
Quantum Computing Simulated Annealing Algorithm 
Applying in Portfolio Optimization Problem 

Baoyuan Shana, Zucheng Shang*b 

{aSDUSTAMby@163.com , bshangzucheng@sdust.edu.cn} 

College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 
266590, China 

Abstract. The quantum annealing algorithm is an optimization algorithm which utilizes 
the quantum tunnelling effect produced by quantum fluctuations to escape local optima, 
thus enhancing the chance of finding the global optimal solution. Portfolio optimization 
problems effectively describe activities such as ordinary stock investments and asset 
management as optimization problems in portfolio investments. The quantum annealing 
algorithm leverages the unique properties of quantum mechanics, which could 
significantly improve the efficiency and effectiveness of solutions. This paper proposes a 
modelling and solution approach for the portfolio investment problem based on a quantum 
computing framework. The method utilizes the quantum annealing algorithm to optimize 
the real stock price trends in financial markets, building on the foundation of modern 
portfolio theory. 
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1 INTRODUCTION 

The concept of quantum computing was born with the introduction of the famous quantum 
mechanical model of Turing machines by Paul Benioff[1] in 1980. Building on this, Richard 
Feynman[2] in 1985 proposed the idea of constructing computers based on quantum mechanical 
properties. Following these breakthroughs, Canadian company D-Wave has emerged as a 
leading force in commercializing quantum computing[3]. Their main focus is developing 
quantum annealing machines primarily designed for solving combinatorial optimization 
problems. 

Quantum annealing algorithms (QA) leverage the unique properties of quantum mechanics, 
unlike traditional simulated annealing algorithms (SA). QA utilizes the quantum tunnelling 
effect, produced by quantum fluctuations, to escape local optima, thus enhancing the chance of 
finding the global optimal solution. Its application in portfolio optimization and other domains 
can significantly improve the efficiency and effectiveness of solutions[4]. 

Portfolio optimization aims to find the most suitable investment portfolio considering risk and 
return. This context has employed Modern Portfolio Theory[5] (MPT) for portfolio optimization. 
MPT suggests that by diversifying investments across multiple stocks and various assets in a 
portfolio, it is possible to achieve a certain level of profitability while mitigating price volatility 
risks in asset management. Based on the portfolio theory proposed by Harry Markowitz[6] in the 
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1950s, this concept emphasizes the importance of diversification in investment strategies. The 
overall price volatility risk of a portfolio is determined not only by the individual price volatility 
risks and their respective weights of the component stocks but also by the correlation coefficient 
that represents the movement relationship between any two stocks. 

2 MODELLING AND IMPLEMENTATION 

2.1 Introduction of the quantum annealing algorithm 

The quantum annealing algorithm generally consists of two parts aimed at finding the global 
minimum of a given objective function. The first part is the quantum potential energy, which 
maps the objective function of the optimization to a potential field imposed on a quantum system. 
This mapping allows the quantum optimization problem to be represented as a quantum system. 
The second part is the quantum kinetic energy, which introduces a kinetic energy term with 
controllable amplitude. This term serves as a control over the penetration length of the quantum 
fluctuations in the system. 

The quantum annealing algorithm involves the following steps [7]. 

STEP 1, the evaluation function q pot kinH H H    for the quantum system is constructed 

based on the optimization problem at hand, representing the quantum Hamiltonian. The 
quantum potential potH  , serving as the evaluation function in the simulated annealing 

algorithm, is denoted within this. kinH  represents the quantum kinetic energy. 

STEP 2, the initialized state is x  and its corresponding state energy is   potH x . 0T  is the 

initial temperature of quantum annealing, while   represents the transverse field strength. The 
changing transverse field strength induces quantum transitions between different quantum states. 
The maximum number of iterations is MaxSteps. To start the process, each parameter needs to 
be initialized. 

STEP 3, a random micro disturbance causes a state energy change  'potH x , resulting in a 

new state 'x . 

STEP 4, the calculated energy difference 

( ') ( )pot pot potH H x H x     (1) 

and 

( ') ( )q q qH H x H x     (2) 

If 

0  0pot qH or H        (3) 

the system accepts the new solution 'x x , and conversely, if 



exp( ) (0,1)qH random
T


     (4) 

then 'x x , otherwise, repeat STEP 3. 

STEP 5, performing the annealing operation results in a similar change in    as the 
temperature T  in simulated annealing, with the transverse field strength changing accordingly. 

0

MaxSteps


        (5) 

STEP 6, if 0  , terminate the quantum annealing algorithm, otherwise, repeat STEP 3. 

In the case of quantum annealing, the system can tunnel through the potential energy barrier to 
reach the global optimum and achieve optimization of the target system. This is due to the 
quantum tunnelling effect, which is reflected in the quantum adiabatic theorem. According to 
this theorem, if the Hamiltonian qH  of the system varies slowly with T , the system will 

remain in the qH  ground state at the current moment. The quantum annealing algorithm takes 

advantage of this property by mapping the real problem's optimal solution to an instantaneous 
ground state[8]. The process begins with a worse initial solution, corresponding to the system's 
Hamiltonian qH   at the initial moment. As the Hamiltonian slowly changes, the system 

progresses through the adiabatic evolution process in quantum mechanics, eventually reaching 
the instantaneous ground state of the Hamiltonian qH  , which corresponds to the optimal 

solution of the actual problem. 

2.2 Solutions to Existing Problems 

Constructing an optimal investment portfolio that requires precise allocation of investment 
ratios becomes extremely challenging for individual investors with limited funds. This difficulty 
arises due to the volatility of individual stock prices and the need for fine-grained allocation of 
investment ratios. Consequently, it becomes arduous for individual investors with limited funds 
to replicate such an optimal investment portfolio in practice due to the significant amount of 
capital required. To address this challenge, two solutions are proposed. Firstly, the introduction 
of investment budget constraints involves explicitly setting upper limits on investment amounts, 
ensuring that individual investors do not exceed their economic capacity when constructing an 
optimal investment portfolio. Secondly, expressing the composition of the investment portfolio 
in terms of share quantities instead of monetary values allows for greater flexibility. By 
converting investment ratios into the number of shares purchased, investors can flexibly 
construct their investment portfolios and make reasonable adjustments based on their available 
financial resources.  

2.3 Constructing the objective function 

The vector 0iP  represents the purchase price of the ith  stock, the vector ijP  represents the 

sale price of the ith  stock at moment j , and the vector iw  is the rate of return on the ith  

stock, which can be negative. These vectors are related as follows. 
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The function that represents the total return of stocks is, 

return
i

i iV w x     (7) 

where ix  is a binary variable that takes on a value of 0 or 1, with a value of 1 indicating the 

stock is purchased, while the opposite indicates it is not purchased. 

The function that represents the risk is, 

,

cov( , )ris i j
i

k
j

V i j x x     (8) 

where the variables 1x   and 2x   are binary variables corresponding to the ith   and jth  

stocks respectively. 

cov( , )i j  is the covariance between two stocks and is used to measure the relative volatility 

of stock prices. A positive covariance indicates that the two stocks have similar return trends. 
The formula that calculates the covariance of the ith  and jth  stocks is, 
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where iA , iB  are the stock Ath  and Bth  price at moment i , and n  is the number of 

time periods observed. The returns of stocks for the issue is, 

return riskV L V V        (10) 

where L  is the smoothness index, adjusted to maximize returns or minimize risk.  

To better simulate the real investment situations of investors, we need to impose restrictions on 
the invested callable principal[9]. In quantum annealing, it is commonly achieved by introducing 
a penalty function to enforce constraint implementation during the optimization process. 
Specifically for QUBO, there is a specific construction format when dealing with constraint 
formulation[10]. This construction uses mathematical methods to create a polynomial such that 
it equals zero when the constraints are satisfied and is greater than zero otherwise. This allows 
the constraint polynomial to exert an overall constraint impact on the objective function in 
quantum annealing. 

2( )ij i
i

H P x K                        (11) 

Above all, the objective function for the issue is formula (12), 
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where   is penalty coefficient, K  is investment budget and r  is risk-free interest rate. 



2.4 Results 

Python was used to simulate the implementation of the quantum annealing algorithm and 
construct two portfolio strategies based on investor risk preferences (risk-seeking and risk-
averse). The investment budget K  was set at 1000, the risk-free interest rate r  at 2%, the 
smoothness index of risk-seeking portfolio sL  at 200, and the smoothness index of risk-averse 

portfolio aL   at 0.2. Subsequently, the investment returns and asset trends for each type of 

strategy were compared with the DOW index and stochastic measures as shown in Fig. 1. 

 

Fig. 1. Time series of portfolio return(left) and rate of return(right) 

The portfolio strategies for risk-seeking and risk-averse investors are represented by the red 
curve and the purple curve, respectively. The blue curve represents an investment strategy for 
buying the DOW index fund. The green curve illustrates a stochastic buying approach without 
any specific investment strategy. 

3 CONCLUSIONS 

In summary, we have developed a model framework to solve the portfolio optimization problem 
in quantum computing. The optimized data significantly outperformed the original data, and by 
adjusting the given parameters, it could effectively reflect individual investment preferences. 
However, determining how to adjust the parameters or provide quantitative parameter strategies 
remains an unresolved problem. Additionally, it is unclear under what conditions quantum 
annealing algorithms are consistently superior to simulated annealing algorithms[11]. From this 
problem, it appears that quantum annealing algorithms excel in both speed and stability 
compared to simulated annealing algorithms when the data size is sufficiently large. In summary, 
our model framework improves portfolio optimization in quantum computing by delivering 



superior results, addressing issues of stability, and exploring the conditions for the superiority 
of quantum annealing algorithms. 

The basic framework of quantum annealing algorithm theory and quantum computing has been 
developed. As quantum computing technology advances, increasingly sophisticated quantum 
annealing devices become available, offering new possibilities for solving various forms of 
optimization problems. However, their genuine potential remains an open question. This paper 
attempts to provide some insight into the use of quantum computing techniques to solve 
complex problems through modelling studies of portfolio optimization problems. 

Our objective is to explore the feasibility of using web crawling techniques to retrieve news 
information or trading data related to a specific stock. By adjusting the stock value based on the 
nature of the data (positive or negative), we aim to provide predictive investment portfolio 
strategies for investors. The optimization model, although capable of finding the optimal 
solution for the given data, is not yet sufficient for predicting investment portfolio strategies due 
to the numerous factors that influence stock prices[12]. 

REFERENCES 

[1] Benioff P. The computer as a physical system: A microscopic quantum mechanical Ha
miltonian model of computers as represented by Turing machines[J]. Journal of statistical phy
sics, 1980, 22: 563-591. 
[2] Feynman R P. Quantum mechanical computers[J]. Optics news, 1985, 11(2): 11-20. 
[3] Yarkoni S, Raponi E, Bäck T, et al. Quantum annealing for industry applications: Intr
oduction and review[J]. Reports on Progress in Physics, 2022. 
[4] Glover F, Kochenberger G, Du Y. Quantum Bridge Analytics I: a tutorial on formulat
ing and using QUBO models[J]. 4or, 2019, 17: 335-371. 
[5] Elton E J, Gruber M J. Modern portfolio theory, 1950 to date[J]. Journal of banking 
& finance, 1997, 21(11-12): 1743-1759. 
[6] Markowitz H M. The early history of portfolio theory: 1600–1960[J]. Financial analys
ts journal, 1999, 55(4): 5-16. 
[7] Rajak A, Suzuki S, Dutta A, et al. Quantum annealing: an overview[J]. Philosophical 
Transactions of the Royal Society A, 2023, 381(2241): 20210417. 
[8] Glover F, Kochenberger G, Du Y. A tutorial on formulating and using QUBO models
[J]. arXiv preprint arXiv:1811.11538, 2018. 
[9] Ayodele M. Penalty weights in qubo formulations: Permutation problems[C]//European 
Conference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar). Ch
am: Springer International Publishing, 2022: 159-174. 
[10] Zaman M, Tanahashi K, Tanaka S. PyQUBO: Python library for mapping combinatori
al optimization problems to QUBO form[J]. IEEE Transactions on Computers, 2021, 71(4): 83
8-850. 
[11] WANG BaoNan, SHUI HengHua, WANG SuMin, et al. Theories and applications of 
quantum annealing: A literature survey[J].SCIENTIA SINICA Physica, Mechanica & Astronom
ica, 2021,51(08):5-17. 
[12] Schenker J. Quantum: Computing Nouveau[M]. Beijing: posts & telecom press, 2021 :
131-134. 


