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Abstract. Production and operation management is an important means of resource 
integration, allocation, coordination, and utilization in power grid enterprises. At present, 
there have been significant changes in the operating environment and profit models of 
power grid enterprises. The external situation is becoming increasingly severe. 
Production and operation are subject to multiple constraints. This article introduces 
production and operation indicators and exogenous factor indicators, considering the 
random differences of each individual, and constructs a longitudinal data joint model. 
Use joint models to predict and analyze production and operation indicators. The 
empirical research shows that the joint model takes into account the correlation between 
indicators and the difference between individuals, which is superior to the single model 
in structure, and has better accuracy and dynamics in prediction. 

Keywords: power grid enterprise, production and operation, indicator management, joint 
modeling, prediction technology 

1 Introduction 

Production and operation management is an important means of resource integration, 
allocation, coordination, and utilization in power grid enterprises[1]. It is an important lever for 
implementing precise control and lean operation[2]. It is of great significance for ensuring the 
implementation of power grid enterprise strategies and plans, and achieving optimal overall 
efficiency and benefits[3]. All types of enterprises attach great importance to production, 
operation and management work[4], and focus on playing the core role of key indicators in 
business management[5]. In recent years, power grid enterprises have continuously improved 
their production and operation concepts, optimized their production and operation 
management, as well as modernization of their operating systems, in accordance with external 
changes and internal development requirements. 

From the perspective of the situation, building a new development pattern puts forward higher 
requirements for the safe and reliable supply of electricity, building a new power system for 
the consumption of new energy in the power grid, creating a world-class state-owned 
enterprise for improving enterprise management, strictly regulating monopolistic industries for 
lean operation of companies, and accelerating the construction of the power market for the 
participation of power grid enterprises in market competition. From the perspective of 
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challenges, after the comprehensive purchase and sale of electricity during the same period, 
the volatility of electricity and line loss indicators has increased, making traditional "step by 
step" control difficult to sustain. It is necessary to optimize core indicator control[6], continue 
to carry out loss reduction management[7], do a good job in electricity purchase and sale 
management, play a role in data empowerment[8], and improve platform support capabilities. 

This paper fully utilizes the data accumulated in the production and operation activities of 
power grid enterprises to construct a joint model for dynamic prediction and analysis of the 
correlation between indicators. Fully support the production and operation management of 
power grid enterprises through the improvement of model analysis technology. 

2 Joint model construction and solution 

2.1 Determination of model form 

From the perspective of model prediction accuracy, a single prediction model has a certain 
predictive effect on production and operation indicators, but it ignores the description of the 
complex correlation system formed between production and operation indicators. Therefore, 
based on the judgment of the correlation between production and operation indicators, further 
optimization of the structural form and prediction accuracy of the prediction model can be 
considered. 

From the perspective of modeling data structure, single prediction model modeling often relies 
on three types of data structures, namely time series data of production and operation of a 
certain unit of power grid enterprises, cross-sectional data of production and operation of each 
unit of power grid enterprises at a certain time point, and panel data of production and 
operation of each unit of power grid enterprises at equal intervals. These does not fully match 
the actual situation of data accumulation of each unit of power grid enterprises. Using only 
time series data will waste the data information provided by the actual operational differences 
of each unit. Using only cross-sectional data will waste the data information provided by each 
unit's actual operating time. By using panel data, it is required that each unit collect production 
and operation data with exactly the same time interval and frequency. If there are differences 
in data collection among units, the shortest time interval of each unit needs to be taken 
uniformly and adjusted to the highest frequency data format, which will waste some time 
points and information provided by high-frequency production and operation data. Therefore, 
considering the actual differences in the collection and processing of production and operation 
data by various units of power grid enterprises, it is possible to construct a prediction model 
that is suitable for vertical data analysis. 

Coordinate the correlation between various production and operation indicators, taking into 
account the randomness differences of each individual in the model, introduce random effect 
variables into the joint equation model, and establish the following form of model: 

⎩
⎪
⎨

⎪
⎧ Yଵ୧୨ ൌ Xଵ୧୨

୘ βଵ ൅ Dଵ୧୨
୘ bଵ୧ ൅ εଵ୧୨

Yଶ୧୨ ൌ Xଶ୧୨
୘ βଶ ൅ Dଶ୧୨

୘ bଶ୧ ൅ εଶ୧୨
⋯

Y୦୧୨ ൌ X୦୧୨
୘ β୦ ൅ D୦୧୨

୘ b୦୧ ൅ ε୦୧୨

                                                (1) 



 
 
 
 

In equation (1), Y represents the main production and operation indicators of the power grid 
enterprise, and X  represents its corresponding independent variable combination. β  is the 
combination of regression coefficients for the combination of independent variables, D is the 
corresponding random effect adjustment matrix, b is the random effect variable, and ε is the 
error term. i=1,2,..., m, m is the number of individuals. j=1,2,...,n୧, n୧ is the number of times 
the i-th unit collected data. h=7, which is the quantity of production and operation indicators. 

ε୦୧୨
୧୧ୢ
ሱሮ Nሺ0, σக౞

ଶ ሻ, ε୦୧୨ follows a normal distribution with a mean of 0 and a variance of σக౞
ଶ . 

The random effect b୧ can be interpreted as an unobservable potential influencing factor, b୧ ൌ

ሺbଵ୧, bଶ୧, ⋯ , b୦୧ሻ
୧୧ୢ
ሱሮ Nሺ0, Gሻ, b୧ follows a multivariate normal distribution, and its covariance G 

reflects the internal relationship between models. The block diagonal matrix represents that 
there is no connection between single models of production and operation, or there is 
connection. 

2.2 Estimation method of the model 

Assuming that the prior distribution of the regression coefficients β୦ is a normal distribution, 
β୦~Nሺ0, B୦ሻ, D୧ is a symmetric positive definite matrix. The inverse of the covariance matrix 
G follows the Wishart distribution of degrees of freedom df and positive definite matrices V, 
W=G-1~W(V,df) . The reciprocal of covariance σக౞

ଶ  follows a gamma distribution with 
parameters a୦ and b୦, τ୦= 1 σக౞

ଶ ~Gamma(a୦,b୦)⁄ . 

By combining a prior distribution, the quasi likelihood density function of the joint model can 
be given: 

 fሺYଵ, ⋯ , Y୦, bଵ, ⋯ , b୦| βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, Wሻ 

∝ ෑ ቊෑ ሺ2πሻିଵ ଶ⁄ τଵ
ଵ ଶ⁄ exp ቄെ τଵ 2⁄ ൫yଵ୧୨ െ xଵ୧୨

୘ βଵ െ dଵ୧୨
୘ b1i൯

ଶ
ቅ

୬౟

୨ୀଵ

୫

୧ୀଵ

 

     ∙  ⋯ 

∙ ሺ2πሻିଵ ଶ⁄ τ୦
ଵ ଶ⁄ exp ቄെ τ୦ 2⁄ ൫y୦୧୨ െ x୦୧୨

୘ βଵ െ d୦୧୨
୘ bhi൯

ଶ
ቅ  

  ∙ ሺ2πሻି୦ ଶ⁄ |W|ିଵ ଶ⁄ exp൛െ 1 2b୧
୘Wb୧⁄ ൟሿ  

  ∙ ሺ2πሻି୮భ ଶ⁄ |Bଵ|ିଵ ଶ⁄ expሼെ 1 2βଵ
୘Bଵ

ିଵβଵ⁄ ሽ  

  ∙  ⋯                                                                       (2) 

 ∙ ሺ2πሻି୮౞ ଶ⁄ |B୦|ିଵ ଶ⁄ exp൛െ 1 2β୦
୘B୦

ିଵβ୦⁄ ൟ 

 ∙  
ୠభ

౗భ

୻ሺୟభሻ
τଵ

ୟభିଵ expሼെbଵτଵሽ 

 ∙  ⋯ 

 ∙  
ୠ౞

౗౞

୻ሺୟ౞ሻ
τ୦

ୟ౞ିଵ expሼെb୦τ୦ሽ 

 ∙  
ሼ|୛|ሺౚ౜ష౞షభሻ మ⁄ ୣ୶୮ሼିଵ/ଶ୲୰ୟୡୣሺ୚షభ୛ሻሽ

ሼଶౚ౜ൈ౞/మ|୚|ౚ౜/మ୻౞/మሺୢ୤/ଶሻ
ൠ  



 
 
 
 

In equation (2), p୦ is the dimension of the independent variable X୦. 

According to the density function and prior distribution assumption in equation (2), the 
conditional distribution of each parameter can be derived: 

 β୦| Yଵ, ⋯ , Y୦, Xଵ, ⋯ , X୦, bଵ, ⋯ , b୦, βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, W 

∝ exp ቐെ
τ୦

2
෍ ෍൫y୦୧୨ െ x୦୧୨

୘ β୦ െ d୦୧୨
୘ b୦୧൯

ଶ
୬౟

୨ୀଵ

୫

୧ୀଵ

െ
1
2

β୦
୘B୦

ିଵβ୦ቑ

ൌ exp ൜െ
τ୦

2
ሺY୦ െ X୦β୦ െ D୦b∙୦ሻ୘ሺY୦ െ X୦β୦ െ D୦b∙୦ሻ െ

1
2

β୦
୘B୦

ିଵβ୦ൠ

∝ exp ൜െ
1
2

ൣβ୦
୘൫τ୦X୦

୘X୦ ൅ B୦
ିଵ൯β୦ െ 2τ୦β୦

୘X୦
୘ሺY୦ െ D୦b∙୦ሻ൧ൠ

 

 τ୦| Yଵ, ⋯ , Y୦, Xଵ, ⋯ , X୦, bଵ, ⋯ , b୦, βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, W 

∝  τ୦

ଵ
ଶ ∑ ∑ ୬౟

ౣ
౟సభ ାୟ౞ିଵౣ

౟సభ eିୠ౞த౞eି
 த౞
ଶ ሺଢ଼౞ିଡ଼౞ஒ౞ିୈ౞ୠ∙౞ሻ౐ሺଢ଼౞ିଡ଼౞ஒ౞ିୈ౞ୠ∙౞ሻ 

w| Yଵ, ⋯ , Y୦, Xଵ, ⋯ , X୦, bଵ, ⋯ , b୦, βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, W 

∝ |W|
୫
ଶ exp ൝െ

1
2

෍ b୧
୘Wb୧

୫

୧ୀଵ

ൡ |W|
ୢ୤ି∑ ୯ౡିଵ౞

ౡసభ
ଶ exp ൜െ

1
2

traceሺVିଵWሻൠ

ൌ |W|
୫ାୢ୤ି∑ ୯ౡିଵ౞

ౡసభ
ଶ exp ቐെ

1
2

trace ቌ൭෍ b୧

୫

୧ୀଵ

b୧
୘ ൅ Vିଵ൱ Wቍቑ

 

b୧| Yଵ, ⋯ , Y୦, Xଵ, ⋯ , X୦, bଵ, ⋯ , b୦, βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, W 

∝ exp ቄെ
τଵ

2
ሺyଵ୧ െ Xଵ୧βଵ െ Dଵ୧bଵ୧ሻ୘ሺyଵ୧ െ Xଵ୧βଵ െ Dଵ୧bଵ୧ሻቅ

     ∙ ⋯

     ∙ exp ቄെ
τ୦

2
ሺy୦୧ െ X୦୧β୦ െ D୦୧b୦୧ሻ୘ሺy୦୧ െ X୦୧β୦ െ D୦୧b୦୧ሻቅ

     ∙ exp ൜െ
1
2

b୧
୘Wb୧ൠ

∝ exp ቄെ
τଵ

2
ቀbଵ୧

୘ Dଵ୧
୘ Dଵ୧bଵ୧ െ 2bଵ୧

୘ Dଵ୧
୘ ሺyଵ୧ െ Xଵ୧βଵሻቁቅ

     ∙ ⋯

     ∙ exp ቄെ
τ୦

2
ቀb୦୧

୘ D୦୧
୘ D୦୧b୦୧ െ 2b୦

୘D୦୧
୘ ሺy୦୧ െ X୦୧β୦ሻቁቅ

     ∙ exp ൜െ
1
2

b୧
୘Wb୧ൠ

 

Organize as follows: 

 β୦| ∙ ~ 𝑁 ቀ൫τ୦X୦
୘X୦ ൅ B୦

ିଵ൯
ିଵ

τ୦X୦
୘ሺY୦ െ D୦b୦ሻ ,

൫τ୦X୦
୘X୦ ൅ B୦

ିଵ൯
ିଵ

ቁ
                                 (3) 

τ୦| ∙ ~ Gamma ቀa୦ ൅
∑ ୬౟

ౣ
౟సభ

ଶ
, b୦ ൅

ଵ

ଶ
ሺY୦ െ X୦

୘β୦ െ D୦b୦ሻ୘

ሺY୦ െ X୦
୘β୦ െ D୦b୦ሻ൯

                   (4) 



 
 
 
 

W| ∙ ~W ቀ൫∑ b୧ b୧
୘୫

୧ୀଵ ൅ Vିଵ൯
ିଵ
，m ൅ df ቁ                                                (5) 

b୧ | ∙ ~NሺሺM୧ ൅ WሻିଵE୧ ，ሺM୧ ൅ Wሻିଵሻ                                                     (6)      
Where,  β୦| ∙ represents the conditional distribution of  β୦ ,  τ୦| ∙  represents the conditional 
distribution of  τ୦ , W| ∙  represents the conditional distribution of W , b୧ | ∙  represents the 
conditional distribution of b୧ . 

M୧ ൌ diagሺτଵDଵ୧
୘ Dଵ୧, ⋯ , τ୦D୦୧

୘ D୦୧ሻ                                                  (7) 

 E୧ ൌ ሺτଵDଵ୧
୘ ሺyଵ୧ െ xଵ୧βଵሻ, ⋯ , τ୦D୦୧

୘ ሺy୦୧ െ x୦୧β୦ሻሻ୘                                  (8) 

Combining the fully conditional distribution of all parameters and using Gibbs sampling in the 
MCMC algorithm, Bayesian parameter estimation can be easily performed. Assuming absence 
of b୧, the Gibbs sampling steps for parameter estimation of complex system models are as 
follows: 

1) Set the initial value of the parameter βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, W, b୧. 

2) Based on the initial values of each parameter in step 1, construct matrices M୧  and E୧ 
according to equations (7) and (8), and extract missing samples from the conditional 
distribution according to equation (6). 

3) Based on the missing samples extracted in step 2, extract corresponding parameter samples 
according to the conditional distribution of  βଵ, ⋯ , β୦, τଵ, ⋯ , τ୦, W in equations (3) to (5), and 
complete the extraction of all parameter samples at once. 

4) Replace the previously extracted parameters with the newly extracted parameter samples 
and repeat steps 2 and 3 until all parameters converge. 

2.3 Model verification and evaluation 

The testing of complex system models mainly involves two aspects: one is the correctness of a 
single predictive model combination, and the other is the significance of independent variables. 
Among them, the correctness test of a single prediction model joint requires checking whether 
the covariance matrix of random effects b୧ is a diagonal matrix, that is, checking whether the 
random effects b୧ are related. If it is a diagonal matrix, it indicates that there is no connection 
between each single prediction model and there is no need to build a complex system model. 
The significance test of independent variables is the same as the Z-test of regression 
parameters in classical econometric models. 

The prediction performance of the model is evaluated using Mean Absolute Error (MAE), 
Mean Square Error (MSE), and Mean Absolute Percentage Error (MAPE). The forms of each 
evaluation indicator are as follows: 

MAE ൌ
ଵ

୬
∑ |yො୧ െ y୧|

୬
୧ୀଵ                                                        (9)  

MSE ൌ
ଵ

୬
∑ ሺyො୧ െ y୧ሻଶ୬

୧ୀଵ                                                    (10) 

MAPE ൌ
ଵ଴଴%

୬
∑ ቚ

୷ෝ౟ି୷౟

୷౟
ቚ୬

୧ୀଵ                                                   (11) 



 
 
 
 

3 Empirical research 

Based on the data of a certain power grid enterprise from 2019 to 2021, select the variables 
shown in Table 1 and establish a joint model. 

Table 1. Variable Selection for Joint Modeling 

Dependent variable 
Elect
ricity 
sales 

Lin
e 

los
s 

rat
e 

Capacity 
expansio

n 
complet

ed 

Tota
l 

asset
s 

Asset 
liabili

ty 
ratio 

Tota
l 

profi
t 

Total 
labor 
produ
ctivity 

Indepe
ndent 
variab

le 

Dependent variable(t-1) √ √ √ √ √ √ √ 
Electricity sales  √ √  √ √  
Line loss rate     √  √ 
Capacity expansion 
completed 

√ √  √ √ √ √ 

Total assets √     √ √ 
Asset liability ratio  √     √ 
Total profit √   √   √ 
Total labor productivity  √   √   
Investment in Fixed Assets   √     
Total electricity 
consumption 

√ √ √ √ √ √  

Maximum electricity load √  √ √ √ √ √ 
GDP √ √ √ √ √   
Random effect √ √ √ √ √ √ √ 

Using Gibbs sampling for Bayesian parameter estimation, the sampling frequency is set to 
10000, and the average of the last 5000 sampling results is taken as the regression coefficient 
of the model. The results are shown in Table 2. 

Table 2. Parameter estimation results of the entire model 

Dependent variable：Electricity sales 

Independent 
variable 

Intercept 
Dependent 
variable(t-

1) 

Capacity 
expansion 
completed 

Total assets 
Total 
profit 

Total 
electricity 

consumption 

Maximum 
electricity 

load 
GDP 

Coefficient 1.7302 0.8003 0.0225 -0.0348 0.4636 0.0925 0.0444 0.0022 

Dependent variable：Line loss rate 

Independent 
variable 

Intercept 
Dependent 
variable(t-

1) 

Electricity 
sales 

Capacity 
expansion 
completed 

Asset 
liability 

ratio 

Total labor 
productivity 

Total 
electricity 

consumptio
n 

GDP 

Coefficient 1.8674 0.9575 0.0004 0.0000 -0.0236 -0.0076 -0.0002 0.0000 

Dependent variable：Capacity expansion completed 

Independent 
variable 

Intercept 
Dependent 

variable(t-1) 
Electricity 

sales 
Investment in 
Fixed Assets 

Total 
electricity 

consumption 

Maximum 
electricity 

load 
GDP 

Coefficient 0.9842  0.5840  0.2485  0.1922  0.0342  0.1649  -0.0013  



 
 
 
 

Dependent variable：Total assets 

Independent 
variable 

Intercept 
Dependent 

variable(t-1) 

Capacity 
expansion 
completed 

Total profit 
Total 

electricity 
consumption 

Maximum 
electricity 

load 
GDP 

Coefficient 1.2003  1.1345  0.2121  1.3187  -0.0581  -0.0879  -0.0047  

Dependent variable：Asset liability ratio 

Independent 
variable 

Interce
pt 

Dependent 
variable(t-1) 

Electrici
ty sales 

Line 
loss 
rate 

Capacity 
expansion 
completed 

Total labor 
productivit

y 

Total 
electricity 

consumption 

Maxi
mum 
electri
city 
load 

GDP 

Coefficient 14.2143 0.8544 0.0021 -0.7062 0.0013 -0.0288 -0.0024 0.0005 -0.0001 

Dependent variable：Total profit 

Independent 
variable 

Intercept 
Dependent 

variable(t-1) 
Electricity 

sales 

Capacity 
expansion 
completed 

Total assets 
Total 

electricity 
consumption 

Maximum 
electricity 

load 

Coefficient -9.8180  0.4945  0.0206  0.0033  0.0027  -0.0026  -0.0091  

Dependent variable：Total labor productivity 

Independe
nt variable 

Intercept 
Dependent 
variable(t-

1) 

Line loss 
rate 

Capacity 
expansion 
completed 

Total 
assets 

Asset 
liability ratio 

Total profit 
Maximum 
electricity 

load 

Coefficien
t 

11.6099  0.8435  -0.1581  -0.0020  0.0025  -0.0335  0.2961  0.0008  

Obtain the estimated values G෡ of the random effect covariance matrix for different periods 
from the mean of W, and calculate the corresponding correlation coefficient matrix corෞ  based 
on this: 

G෡ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

225.3468 11.6656 34.3751 െ50.4933 െ20.6584 െ5.8515 25.7712

11.6656 255.3005 െ4.8095 െ27.3720 70.5121 22.9394 24.1813

34.3751 െ4.8095 184.9517 െ23.6674 െ26.5214 െ16.5030 19.8095

െ50.4933 െ27.3720 െ23.6674 145.7414 െ35.5582 9.9762 23.0423

െ20.6584 70.5121 െ26.5214 െ35.5582 175.4343 9.1725 26.3310

െ5.8515 22.9394 െ16.5030 9.9762 9.1725 151.2976 െ40.8628

25.7712 24.1813 19.8095 23.0423 26.3310 െ40.8628 193.0338 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

corෞ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1.0000 0.0486 0.1684 െ0.2786 െ0.1039 െ0.0317 0.1236

0.0486 1.0000 െ0.0221 െ0.1419 0.3332 0.1167 0.1089

0.1684 െ0.0221 1.0000 െ0.1442 െ0.1472 െ0.0987 0.1048

െ0.2786 െ0.1419 െ0.1442 1.0000 െ0.2224 0.0672 0.1374

െ0.1039 0.3332 െ0.1472 െ0.2224 1.0000 0.0563 0.1431

െ0.0317 0.1167 െ0.0987 0.0672 0.0563 1.0000 െ0.2391

0.1236 0.1089 0.1048 0.1374 0.1431 െ0.2391 1.0000 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 



 
 
 
 

At a significance level of 10%, combined with the correlation coefficient matrix, the 
hypothesis H଴: ρ୧୨ ൌ 0 is tested that the t-statistic of each correlation coefficient is less than 
the critical value, and the covariance matrix G and correlation coefficient matrix cor of r୧ are 
not diagonal matrices. There is a significant correlation between each random effect, and using 
joint modeling method to construct the model is reasonable. 

Conduct significance tests on the parameters of the entire model and test hypotheses H଴: β୧୨ ൌ
0. Not all Z-statistics of each parameter are less than the critical value, and not all variables 
have a significant impact. Therefore, based on the significance test results, the model is further 
adjusted to remove some insignificant variables. Then, adjust the parameters of the model for 
parameter estimation. The results are shown in Table 3. 

Table 3. Parameter estimation results of the adjusted model 

Dependent variable：Electricity sales 
Independen
t variable 

Intercept 
Dependent 

variable(t-1) 
Total electricity 

consumption 
GDP 

Coefficient -1.0475  0.8804  0.1006  0.0028  
Dependent variable：Line loss rate 
Independen
t variable 

Intercept 
Dependent 

variable(t-1) 
Asset liability ratio 

Total labor 
productivity 

Coefficient 1.8127  0.9457  -0.0210  -0.0063  
Dependent variable：Capacity expansion completed 
Independen
t variable 

Intercept 
Dependent 

variable(t-1) 
Total assets Total profit 

Coefficient 0.3578  0.6706  0.7419  8.5554  
Dependent variable：Total assets 

Independen
t variable 

Intercept 
Dependent 

variable(t-1) 

Capacity 
expansion 
completed 

Total labor 
productivity 

Maximum 
electricity load 

Coefficient -1.9237  0.9271  0.2139  1.2904  -0.1277  
Dependent variable：Asset liability ratio 

Independen
t variable 

Intercept 
Dependent 

variable(t-1) 
Line loss 

rate 

Capacity 
expansion 
completed 

Total labor 
productivity 

Total 
electricity 

consumption 
Coefficient 15.3360  0.8425  -0.7726  0.0014  -0.0305  -0.0013  

Dependent variable：Total profit 
Independen
t variable 

Intercept 
Dependent 

variable(t-1) 
Electricity sales 

Capacity expansion 
completed 

Maximum 
electricity load 

Coefficient -9.4395  0.4793  0.0169  0.0034  -0.0080  
Dependent variable：Total labor productivity 
Independen
t variable 

Intercept Dependent variable(t-1) Total profit 

Coefficient 7.6753  0.8723  0.2870  

Using the production and operation data of power grid enterprises in 2022, predictions were 
made based on both the full model and the adjusted model. The results are shown in Table 4. 

 



 
 
 
 

Table 4. Evaluation of the prediction effect of the model 

Dependent variable Entire model Adjusted model 

MAE MSE MAPE MAE MSE MAPE 
Electricity sales 48.45 4621.62 4.36% 52.85 5065.59 3.38%
Line loss rate 0.68 0.75 15.18% 0.63 0.63 14.42%
Capacity expansion completed 496.51 337953.10 29.97% 417.01 294787.06 22.91%
Total assets 187.67 61412.82 19.78% 155.01 40240.98 14.90%
Asset liability ratio 2.48 11.17 4.17% 2.44 9.71 4.07%

Total profit 
3905.4

2 
22776527.7

0
83507.32% 7.82 176.39 226.91%

Total labor productivity 9.16 146.49 12.39% 9.26 149.12 12.75%
It can be seen that for the prediction of various production and operation indicators, the 
accuracy of the adjusted model is better than that of the entire model, indicating that variable 
selection of the model is beneficial for improving the prediction performance of the model. 
Among them, the model has high prediction accuracy for electricity sales and asset liability 
ratio, with MAPE values below 5%. The MAPE values predicted by the model for line loss 
rate, total assets, and total labor productivity are between 10% -15%, while the MAPE values 
predicted for capacity expansion completed are 22.91%. The main reason for the low 
prediction accuracy is that the model has significant deviations in predicting a few individual 
samples, which increases the MAPE value. If abnormal predicted values are removed, the 
MAPE value can be controlled within 10%. The MAPE value of the model for predicting total 
profit is as high as 226.91%. The main reason for the low prediction accuracy is that the 
changes in total profit of each unit do not exhibit regular increasing, decreasing, or cyclical 
characteristics. The role of historical information and trend characteristics in improving the 
model's prediction accuracy is affected. 

4 Conclusion 

Based on the identification of related indicators for production and operation indicators, 
combined with the actual accumulation of production and operation data in esports network 
enterprises, the production and operation indicators and exogenous factor indicators are 
introduced, and the random differences of each individual are considered to construct a 
vertical data joint model. The empirical research shows that the joint model takes into account 
the correlation between indicators and the difference between individuals, which is superior to 
the single model in structure, and has better accuracy and dynamics in prediction. 
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