, C. Krügel, and R. A. Kemmerer.
A comprehensive approach to intrusion detection alert
correlation. IEEE Trans. Dependable Sec. Comput., 2004.

[39] L. Wang and D. Wu. Seccontrol: Bridging the gap
between security tools and sdn controllers. In Security
and Privacy in Communication Networks: SecureComm
2017 International Workshops, ATCS and SePrIoT, Niagara
Falls, ON, Canada. Springer, 2018.

[40] R. Wang, D. Butnariu, and J. Rexford. OpenFlow-based
server load balancing gone wild. In USENIX Workshop
on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, Hot-ICE, 2011.

[41] H. Yin, X. Liu, G. Min, and C. Lin. Content delivery
networks: a bridge between emerging applications and
future IP networks. IEEE Network, 2010.

16 EAI Endorsed Transactions on 
Security and Safety 

12 2018 - 12 2018 | Volume 5 | Issue 17 | e1

 http://www.noxrepo.org/pox/about-pox/

	1 Introduction
	2 Challenges
	3 System Architecture
	3.1 Overall Architecture
	3.2 How SecControl Works

	4 SecControl Design
	4.1 SecControl Components
	Threat Collecting Agent
	Threat Analyser
	SDN Rule Engine
	SDN Rule Distributer

	4.2 Communication

	5 A SecControl Prototype
	6 Prototype Evaluation
	6.1 Effectiveness
	Regular Scan Threat
	An Attack with Specific Payloads

	6.2 Extendibility
	Distributed Scan Threat
	Step-Stone Attack
	Cooperations among SecControl Nodes

	6.3 Overhead

	7 Discussion
	8 Related Work
	9 Conclusion



