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Abstract 

B-patch is the main block for creating the multivariate B-spline surfaces over triangular parametric domains. It has many 

interesting properties in the smooth surface construction with arbitrary topology. This paper proposes a new approach for 

reconstructing B-patch surfaces from triangular mesh based on a local geometric approximation, along with inverse 

subdivision scheme. The result B-patches with the low degree cross through most of the data points of the original meshes 

after some steps of the local geometric approximation. The accuracy of result surfaces can be carried out by changing the 

position of control points and adjusting knotclouds in each of the iterations. Some concrete experimental examples are also 

provided to demonstrate the effectiveness of the proposed method. Because most of the low degree parametric curves and 

surfaces are often employed in CAGD, this result has practical significance, especially for mesh compression, inverse 

engineering, and virtual reality. 
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1. Introduction

Reconstructing the smooth surface from a set of data

points is one of the significant research areas and has widely 

been applied in many fields of computer aided geometric 

design, reverse engineering, geometric modeling, vision, 

computer graphic, virtual reality, medical image 

segmentation [8][9]. Despite many difficulties and 

challenges such as mesh parameterization, construction of 

control polygon mesh, surface evaluation, etc; the smooth 

surface reconstruction remains an active research problem.  

The surfaces over rectangular parametric domains, as 

tensor-product surfaces, include Bézier, B-spline, or 

NURBS…, inherit most of the desirable properties of 

univariate B-splines such as convex hull, intuitive and local 

control, and they have long become an excellent tool for 

modeling surfaces [8]. However, the complicated surfaces 

cannot sometimes be partitioned into quadrilaterals 

naturally. Hence, the smooth surfaces of these objects are 

also difficult to be modeled by tensor product patches.  

Comparing with the rectangular parametric surfaces, the 

surfaces over triangular domains flexibly allow joining and 

suit for modeling of surfaces with non-rectangular 

topological type because of the more natural way to partition 

a domain into triangular regions [4][12]. The bivariate 

splines on the triangular domain not only possess all the 

important properties of univariate B-splines but also have 

the lower polynomial degree [9]. On the other hand, because 

their control polyhedrons are triangular meshes, they 

provide multiscale resolution and conformity to complex 

geometries, allow for more flexible splicing and highly 

efficient processing [12][15]. B-patch surface is also a 

bivariate spline, which is defined over a triangular 

parametric domain. It is the main block for creating the 

multivariate B-spline surfaces. Consequently, this surface 

has many important properties for performing the surface of 

3D objects flexibly.  

This paper proposes a new approach for reconstructing 

the low degree B-patch surfaces from triangular meshes 
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based on the local geometric approximation, along with the 

inverse subdivision scheme. The proposed method consists 

of three major steps. Firstly, a control polyhedron of the B-

patch surface is generated by applying the inverse 

subdivision scheme. Next, the error vectors are evaluated for 

each data point of the given mesh. Finally, this surface is 

approximated to the original mesh based on these vectors. 

For improving the accuracy of reconstructed B-patch, 

control points and knotclouds of this surface are also 

adjusted by the local geometric approximation algorithm. 

Because most of the low degree parametric curves and 

surfaces are often employed in CAGD, this result has 

practical significance, especially for mesh compression, 

reverse engineering, and virtual reality. 

Instead of the traditional reconstruction methods, the 

proposed approach does not solve linear systems; therefore, 

it completely avoids the parametric dependency problems. 

Comparing with the recent approaches, our technique 

reconstructed the low degree B-patch parametric surfaces 

interpolating most data points of the given triangular meshes 

after some of the local geometric fitting steps as well as 

several of inverse subdivision times. The accuracy of the 

result surfaces can be carried out by adjusting knotclouds 

and changing the position of control points in each of the 

iterations. 

The rest of this paper is organized as follows: Section 2 

presents the review of related works. The inverse 

subdivision scheme and B-patch representation over 

triangular parametric domain are described in Section 3. 

Section 4 introduces the proposed approach for 

reconstructing the low degree B-patch surface. Some 

experimental examples are provided in Section 5. Finally, 

several concluding remarks are discussed, and future works 

are drawn in Section 6.  

2. Related works

The surface reconstruction can be distinguished into two 

types: interpolation and approximation. In interpolation, the 

data points are shaped in a grid, and the created surface 

passes through these data points. Conversely, approximation 

generates an approximating surface that passes near the data 

points, minimizing the deviation between the obtained 

surface and the data points, and these data points are 

randomly distributed [18]. There are various methods to 

switch from a polygon mesh to a smooth surface. However, 

most of them have generated subdivision surfaces or high 

degree parametric surfaces from the rectangular meshes. 

In general, the standard surface reconstructing methods 

interpolate the smooth surfaces by solving linear equation 

systems and least square problems [1][11]. The surfaces that 

are generated by these methods may very well lie close to 

data points, but they may not be very smooth. Besides, these 

methods are difficult to control locally as well as an 

expensive cost of computing [7][11][20]. For overcome 

these limitations, the iterative geometric methods have 

recently studied and improved [10][17][18][19]. Comparing 

with the standard methods, the geometric methods cannot 

only avoid the computational cost of solving a large system 

of linear equations but also generate a series of 

approximated surfaces by updating the control points based 

on a point-surface distance computation and a repositioning 

procedure. Even if these geometric approaches reached 

interesting results, they reconstructed the subdivision 

surfaces [2][7][19] or the parametric surfaces over 

rectangular domains as Bézier or tensor-product B-spline 

[1][18][20].  

Recently, many research has extended to the bivariate 

splines over triangular parametric domains, such as 

triangular Bézier [10][14], B-patch[21], simplex spline and 

B-spline [4][6][13]. However, some of these methods cannot 

locally control the shape of surface notwithstanding that 

they created global smooth surfaces. Moreover, by using the 

given mesh as the control mesh of surface, these approaches 

required that the number of the control points has to equal 

that of the data points. In reality, since most of the input data 

is large, the degree of reconstructed surfaces is high. 

Subdivision surfaces have recently become very popular 

in the computer graphics and geometric modeling. Even 

though these surfaces allow representing multiresolution 

surfaces with free-form topology, they are difficult to 

evaluate accurately and control locally. Consequently, the 

subdivision surfaces are not commonly supported by the 

current modeling systems. However, the subdivision surface 

is considering as a bridge between a control mesh of 

parametric surface and a smooth limit surface through the 

repeated process of a fixed set of subdivision rules on a 

control mesh. As is well known, the subdivision is a process 

to create a finer mesh from an arbitrary coarse mesh by 

adding new vertices and new faces into[5], whereas the 

inverse subdivision aims at constructing a coarse mesh from 

a given dense one. In other words, the subdivision increases 

the resolution of an object while the inverse subdivision 

reduces the resolution of that object. As the inverse 

subdivision process can be stopped after each step, a 

different multiresolution representation can be obtained.  

To benefit from the inverse subdivision for simplifying 

the initial triangular mesh, the proposed method in this 

paper aims at reconstructing the low degree B-patch 

surfaces. By considering the given mesh as a subdivision 

mesh and employing the result coarse mesh as the control 

polyhedron of B-patch, a sequence of the fitting meshes is 

created along with different approximated surfaces are 

successively generated after some steps of the iteration in 

the local geometric approximation algorithm. The result is 

that the obtained low degree B-patch surface interpolates to 

most of the given data points. 

3. Preliminaries

In this section, we describe B-patch representation over 

the triangular parametric domain and the inverse Loop 

subdivision scheme. Both of them will be employed for the 

proposed method in next section. 
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3.1. Inverse subdivision scheme 

The subdivision is a process adding new vertices and 

new faces into a coarse mesh for creating a finer mesh. The 

Loop subdivision is an approximating face-split scheme for 

the triangular meshes based on the triangular splines, which 

produce C2-continuous surfaces [21]. In each step of the 

subdivision, each triangular face of a coarse mesh is split 

into four smaller ones. From the given mesh M0, a sequence 

of meshes M1, M2, Mi,… is successively generated by 

applying the Loop subdivision scheme. As expected, this 

hierarchy of meshes gradually converges to the smooth 

surface of a real object. After each step i of the Loop 

subdivision, the vertex set of mesh Mi includes two types: 

vertex-vertices that old vertices are modified and edge-

vertices that new vertices are inserted into the edges [3]. 

Figure 1. Masks of the Loop subdivision for: 
(a) vertex-vertices and (b) edge-vertices. 

Letting l be the valence of a vertex. The masks for 

determining the position of a vertex are in Fig.1 [3]. The β 

weight is a function of l and has been selected such that the 

limit subdivision surface is smooth [21], it is determined as 

follows [3]:    

2
1 5 3 1 2

cos
8 8 4

and 1
l l

l


   


            

 

    (1) 

Letting i be the number of times of reversing the Loop 

subdivision. To determine the position of vertices in mesh 

Mi-1 from vertices of mesh Mi after reversing the Loop 

subdivision, we assume that the positions of edge-vertices 

and vertex-vertices in the Loop subdivision scheme are 

correlative with weights α and β. Consequently, we have to 

determine the weights µ and  correlative with the weights α 

and β by using the inverse formulas. Based on the 

corresponding vertex-vertices pi and their neighbor vertices 

in mesh Mi, the expression of the inverse vertex-vertices pi-1 

in mesh Mi-1 is determined follows: 

1
.

1

li i i
p p p j

j


    


 (2) 

with 
5

8 3
 

 
   and  

1

3

8
n

 
 

 
 
 
 

Considering an initial triangular mesh M0(m) with m data 

points and employing it as a control mesh of a B-patch 

parametric surface, the degree n of this surface can be 

determined by the following equation: 

1
1 8 3

2
n ( m )    (3) 

The triangular B-patch degree will reduce to n/2i after i 

steps of the inverse Loop subdivision. 

3.2. The B-patch surface 

Looking at a region of B-spline on the rectangular 

domain, B-patch parametric surface on the triangular 

domain is generalized by assigning knots to the corners of 

the parametric domain defined for a triangular Bézier 

surface[4][16]. The collection of knots corresponding to 

each corner is referred to as a knotcloud (Fig.2). 

Figure 2. The triangular parametric domain 
of a cubic B-patch surface. 

For a triangular parametric domain abc, a degree n B-

patch surface is defined as follows [16]: 

( ) ( )
i j k n

V
F u B u p

ijk ijk
  

   (4) 

where 

• The knotvector V = {a0, a1,…, an-1, b0, b1,…, bn-1, c0,

c1,…, cn-1} is associated with the triangular triangular

domain abc ≡ a0b0c0, and a0, a1,…, an-1, b0, b1,…, bn-

1, c0, c1,…, cn-1R2. Every triple of knots (ai, bj, ck)

forms a proper triangle aibjck, with 0 ≤ i+j+k ≤ n-1.

• The polynomials ( )
V

B u
ijk

, with i+j+k=n, is the 

normalized B-weight over knotvector V. Letting

ijk,d(u), with d = 0,1,2, are the barycentric coordinates

over the domain aibjck. The polynomials ( )
V

B u
ijk

are

defined recursively as
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 (5) 

• The coefficients 3
p R
ijk

 are called control points 

forming the B-patch control mesh. Letting f  be the 

multiaffine polar form of the polynomial F(u), the B-

patch control points are given with blossom label as 

0 1 0 1 0 1( ,..., , ,..., , ,..., )i j kp f a a
ijk

b b c c       (6) 

Evaluation, subdivision and differentiation of B-patch 

surfaces can be computed by using the de Boor-like 

algorithm [16]. Fig.3a shows a possible configuration of the 

knotcvectors. A cubic B-patch control mesh and the 

blending of the top three control points to generate a new 

point  f(a0,a1,u) is shown in Fig.3b. 

Figure 3. A cubic B-patch: (a) blending three 
control points and (b) evaluating B-patch. 

The B-patch surfaces can be joined smoothly. The shape 

of B-patches is strongly influenced by their control meshes 

and knotvectors. The knot insertion algorithm is also similar 

to the insertion one for triangular B-spline. Consequently, 

the B-patch parametric surfaces inherit some interesting 

properties of the triangular B-spline surface such as [4], 

[16]: convex hull property, corner vertex interpolation and 

tangency at multiple knots, affine invariance, and local 

control...These properties make B-patch attractive for the 

interactive smooth surface design. 

4. The B-patch surface reconstruction

This section presents a geometric fitting algorithm for 

approximating the low degree B-patch surfaces over 

triangular parametric domains from the given triangular 

meshes.  

By using the inverse Loop subdivision scheme, a control 

polyhedron of a B-patch is generated from the given 

triangular mesh. And then, this B-patch surface is fitted to 

data points of the given mesh. In each step of the local 

geometric fitting algorithm, the control points and 

knotclouds are also adjusted to minimize the deviation 

between the data points of the mesh and the reconstructed 

B-patch surface. The proposed approach can be described by 

the diagram in Fig. 4. 

Figure 4. Flow chart of the proposed approach. 

Letting k be the step of the geometric fitting; k
j is an 

error vector corresponding to each data point pj|j=1..m of the 

given mesh, these vectors are closest distances between the 

data points of  original mesh and their corresponding points 

on B-patch parametric surface Si; k
avg is an average error 

vector and is computed in each step of the iteration k based 

on the error vectors k
j. Overall steps of the proposed 

approach can review such as:  
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• The given triangular mesh M0 that is constructed from

the m data points pj|j=1..m is set up the data structure in

keeping with the Loop subdivision mesh.

• This dense mesh M0 is simplified by using the inverse

Loop subdivision scheme. In particular, the edge-

vertices are deleted and the vertex-vertices are

modified by Eq.(2).  The result is that a coarse mesh Mi

is obtained after i times of the inverse subdivision.

• Base on Eq.(4), a B-patch surface F is created by

employing the obtained mesh Mi as a control

polyhedron of the B–patch surface. By this way, the

reconstructed surface will have the lower degree

comparing to which use the given mesh M0 as a control

polyhedron.

• In each fitting step k, the error vectors
k

j for each data

point pj of the mesh M0 are also evaluated. These 

vectors are the closest distances between the data points 

and their corresponding points on the fitting B-patch 

surface, and they are determined as follows: 

k k

j jp F        (7) 

with j=1..m and k = 1,2,… 

The average error vector 
k

avg  is also computed by the 

following equation: 

1

1 m
k k

avg j

jm 

    (8) 

• Base on the average error vector k

avg and the given 

tolerance , the B-patch is gradually fitted for 

converging to the data points of the given triangle 

mesh. In each fitting step k, a triangular fitting mesh 

M* is created from m data points *

jp : 

* k

j j jp p    (9) 

After that, the fitting mesh M* is also simplified by 

using the inverse Loop subdivision scheme to create a B-

patch fitting surface. The knotclouds of the parametric 

domain and the position of control points are also updated 

and adjusted in each step of the kth iteration.  

In the geometric fitting process, a sequence of the fitting 

meshes is updated and then simplified, as well as a hierarchy 

of the fitting B-splines is successively generated after some 

steps of the iteration in the local fitting algorithm.  

The fitting process halts when the average error vector 
k

avg  is less than the given tolerance . As a result, the 

reconstructed B-patch is the final obtained surface that 

passes through most of the data points with the smallest 

average error. The quality and accuracy of the result 

surfaces can be carried out by adjusting the knotclouds and 

changing the position of control points in each of the 

iteration. The geometric fitting algorithm of the proposed 

approach for reconstructing B-patch is given in Algorithm 1. 

In each of the iteration, considering the computation cost 

of the deviation between each data point and its 

corresponding point on the fitting surface is a constant time, 

with m data points pj, there are m times of computation to be 

executed correlatively. And supposing that the repeat-until 

iterates for k times; then the value k depends on the given 

error tolerance . Consequently, the local geometric fitting 

algorithm for reconstructing B-Patch surface has an 

asymptotic complexity  ( )m k  . 

Algorithm 1. Local geometric fitting algorithm 

Input: Triangular mesh M,  B-patch Si,  error tolerance . 

Output: Reconstructed B-patch surface S 

1 M0   modiMesh(M) 

2 M*  M0;    k  0 

3 Repeat 

4 k  k+1 

5 Mi  invSub(M*, i)    

6 Di  B-patchDomain(Mi) 

7 Si  B-patchSurf(Mi, Di)   

8 for each (pj|j=1..m) do 

9 j
k  errVect(pj, Si) 

10 p*
j  pj + j

k 

11 end for 

12 M* triangularMesh(p*
j | j=1..m ) 

13  k
avgerrAvg(j

k)      

14 Until (i
avg  ) 

15 S  Si 

16  Return S. 

Next, we present convergence of the proposed method. 

Letting pijl|i+j+l=n be the control points of a degree n B-patch 

surface over the parametric domain abc, and u be a 

parameter in the parametric domain abc.  

At the beginning of the iteration, k = 0, a B-patch surface 

F0(u) is constructed from m=(n+1)(n+2)/2 the control 

points pijl: 

0 0( ) ( )V

ijl ijl

i j l n

F u B u p
  

   (10) 

with 
0

ijk ijkp p  

 Similarly, letting ( )kF u  be the B-patch surface 

constructed at the kth iteration. 

The error vectors are determined as follows: 

0 (k k

ijl ijl ijlp F u        (11) 

 So that the control points 
1k

ijlp 
 of the B-patch surface 

1( )kF u
 at the (k+1)th iteration are computed by the 

following equation: 

1k k k

ijl ijl ijlp p     (12) 

And we obtain the B-patch surface 
1( )kF u

, that is 
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1 1( ) ( )k V k

ijl ijl

i j l n

F u B u p 

  

   (13) 

According to Eq.(11), Eq.(11) and Eq.(13), we have 

 

ij

1 0 1

ij

0 1

ij ij

i+j+

0

ij ij

i+j+

0

ij ij

i+j+

ij ij ij

i+j+

( )

( )

( )( )

( ) ( )

( )

l

k k

l ijl ijl

V k

ijl l ijl l

l n

V k k

ijl l ijl l

l n

k V k

ijl ijl l ijl l

l n

k V k

l l ijl l

l n

p F u

p B u p

p B u p

p F u B u

B u

 











  

 

   

   

   









 (14) 

with i+j+l = n and k = 1, 2,… 

We can rewrite Eq.(14) in matrix form: 

1 1 1

,0,0 1,1,0 0,0,

,0,0 1,1,0 0,0,

...

...

k k k

n n n

k k k

n n nM

  





   

    

 (15) 

where M = I - B, with I((n+1)(n+2)/2) ((n+1)(n+2)/2) is the 

identity matrix, and B is the matrix of the polynomials 

( )
V

B u
ijl

 over the parametric domain aibjcl   

,0,0 ,0,0 1,1,0 ,0,0 0,0, ,0,0

,0,0 1,1,0 1,1,0 1,1,0 0,0, 1,1,0

,0,0 0,0, 1,1,0 0,0, 0,0, 0,0,

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

V V V

n n n n n n

V V V

n n n n n n

V V V

n n n n n n

B u B u B u

B u B u B u
B

B u B u B u



   




 


 
 



 

Supposing values ijl , with i+j+l = n, are (n+1)(n+2)/2

eigenvalues of the matrix B. Because the polynomials 

( )
V

B u
ijl

are totally positive, these eigenvalues are all 

positive. On the other hand, ( ) 1V

ijl

i j l n

B u
  

 , so the -

norms of them 1B

 . Therefore, 

0 ( ) 1,ijl B i j l n       

ij ij ij0 1 ( ) ( ) ( ) 1l l lB I B M         , i j l n   

This result leads to 0 ( ) 1M  , with ( )M is the 

spectral radius of the matrix M. 

That is, lim 0,k

ijl
k

i j l n


      

equivalently, 

lim ( ) ,k

ijl ijl
k

F u p i j l n


      (16) 

The Eq.(16) shows that the B-patch surfaces ( )kF u  

converge to the given points pijl after k steps of the iteration. 

5. Experimental examples

In this section, we present some experimental results to 

prove effective of the proposed method. All experiment 

results in this paper have been obtained on a personal 

computer with 2.67GHz Intel Core i5 CPU and 4GB RAM. 

For each example, we consider degree and accuracy of the 

reconstructed B-patch surfaces, as well as the computational 

time of the proposed algorithm. 

Letting max be the largest deviation of the error vectors 

k
j; avg be an average deviation between the fitting B-patch 

and the data points of the given mesh; N(%) is a percent of 

the number of data points that the obtained B-patch crosses 

through them. Both the given triangular meshes and 

reconstructed B-patches of some experimental examples are 

presented in Table I. 

Table 1. Models of test cases 

Initial mesh Computational results 
Result B-patch 

Control mesh 
Degree 

#points #faces k max avg N(%) Time(s) #points #faces 

45 64 

3 

6 

9 

0.23262 

0.24813 

0.20717 

0.05413 

0.04052 

0.02084 

79.215 

90.006 

90.201 

<1 

<1 

1 

6 4 2 

91 144 

3 

6 

9 

0.22658 

0.15767 

0.10559 

0.06441 

0.03437 

0.02648 

79.738 

86.039 

89.792 

4 

8 

14 

10 9 3 
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153 256 

3 

6 

9 

0.38800 

0.27048 

0.20136 

0.04909 

0.03894 

0.02863 

76.848 

86.964 

90.052 

8 

16 

23 

15 16 4 

The first example is a quadratic B-patch. Fig.5 

illustrates the Gaussian curvatures to compare the quality 

of the obtained quadratic B-patches with the given mesh. 

From an initial triangular mesh consisting of 45 points 

and 64 faces with its curvature image, as shown in Fig.5a 

and Fig.5b; the quadratic B-patch surfaces can be 

obtained after i = 2 times of the inverse subdivision and k 

= 3, 6, 9 steps of the local geometric fitting, as presented 

in Fig.5c, 5d, 5e respectively. We can clearly see that a 

couple of the curvature images in Fig.5b and Fig.5e are 

rather similar. The images denote that the reconstructed 

B-patch shape is well approximated to the given mesh. 

The parametric domain and knotclouds of the obtained B-

patch are also illustrated in Fig.5f. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. Quadratic B-patches: (a) Initial mesh, 

(b) Gaussian curvature of (a), (c,d,e) obtained B-patches 
after k=3,6,9 steps of the local fitting, 

 (f) parametric domain and knotclouds of (e). 

The second and third examples, as cubic and quartic 

B-patches, are presented in Fig.6. Information on the 

initial meshes, as well as the details of the reconstructed 

B-patch surfaces, is listed in Table 1. The triangular 

meshes of both models in Fig.6a are simplified by using 

the inverse Loop subdivision scheme.  

As a result, we obtained the coarse meshes and 

employed them as control meshes for creating the cubic 

and quartic B-patches. By fitting the position of control 

points separately with aspect to each error vector, the 

resulting cubic and quartic B-patches cross through most 

data points and quickly converge to the given meshes 

after k = 10 steps of the local geometric fitting (Fig.6b, 

respectively). The images in Fig.6c are zebra mapping of 

the reconstructed cubic and quartic B-patches with k = 10, 

and their parametric domains along with knotclouds are 

also presented in Fig.6d. 

(a) 

(b) 

(c) 

(d) 

Figure 6. Cubic (left) and quartic (right) B-patches: 

 (a) Initial mesh, (b) obtained B-patches and their control 
meshes after k = 10 steps of the local fitting,  

(c) zebra mapping of (b), (d) parametric domains  
and knotclouds of (b). 

Table 1 also presents that the low-value max and avg, 

while the rather high-value N corresponding to the 

number of iteration k. The execution times is also 

proportional to the degree of the result B-patch surfaces as 

well as the number of iteration k. 

Finally, to prove of the accuracy of the obtained low 

degree B-patches can be carried out by adjusting the 

control mesh in each step of the iteration k, we illustrate 
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plots of both values values avg and N in Fig.7 and Fig.8. 

The average error measures avg sharply decrease in the 

first three iterations and then gradually decay to range 

from 0.004 to 0.006 in Fig.7. In contrast, the values N 

rapidly increase in the first three iterations, and after that, 

they reach to range from 90% to 95%, as shown in Fig.8. 

The plots indicate that the values avg and N depend on 

the number of iterations k; consequently, the 

reconstructed B-patch surfaces can be obtained after 

several steps k of the local geometric fitting algorithm. 

Figure 7. Average errors with respect 
to the number of iteration k. 

Figure 8. Convergence are proportional 

to the number of iteration k. 

5. Conclusions

In this paper, we have proposed a new method for 

reconstructing the low degree B-patch parametric surfaces 

from the triangular meshes based on the inverse 

subdivision scheme along with the local geometric fitting 

algorithm; particularly, they are the quadratic, cubic and 

quartic B-patches over the triangular parametric domain. 

By using the inverse Loop subdivision scheme to simplify 

the given triangular mesh and applying the local 

geometric fitting algorithm to adjust the control points of 

a B-patch, a sequence of the B-patch surfaces is generated 

after k steps of the iteration. As a result, the obtained B-

patch surface well approximates the data points of the 

initial mesh. Our approach has the following features: 

• Avoiding the shortcomings of the least-square fitting

method and linear system solution, the reconstructed

B-patches still cross through most data points of the

initial mesh after several steps of the iterations.

• By using the inverse subdivision scheme to simplify

the control mesh, the degree of the result B-patches

will be reduced to 2i times after i steps of the

reversing subdivision.

• The accuracy of the obtained B-patch surfaces can be

carried out by changing the position of control points

in the local geometric algorithm.

Because most surfaces often employed in geometric 

design are the low degree patches, especially the cubic 

patches, this result has practical significance for 

geometric design, data compression, surface editing and 

manipulation, versatile design, especially for reverse 

engineering and virtual reality. 
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