

The Impact of Safeguard Measures on Purchase Intention for Imported Clothing and Accessories: A Study on Universitas Brawijaya Students

Devi Nur Cahaya Ningsih^{1*}, Andreas Pandu Prasetya², Soniya Rahma Yulinar³, M. Alfin Nasrullah⁴, Ruben Julian Pinem⁵, Reysa Sofinasasti Azzahradani⁶, Ratih Anjani⁷
* devinurcahaya@ub.ac.id

Universitas Brawijaya, Indonesia^{1,2,3,4,5,6,7}

Abstract. As an essential component of basic human requirements, clothing is integral to daily existence and inseparable from it. As a result, the government permits the import of clothing from different nations. However, these imports can potentially cause serious losses to local textile companies due to increased demand and overwhelming intention in imported clothing products, especially among students with a high fashion sense. Consequently, the government has implemented import duties as a Safeguard Measure for these products. Based on this issue, the aim of this paper is to determine the impact of safeguard measures against purchase intention in imported clothing and accessories among students at Universitas Brawijaya. This research employs a quantitative method with descriptive statistical analysis and inferential statistics. The results of this research indicate that the existence of safeguard measures affects the purchase intention of imported clothing and accessories among students at Universitas Brawijaya. Therefore, the hypothesis in this research is accepted. Based on the findings, promoting an increased intention in local products is advisable to protect local textile companies and avoid negative externalities among the community.

Keywords: purchase intention, safeguard measures, students of Universitas Brawijaya

1. Introduction

Various perspectives from experts show that the consistent increase in clothing imports in Indonesia from 2017 to 2019, mostly sourced from China, has raised concerns about its impact on the local textile industry. According to the Indonesian Trade Safeguard Committee (KPPI) [6], clothing imports jumped from 44,095 tons in 2017 to 52,546 tons in 2019. As a result, during the three-year period, local textile companies experienced significant declines in various aspects, including production index, domestic sales, productivity, installed capacity, utilization, workforce, and profit. The government implemented safeguard measures on imported clothing and accessories to address these negative impacts and protect the domestic industry. However, imposition of these duties has sparked debate on the potential price hike consequences for consumers.

Table 1: The import volume of clothing and accessories for years 2017-2019

No.	Segment	Unit	Years			Growth (%)		Trends
			2017	2018	2019	17-18	18-19	
1.	Casual Tops	Tons	4.621	5.985	6.323	29.53	5.64	16.98
2.	Formal Top	Tons	9.203	7.824	9.730	(14.99)	24.37	2.83

3.	Subordinates	Tons	11.094	9.879	11.979	(10.95)	21.26	3.91
4.	Suits, ensembles, and dresses	Tons	4.521	4.108	5.289	(9.15)	28.75	8.15
5.	Outerwear	Tons	4.522	6.168	6.941	36.42	12.53	23.90
6.	Baby Clothes	Tons	544	765	801	40.74	4.78	21.44
7.	Headwear and Neckwear	Tons	9.591	13.794	11.483	43.83	(16.75)	9.42
Total		Tons	40.95	48.522	52.546	10,04	8.29	9.16

Source: Indonesian Trade Safeguard Committee (KPPI) on 2021 [6]

In addition, experts expressed their concern over shifting consumption preferences, especially among teenagers. Ash Shidiqy & Cahya [5] argue that globalization has not only changed mindsets, but also social behavior, especially in terms of clothing choices. They observed that teenagers, especially those in the 12-24 age group, show high sensitivity to the latest trends and fashions. The campus environment becomes a platform for them to explore and adopt fashion styles that suit their personalities. As a result, there is an increased demand for imported clothing and accessories.

In examining the impact of imports and their effect on purchase intention, the question of price also arises. Wulandari and Wijaksana argue that price affects purchase intention partially [1]. This discovery aligns with earlier research conducted by scholars like Mulawarman and Supriyatna, demonstrating a positive and significant impact of price on consumer purchase intention [2,3]. Nevertheless, according to [4], there is no association between the price level and the intention to make a purchase.

2. Methods

This research employs a quantitative methodology to investigate the potential correlation between safeguard measures and the purchase intention of imported clothing and accessories among Universitas Brawijaya students. The presence or absence of an impact between safeguard measures and the intention to purchase imported clothing and accessories among Universitas Brawijaya students will be presented in numerical form and analyzed through statistical methods, utilizing data collected from distributed questionnaires to a sample representing the entire population. Additionally, literature studies are incorporated, involving an in-depth examination of relevant literature, such as books, journals, and other references. The research encompasses two variables: independent and dependent. The dependent variable is influenced by or results from the independent variable, where the independent variable can affect or trigger the dependent variable. This research identifies safeguard measures as the independent variable, while the intention to purchase imported clothing and accessories among Universitas Brawijaya students is considered the dependent variable.

Based on data from the Central Bureau of Statistics of Malang City [5], the population of this research was obtained, namely Universitas Brawijaya students, totaling 55,220 individuals in 2022. From this overall population, a research sample is derived by selecting specific data from each group for examination. Sugiyono suggests that, when dealing with a known population, sample calculation can be conducted using the Yamane (Slovin) formula [6]. By employing the Slovin formula, the sample size can be established considering sampling errors

of 1%, 5%, and 10%. For this research, a 10% sampling error was chosen, leading to a determined total sample size of 100. The authors conducted the sample calculation as follows:

$$n = \frac{n}{1 + N(e)^2} = \frac{55.220}{1 + 55.220(0,1)^2} = \frac{55.220}{1 + 552,2} = 99,81923 \Rightarrow 100$$

Descriptions:

n = Number of samples calculated (100)

N = Total research population (55.220)

e = Sampling error or error (10%)

\Rightarrow = Rounding of sample values

In this research, a nonprobability sampling approach is employed. As defined by Sugiyono, nonprobability sampling is a method that does not provide equal opportunities to each sample within the population [6]. The sampling technique in this research uses purposive sampling sample selection or purposive random sampling. This research defines purposive sampling as a unit that is selected randomly without taking from a certain part of the population which is believed to provide the best estimate of the desired population parameters. Sampling with certain considerations by the desired criteria to be able to determine how many samples will be studied. The criteria desired by authors to be studied are active students of Universitas Brawijaya.

The methodology employed in this research involves both descriptive data analysis techniques and inferential quantitative data analysis techniques, utilizing correlational analysis through the IBM SPSS Statistics 25 application. Descriptive data analysis is a statistical process that involves collecting, organizing, processing, analyzing, and presenting numerical data to depict events without making broader generalizations. As outlined by Sugiyono, inferential quantitative data analysis techniques represent a statistical approach used to analyze data and extrapolate (infer) findings to the population from which the sample was drawn [6]. Moreover, the inferential quantitative data analysis in this research employs correlational analysis to investigate the connection or impact between import duties on safeguard measures (Variable X) and the intention to purchase imported clothing and accessories among students (Variable Y).

3. Results

This segment will show the research findings from the literature review and the questionnaires. The literature review thoroughly explored relevant literature and data sources, encompassing books, journals, and other pertinent references supporting the research. The questionnaires were disseminated online, employing platforms like Google Forms, WhatsApp, and Line. These surveys were distributed to respondents, who served as research samples, consisting of students at Universitas Brawijaya from the class of 2019-2022, categorized based on their age in Table 3 and faculty in Table 4, resulting in 100 respondents for this research.

Table 2: Pilot test results

Categories	Total	Percentage
Strongly Interested	4	17.4%
Interested	10	43.5%
Undecided	7	30.4%
Uninterested	2	8.7%
Strongly Uninterested	0	0%

Source: Authors' Work (2023)

Table 3: Characteristics of respondents by age

No.	Age	Frequency	Percentage
1	18	15	15%
2	19	69	69%
3	20	12	12%
4	21	1	1%
5	22	3	3%
Total		100	100%

Source: Authors' Work (2023)

Table 4: Characteristics of respondents by faculty

No.	Faculty	Frequency	Percentage
1	Faculty of Social and Political Science	2	2%
2	Faculty of Administrative Science	81	81%
3	Faculty of Animal Science	3	3%
4	Faculty of Economics and Business	3	3%
5	Faculty of Agricultural Technology	2	2%
6	Faculty of Cultural Science	3	3%
7	Faculty of Fisheries and Marine	2	2%
8	Faculty of Engineering	1	1%
9	Faculty of Medicine	1	1%
10	Faculty of Agriculture	1	1%
11	Faculty of Mathematics and Natural Sciences	1	1%
Total		100	100%

Source: Authors' Work (2023)

Table 5: Descriptive statistics results

	N	Minimum	Maximum	Mean	Std. Deviation
Safeguard Measures (Variable X)	100	26	49	38.40	4.774
Purchase Intention (Variable Y)	100	18	68	47.47	9.851
Valid N (listwise)	100				

Source: Authors' Work (2023)

Based on the pilot test conducted in Table 2, the reason Universitas Brawijaya students are chosen as the research samples is because 10 out of 23 students have a high interest in purchasing imported clothing and accessories. Based on the questionnaire responses in Table 5, the variable X (safeguard measures) exhibited a range from a minimum value of 26 to a maximum value of 49. The mean value for variable X (safeguard measures) was 38.40, reflecting the average responses from the respondents on the variable. Conversely, variable Y (purchase intention) ranged from a minimum value of 21 to a maximum value of 75, with a mean value of 48.11 representing the respondents' average responses on variable Y (purchase intention). The authors also conducted validity and reliability tests on the data. For validity, the research employed the *Pearson Product Moment* to determine the direction (positive or negative) and strength of the correlation among the variables [7] in this research. In the validity test in Table 6, both items related to the independent variable (Safeguard Measures) and the dependent variable (Purchase Intention) were valid, with values exceeding 0.1654. Additionally, the reliability test in this

research utilized Cronbach's Alpha measurement to assess whether the items within a collection demonstrated a positive correlation with each other regarding reliability [8].

Table 6: Validity test results

Safeguard Measures Variable				Purchase Intention Variable			
Items	Corrected Item-Total Correlation	R Table Score	Status	Items	Corrected Item-Total Correlation	R Table Score	Status
X1.1	.372**	.1654	Valid	Y1.1	.643**	.1654	Valid
X1.2	.277**	.1654	Valid	Y1.2	.679**	.1654	Valid
X1.3	.373**	.1654	Valid	Y1.3	.662**	.1654	Valid
X1.4	.321**	.1654	Valid	Y1.4	.597**	.1654	Valid
X1.5	.781**	.1654	Valid	Y1.5	.636**	.1654	Valid
X1.6	.698**	.1654	Valid	Y1.6	.695**	.1654	Valid
X1.7	.713**	.1654	Valid	Y1.7	.524**	.1654	Valid
X1.8	.483**	.1654	Valid	Y1.8	.749**	.1654	Valid
X1.9	.705**	.1654	Valid	Y1.9	.695**	.1654	Valid
X1.10	.717**	.1654	Valid	Y1.10	.701**	.1654	Valid
				Y1.11	.657**	.1654	Valid
				Y1.12	.765**	.1654	Valid
				Y1.13	.744**	.1654	Valid
				Y1.14	.724**	.1654	Valid
				Y1.15	.630**	.1654	Valid

Source: Authors' Work (2023)

Table 7: Reliability test results

	Cronbach's Alpha if Item Deleted	Cronbach's Alpha Minimum Score	Status
X1.1 (Safeguard Measures)	.880	.70	Reliable
X1.2 (Safeguard Measures)	.881	.70	Reliable
X1.3 (Safeguard Measures)	.880	.70	Reliable
X1.4 (Safeguard Measures)	.871	.70	Reliable
X1.5 (Safeguard Measures)	.877	.70	Reliable
X1.6 (Safeguard Measures)	.874	.70	Reliable
X1.7 (Safeguard Measures)	.871	.70	Reliable
X1.8 (Safeguard Measures)	.884	.70	Reliable
X1.9 (Safeguard Measures)	.878	.70	Reliable
X1.10 (Safeguard Measures)	.880	.70	Reliable
Y1.1 (Purchase Intention)	.871	.70	Reliable
Y1.2 (Purchase Intention)	.869	.70	Reliable
Y1.3 (Purchase Intention)	.870	.70	Reliable

Y1.4 (Purchase Intention)	.872	.70	Reliable
Y1.5 (Purchase Intention)	.870	.70	Reliable
Y1.6 (Purchase Intention)	.869	.70	Reliable
Y1.7 (Purchase Intention)	.872	.70	Reliable
Y1.8 (Purchase Intention)	.868	.70	Reliable
Y1.9 (Purchase Intention)	.869	.70	Reliable
Y1.10 (Purchase Intention)	.870	.70	Reliable
Y1.11 (Purchase Intention)	.871	.70	Reliable
Y1.12 (Purchase Intention)	.867	.70	Reliable
Y1.13 (Purchase Intention)	.868	.70	Reliable
Y1.14 (Purchase Intention)	.868	.70	Reliable
Y1.15 (Purchase Intention)	.871	.70	Reliable

Reliability statistics

Cronbach's Alpha	N of Items
.877	25

Source: Authors' Work (2023)

Table 7 shows the overall Cronbach's Alpha score, and per-item scores surpass the minimum threshold (>0.70), indicating that the questionnaires used in this research are reliable for repeated administration and exhibit positive correlations among themselves. To assess the correlation among variables, this research's simple linear regression analysis test comprises a series of evaluations, including normality tests, linearity tests, heteroscedasticity tests, R-Statistic, and T-Statistic. The Kolmogorov-Smirnov test is employed to examine the normality of the data, determining whether a normal distribution is present. A data set is considered to have a normal distribution if the residual values closely align with the mean value [9].

Table 8: Normality test results

One-Sample Kolmogorov-Smirnov Test		Unstandardized Residual
N		100
Normal Parameters ^{a,b}	Mean	.0000000
	Std. Deviation	9.69411116
Most Extreme Differences	Absolute	.059
	Positive	.051
	Negative	-.059
Test Statistic		.059
Asymp. Sig. (2-tailed)		.200 ^{c,d}

Source: Authors' Work (2023)

Table 9: Linearity test results
ANOVA table

			Sum of Squares	df	Mean Square	F	Sig.
Unstandardized Residual * Safeguard Measures	Between Groups	(Combined)	1992.026	22	90.547	.954	.530
		Linearity	.000	1	.000	.000	1.000
	Deviation from Linearity	1992.026	21	94.858	.999	.475	
	Within Groups	7311.577	77	94.956			
	Total	9303.603	99				

Source: Authors' Work (2023)

Table 8 shows the Asymp Sig value of 0.200 (2-tailed), indicating a significance value of 0.200. Consequently, the research data can be affirmed as normally distributed ($0.200 > 0.05$). In this research, the linearity test employs a method to assess the linear correlation between variables. Based on Table 9 indicates a significant Deviation from the Linearity score of 0.475, which is greater than 0.05. Therefore, it can be concluded that there is a statistically significant linear correlation between the independent variable and the dependent variable in this research.

Table 10: Heteroscedasticity test results

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
1	(Constant)	13.044	4.774	2.732	.007
	Safeguard Measures	-.140	.123	-.114	-1.133 .260

Source: Authors' Work (2023)

In this research, the heteroscedasticity test employs the Glejser method to ascertain whether a regression model exhibits signs of heteroscedasticity or is devoid of such symptoms. Heteroscedasticity is a factor that compromises the efficiency and accuracy of simple linear regression analysis, and it disrupts the utilization of the maximum likelihood method in estimating regression parameters (coefficients) [9]. Based on the results of the heteroscedasticity test in Table 10, a significance value of 0.260 was acquired. Given this significance value of 0.260, it can be affirmed that the research data is devoid of symptoms of heteroscedasticity ($0.260 > 0.05$). These three preceding tests are prerequisites for executing the R-Statistic and T-Statistic in simple linear regression analysis. Therefore, once the normality test, linearity test, and heteroscedasticity test have been completed, the R-Statistic and T-Statistic can also be undertaken.

Table 11: R-statistic results model summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.178 ^a	.032	.022	9.743

a. Predictors: (Constant), Safeguard Measures

Source: Authors' Work (2023)

The R-Statistic result on the Table 11 obtained the correlation between safeguard measures as the independent variable and purchase intention as the dependent variable is 17.8%, as indicated by an R score of 0.178. The R Square score of 3.2% suggests that safeguard measures have an impact on purchase intention, while the remaining 96.8% is influenced by other variables not explored or included in the research. In addition, based on the results of the T-test in Table 12, the calculated T-statistic is 1.787, surpassing the T-table score of 1.660. Since the calculated T-statistic is greater than the T-table score, the conclusion can be drawn that safeguard measures, as an independent variable, indeed influence the purchase intention as the dependent variable.

Table 12: T-test results coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		B	Std. Error			
1	(Constant)	33.390	7.937		4.207	.000
	Bea Masuk	.367	.205	.178	1.787	.077

Source: Authors' Work (2023)

Based on the comparison of the calculated T-statistic with the T-table score, the hypothesis testing summary can be concluded as follows:

Table 13: The hypothesis testing summary

Hypothesis		Results
H0	The application of safeguard measures (X) does not affect the purchase intention (Y) of Universitas Brawijaya students.	Rejected
H1	The application of safeguard measures (X) affects the purchase intention (Y) of Universitas Brawijaya students.	Accept

Source: Authors' Work (2023)

4. Discussion

The result of the analysis can be interpreted that implementing safeguard measures, particularly concerning imported clothing and accessories, impacts the purchase intention of Universitas Brawijaya students. This finding aligns with the 2021 theory proposed by Anggraeni and Lestari [11], asserting that the regulation setting a USD 3 threshold (Minister of Finance Regulation of the Republic of Indonesia No. 199/PMK.010/2019) influences the purchase intention of imported products in Indonesia through e-commerce channels. The regulation setting a USD 3 threshold is one of Indonesia's safeguard measures to regulate import activities, particularly concerning imported clothing and accessories. The indicators influencing purchase intention under these safeguard measures involve policies related to safeguard measurements in Indonesia, encompassing Keppres No. 84/2002 concerning the Measurement to Safeguard Domestic Industry from Import Threats, the most recent update being Regulation of the Minister of Finance of the Republic of Indonesia No. 38/PMK.010/2022 and Regulation of the Minister of Finance of the Republic of Indonesia No. 142/PMK.010/2021, focusing on the Application of Safeguard Measures on Import Duties against Imported Clothing and Accessories. As indicated in the research, these safeguard measures aim to assist domestic producers or

industries that have faced substantial losses. Furthermore, as identified by Kotler, purchase intention indicators influenced by safeguard measures include quality, brand, prices, product availability, and promotion [11].

5. Conclusion

This research examines the influence of safeguard measures on the purchase intention of imported clothing and accessories among students of Universitas Brawijaya. The independent variable (X) utilized in this research is safeguard measures, impacting student purchase intention as the dependent variable (Y). Through the analysis of normality tests, linearity tests, heteroscedasticity tests, and simple linear regression analysis, it is established that there is a correlation between safeguard measures (X) and the purchase intention (Y) for imported clothes and accessories among students. This correlation is substantiated by the T-statistic test, where the calculated T-statistic surpasses the T-table score, indicating a significant link between safeguard measures and purchase intention. Therefore, it can be concluded that safeguard measures impact the purchase intention for imported clothes and accessories among Universitas Brawijaya students. Future researchers may delve into more comprehensive comparative studies focusing on customs and imported products. This will allow students to stay updated on taxable items and potential additional fees, adhering to the latest government regulations.

Acknowledgement

This research is powered by the Research Study Club, Faculty of Administrative Sciences, University of Brawijaya, who have given a lot of help, facilities, and support to complete this paper so readers or the public can learn and increase their knowledge from this research.

References

- [1] Wulandari A., Wijaksana T. I., “Pengaruh harga dan kualitas produk terhadap minat beli masyarakat (UMKM tahu di Desa Sambong) [The influence of price and product quality on purchase interest (Tofu SMEs in Sambong Village)],” *Open Library Publications*, Telkom University, Bandung, Oct. 2021. [Online]. Available: <https://openlibrarypublications.telkomuniversity.ac.id/index.php/management/article/view/16354>. [Accessed: Oct. 26, 2023].
- [2] Mulawarman, “Pengaruh harga terhadap minat beli konsumen pada PT Indaco Warna Dunia di Kota Batam,” *Jurnal System*, vol. 3, no. 2, 2020.
- [3] Supriyatna W., “Pengaruh harga dan kualitas layanan terhadap minat beli konsumen pada produk buah lokal di Rumah Bumi Serpong Damai Tangerang Selatan,” *Humanities Journal*, 2019.
- [4] Ash Shidiqy M. F. H., Cahya S. B., “Pengaruh harga dan citra merek terhadap minat beli *thrifting shop* di kalangan mahasiswa aktif jurusan pendidikan ekonomi,” *Jurnal Pendidikan Tata Niaga*, vol. 11, no. 2, Aug. 2023.
- [5] Badan Pusat Statistik, *Jumlah Mahasiswa S1 Universitas Brawijaya (UB) Menurut Fakultas dan Jenis Kelamin*, BPS Indonesia.
- [6] Sugiyono D., *Metode Penelitian Kuantitatif*, Bandung, Indonesia: Alfabeta, 2018.
- [7] Budiastuti D., Bandur A., *Validitas dan Reliabilitas Penelitian: Analisis dengan NVivo, SPSS, dan AMOS*, Jakarta, Indonesia: Mitra Wacana Media, 2018.

- [8] Sekaran U., Wiley J., *Research Methods for Business: A Skill Building Approach, Long Range Planning*, vol. 26, no. 2, pp. 136, Apr. 1993.
- [9] Zahriyah A., Suprianik M. S., Parmono A., Mustofa M. S., *Ekonometrika: Teknik dan Aplikasi dengan SPSS*, [Publisher not specified].
- [10] Anggraeni D., Lestari M. I., “Pengaruh regulasi ambang batas USD 3 melalui e-commerce terhadap minat beli produk impor di Indonesia,” *Jurnal Ekonomi, Manajemen, dan Akuntansi Universitas Ngudi Waluyo*, vol. 2, no. 1, Jan. 2021.
- [11] Kotler P., Keller K. L., *Manajemen Pemasaran*, Edisi 12 Jilid 1, Jakarta, Indonesia: PT Indeks, 2018.
- [12] Komite Pengamanan Perdagangan Indonesia (KPKI), *Laporan Akhir Hasil Penyelidikan Tindakan Pengamanan Perdagangan terhadap Impor Barang “Pakaian dan Aksesoris Pakaian”*, Jakarta, Indonesia, 2021.