
Test Code Generation Tool for Self Learning 

Programming Unity 

1st Usman Nurhasan 1, 2nd Anugrah Nur Rahmantyo2, 3rd Ariadi Retno Ririd 3 , 4th Alwy 

Abdullah 4 , 5th Yan Watequlis Syaifudin5 , 6th Pramana Yoga Saputra 6 , 7th Satrio Binusa7 
{usmannurhasan@polinema.ac.id1 , anugrahnur@polinema.com2 , faniri4education@gmail.com3 } 

 
Information Technology, State Polytechnics of Malang, Jalan Soekarno Hatta No.9 Malang 65141, 

Indonesia 

Abstract. The curriculum for making game applications is commonly applied in 

vocational education institutions. Learning to make game applications generally uses Unity 

and is multiplatform. The concept of learning programming is writing code in an IDE. 

Students read the module and then do the coding. However, when an error occurs, students 

often do not understand the concept of improvement. Another problem is the length of the 

gradle synchronization process in the Unity framework and the difficulty of the teacher in 

checking the work of each student. The length of the synchronization process has the 

potential to hinder the learning process. Because game programming has a complex 

structure and is related to game supporting assets. The lower the specification of the device 

used, the longer the synchronization process. So it affects the learning process and 

correction. This system facilitates self-learning of game programming. The results of 

student work will be checked using the Test-driven Development (TDD) method with the 

test code provided. If the test code shows a successful result, students can upload their 

work results to the SeLPU (Self Learning Programming Unity) website and the assessment 

of the work results will be automatically displayed on the web page. 

Keywords: auto grading, automation testing, programming, self-learning, unity, TDD 

1   Introduction 

With the increasing use of smartphone devices, the need for Android mobile applications is 

increasing. One of the significant increases in the need for mobile applications is in the gaming 

sector[1][2]. As a result the demand for game application developers has become one of the 

highest in the IT field. The curriculum for making game applications has been commonly 

applied in educational institutions[3], [4]. Learning to make game applications generally uses 

Unity and is multiplatform[5]. The concept of learning programming is to use an IDE. Students 

read the module and then do the coding. However, when an error occurs, students often do not 

understand the concept of improvement. Another problem is the length of the gradle 

synchronization process in the Unity framework and the difficulty of the teacher in checking the 

work of each student[6][7]. The length of the synchronization process has the potential to hinder 

the learning process. Because game programming has a complex structure and is related to game 

supporting assets. The lower the specifications of the device used, the longer the synchronization 

process. So it affects the learning process and correction.  

To increase knowledge of the game programming learning environment, we have developed 

Self Learning Programming Unity (SeLPU) by adopting the concept of Test-Driven 

ICoSTA 2022, November 01-02, Medan, Indonesia
Copyright © 2023 EAI
DOI 10.4108/eai.1-11-2022.2326182

mailto:%7busmannurhasan@polinema.ac.id1
mailto:anugrahnur@polinema.com2
mailto:faniri4education@gmail.com3


 

 

 

 

Development (TDD). SeLPU offers automatic tagging of student answers that can guide 

students to self-study and reduce the burden on teachers[8]. In SeLPU, a student will be given 

a set of tasks to create a game project according to the specifications given in the assignment 

guide written in the C# programming language[9]. Then, the results of the assignments or 

answers are verified by the appropriate test code generated by the teacher on the NUnit software 

API and Unity Test Framework. In this paper, we propose a learning model for SeLPU. In 

learning Android programming, there are many topics to be learned. Here, we develop steps for 

studying the topic of 2D game programming. This is very important considering to be able to 

become a game developer, one must understand the basic concepts of game programming and 

be able to realize the interaction of game supporting assets in an application design[10]. To 

evaluate the proposal, we applied a system to undergraduate students in Indonesia. 

2   Related Works 

In 2019, Umar et al conducted a performance comparison on several software testing 

framework automation [11]. With the aim of getting Quality and Speed, because it saves time, 

reduces costs, increases efficiency, and increases accuracy. Therefore, effective software 

testing. This can be achieved by using the right automation framework. 

Currently the C# programming language is widely used for game-based application 

development. The framework used as the compiler is developed in .Net. So the unit testing 

framework that can be used is NUnit. In 2013, Kumar et al. have tested the Effective Unit 

Testing Framework for Automation of Windows Applications [12]. Testing is done in general 

C# programming. The results of his research state that by using a unit testing framework, 

programmers can save time to make code improvements and the quality of the resulting code is 

much better than if not using a unit testing framework. 

In research conducted by Funabiki in 2017, a Test Code Generation Tool for java 

programming has been produced. In this study, students' test code corrections were carried out 

automatically and the learning patterns used Test Driven Development [13]. The results 

obtained after testing on a number of source code, the automated generation tool that was built 

succeeded in producing the test correctly. 

3  Test Driven Development Method 

In this section we will review the Test-Driven Development Method (TDD) that utilized in 

SeLPU 

 

3.1 TDD Method 

 

The TDD method is a software development process that relies on repeating very short 

development cycles. Requirements are turned into very specific test cases. Then, the program 

code is upgraded to pass the new tests. In game programming applications there are three types 

of tests, namely unit testing, integration testing, and UI testing[14]. In this paper, we will focus 

on unit tests, because they can test certain objects from the application part of the application. 

The application of TDD in programming learning includes several aspects, including:  



 

 

 

 

a. Do the right test, Developers need to create proper unit tests to verify functionality or 

features which are learning aspects. The test results that have been collected can be 

used as an analysis of success in learning. In most cases, the test will fail. However, 

the failure is meaningful because developers can analyze how the feature works. 

b. Code correction, After the test fails, the developer can make the necessary changes to 

improve the previous code. Changes to the source code aim to improve the process and 

syntax in order to achieve the expected output.  

c. Refactor code, The code refactor is part of the validation phase, where the development 

team analyzes the data collected during the test run. The team needs to compare the 

results with the standards set in the testing phase. If not met, the code must be rewritten 

to run the tests again. 

 

3.2 Unit Testing 

In general, unit testing is the process of testing the functions, steps, units and methods of the 

source code that we have written in the IDE. This is done as proof of whether the code complies 

with the desired specifications[15]. This stage is very important and is recommended to be done 

on every source code that has been built. At this stage unit testing will help software developers 

verify the functions that have been built in order to get results that are in accordance with the 

rules of writing the syntax of a source code. 

For example, a developer has built a simple function, namely the authentication (login) 

function. In this function, the developer will first check whether the username or password has 

met the main requirements, for example a minimum character length of 6 characters. If this 

condition is not met, your function will return an error message. But if it has been fulfilled, then 

proceed to the next check, do the given username and password designate the user registered in 

the application? If yes, then the login is successful, otherwise it will display an error message 

that the user was not found. 

For the authentication function above, we have to create a unit test that satisfies each stage 

in the function. Each stage of the function must be made into a unit test. For example, the stage 

of checking the validity of the entity on the username or password, will be used as a unit test. 

Then checking the application regarding the presence or absence of users is also a unit test. 

Now, if all the stages in the function have been made, it can be concluded that the existing 

functions have met the expected standards. Usually if all unit tests for this function are executed, 

it will produce a green color or 100% coverage. However, it can be different if the unit tests that 

have been carried out have not covered all the existing stages, then the coverage produced is 

usually below 100%. 

The benefits of having unit tests will certainly help reduce errors in the application being 

built. This is because the developer has thought of alternatives for each function, both normal 

alternatives and alternatives that can produce errors, such as the authentication function above. 

Also, because of the alternatives that have been considered, you must have handled them well 

and successfully passed the unit tests. Of course this is what helps the application to be worthy 

of release to the market.  

So it can be concluded, unit testing is one of the important things to do in automatic 

correction of a source code, but there are many other types of tests that can be developed further, 

for example integration testing, end-to-end testing, load testing and so on. When it comes to 

learning programming, especially game programming, unit testing is an indispensable concept. 

This is because building a game requires a lot of assets and logic to create a good game scenario. 

While the obstacles that exist in the field, students who learn to make games have difficulty in 

correcting the errors that occur. And teaching teachers also have difficulty in assessing student 



 

 

 

 

projects because they have to carry out each student's project. This takes a lot of time and 

resources.  

As previously explained, unit testing is software testing that is carried out manually or 

automatically using a special tool or tools. However, most of the developers nowadays prefer 

the automated method. The following are some tools that you can choose to do unit testing based 

on the programming language used. 

• JUnit: unit testing tools for applications using the Java programming language 

• NUnit: a unit testing framework for applications using the .NET programming 

language 

• JMockit: unit testing tools for opensource applications  

• EMMA: tools for analyzing and reporting code using the Java programming language 

• PHPUnit: unit testing tools for PHP programmers 

 

3.3 Unity Aplication Testing Framework 

NUnit is an open source framework used to test .NET Framework applications. Currently 

Nunit can be used for automatic checking of game programming using C#, although in fact nunit 

is also compatible with other programming languages. The game programming learning process 

uses the Unity IDE, so the IDE is compatible with the NUnit Framework[16]. Since the 

environment is ready for the framework, we need to write unit tests. First every developer has 

to find the source software docs and then start writing unit tests. Since we are writing unit tests 

for the automation of a windows application, we must access every control in the application 

and validate them. So unit test developers must be familiar with application code to access 

controls in unit tests. In the case of NUnit, after the developer writes the class, he has to create 

a Test project, or if the Test project already exists, he has to manually write a separate class to 

write unit tests because there are no integrated features built into the IDE. An example of a unit 

test is shown in Figure 1. 

 
Fig. 1. Sample Unit Test 

4. Learning Model 

Computer-assisted Learning (CAL) is one of the strategies for the teaching and learning 

process that is carried out by utilizing computers as a medium of information. CAL has also 

been known by several other terms such as technology-enhanced language learning, computer-

assisted language instruction (Davies) and computer-aided language learning, but the field is 

the same. Methodologically, the term CAL is often referred to by various terminology, including 

Computer-Managed Learning/Instruction (CML), Computer Aided or Assisted Instruction 



 

 

 

 

(CAI), Computer-Based Education/Learning (CBL) or others. Subject matter can be presented 

by the CAI program through various methods such as: tutorials, drill and practice, simulations, 

games, problem solving, discovery and investigation. Some of the benefits of Information 

Technology in supporting the teaching and learning process, among others:  

• As a tool to improve the quality of learning, such as visualization tools and 

computational tools.  

• Computers can be a tool to automate the student assessment process.  

• Sources of materials and information as well as easy and inexpensive learning media.  

• As a non-online source of information 

 

As the initial stage of developing Self Learning Programming Unity (SeLPU), this study 

focuses on the User Interface and Basic Unity programming language logic for game 

programming learning. 

 

4.1 Learning Process 

The learning application prototype consists of a client-server system. It aims to integrate the 

roles of teachers and students. The platform used is a website and was developed to distribute 

learning materials to students, collect assignment answers from students, and automatically 

validate student data. To clarify, Figure 2 shows the client server model in the application. 

 

 

 

Fig. 2. Client Server Architecture Model. 

 

• Client side: For the client side, SeLPU provides a web application for students that can 

be accessed using a browser. Students use this feature to download learning materials, 

send assignment answers to the server, and get the results of validating the submitted 

answers.  

• Server side: Server side platforms provide web applications, validator programs and 

system databases. The web application has a function to distribute teaching materials 

and collect assignment answers from students. To confirm the correctness of the 

answer code, the validator program functions to validate the answers sent through the 

middleware automatically and in real time. Then the results can be accessed by students 

and teachers through a web application.  



 

 

 

 

• validator: Details of the validator process will be shown in Figure 3. In the picture, the 

functions of the validator are explained, including receiving the unity project file sent 

by the web client. Then compare the source with the test code that is already available. 

The execution results are stored in the database and sent back to the client as 

information. 

 

Student learns how to code a C# programming language by solving the given question on 

C# specifications using Unity from data type, if else condition, looping, operator etc. Then, with 

the test code given from the teacher, then the student runs the answer given the question. Figure. 

4 shows the process  

 

Fig. 3. Program Walidation Process. 

 

 
Fig. 4. Self Learning Process[17] 

 

4.2 Unit Testing 

There are three aspects that must be understood to start an Unity Game Engine, including 1) 

Start Unity 2D Project, 2) Configure unity test framework (Installing), 3) Design the UI. There 



 

 

 

 

will be thirteen tasks in Table 1 that contain: one task for pretest, seven tasks focus on basic C# 

and basic Unity UI, five tasks that must be completed sequentially to build a simple 2D flappy 

bird game. When a student completes the entire task, student test the code using unity test 

runner. After that, all the test data will be recorded to database which contain 1) class name, 2) 

total test, 3) test passed, 4) test failed, 5) test date 

 

 
Table 1.  Learning Topics 

Task No. Title Aspect 

01 
Introduction Unity + Hello 

World Scripting 

02 Pretest Scripting, UI 

03 
Data Type + Arithmetical 

operation 
Scripting 

04 If Condition, Operator Scripting 
05 Button, Text Field  Scripting, UI 
06 Button Toggle, Slider Scripting, UI 

07 Moving Object Scripting, UI 

FLAPPY BIRD   

08 Asset + Object UI 

09 Obstacle (Pipe) Scripting, UI 

10 
Player Movement, sound 

management 
Scripting, UI 

11 Score manager Scripting, UI 

12 Spawning obstacle Scripting, UI 

13 Posttest Scripting, UI 

 
From the table of teaching materials above, the following will explain case examples 

regarding buttons and sliders. Figure 5 shows the student code made by the students. While in 

Figure 6 is a test code that has been made as a reference for the automation of assessment and 

checking. In the student code the variable used to display the slider is mySlider with the asset 

name being Slider which is public. The use of public is intended so that variables can be accessed 

by other classes so that further processing can be carried out. 

 

 
Fig. 6. Shows the test code that has been created. 



 

 

 

 

 
In the test code, the Assert tool is used to call object components in other classes. In addition, 

assert also functions to check whether the syntax of the student code is in accordance with the 

rules of writing code or not. After checking by the test code, records in the form of processing 

time, error or correct results will be automatically stored in the database in real time. Meanwhile, 

in the student IDE, a form like Figure 7 will appear as the output of the compiled source code 

earlier 

 
Fig. 7. Output Compile Task 06 

 
4.3 Validation Process 

A student who has completed the task based on Table 1 must validate it using the unit testing 

method in Figure 8: 

 

Fig. 8. Validation process 

 

The process including: 1) Check the completeness of all the UI and scripting based on the 

given module for all topics. 2) Test script on each topic and some of the test using testcase. 3) 

If there is a failed test, a message will appear and all the tests will be saved to database. Figure 

9 shows a graph of the results of testing the auto grading application in the independent 

programming learning process 

 

[SetUp]
(Initiation)

•Registering a 
Callback to save 
a test record to 

database

[Test]
[TestCase(x, y)]

•Test each 
element

•Test each 
resource

•TestCase an 
element using 

parameter

Message, Save to 
database

•Produce error 
or passed 

message to all 
test

•Saving all test 
record to 
database



 

 

 

 

 

 
Fig. 9. Result Auto Grading Self Learning Programming 

 

5. Conclusion 
This paper presents a learning model that uses the Test Driven Development method to mark 

student answers automatically. Experiments confirmed the effectiveness of this learning model. 

Finally we were able to implement unit testing for self-learning authentication of Unity 

programming in real time. Student learning outcomes can be processed and analyzed further to 

obtain conclusions regarding the impact of using the application. As for future exploration, it 

can be aimed at learning 3D game programming. This is a challenge because in this case it 

requires a lot of game support assets and more complex source code. 

References 
[1] I. Otaduy and O. Diaz, “User acceptance testing for Agile-developed web-based applications: 

Empowering customers through wikis and mind maps,” J. Syst. Softw., vol. 133, pp. 212–229, 2017, doi: 

10.1016/j.jss.2017.01.002. 

[2] W. Novayani, “Game Genre untuk Permainan Pembelajaran Sejarah Berdasarkan Kebutuhan Pedagogi 

dan Learning Content,” vol. 5, no. 2, pp. 54–63, 2019. 

[3] R. Hidayat, “Game-Based Learning: Academic Games sebagai Metode Penunjang Pembelajaran 

Kewirausahaan,” Bul. Psikol., vol. 26, no. 2, p. 71, 2018, doi: 10.22146/buletinpsikologi.30988. 

[4] U. Nurhasan, “Pembelajaran game menggunakan unity.” 

[5] E. Kucera, O. Haffner, and R. Leskovsky, “Multimedia application for object-oriented programming 

education developed by unity engine,” Proc. 30th Int. Conf. Cybern. Informatics, K I 2020, no. January, 

2020, doi: 10.1109/KI48306.2020.9039853. 



 

 

 

 

[6] D. Winkler, R. Hametner, and S. Biffl, “Automation component aspects for efficient unit testing,” 

ETFA 2009 - 2009 IEEE Conf. Emerg. Technol. Fact. Autom., no. October, 2009, doi: 

10.1109/ETFA.2009.5347022. 

[7] D. Toll and T. Olsson, “Why is unit-testing in computer games difficult?,” Proc. Eur. Conf. Softw. 

Maint. Reengineering, CSMR, pp. 373–378, 2012, doi: 10.1109/CSMR.2012.46. 

[8] Y. W. Syaifudin, P. N. Malang, N. Funabiki, M. Kuribayashi, and S. E. Monitoring, “Learning Model 

for Android Programming Learning Assistant System,” no. December, 2019. 

[9] D. A. B. Weikle, M. O. Lam, and M. S. Kirkpatrick, “Automating systems course unit and integration 

testing experience report,” SIGCSE 2019 - Proc. 50th ACM Tech. Symp. Comput. Sci. Educ., pp. 565–570, 

2019, doi: 10.1145/3287324.3287502. 

[10] L. Végh and O. Takáč, “Teaching and Learning Computer Programming By Creating 2D Games in 

Unity,” ICERI2021 Proc., vol. 1, no. November, pp. 5696–5700, 2021, doi: 10.21125/iceri.2021.1285. 

[11] M. A. Umar and C. Zhanfang, “A Study of Automated Software Testing: Automation Tools and 

Frameworks,” Int. J. Comput. Sci. Eng., 2019. 

[12] A. N. Seshu Kumar and S. Vasavi, “Effective unit testing framework for automation of windows 

applications,” Adv. Intell. Syst. Comput., vol. 174 AISC, pp. 813–822, 2013, doi: 10.1007/978-81-322-

0740-5_97. 

[13] N. Funabiki, R. Kusaka, N. Ishihara, and W. C. Kao, “A proposal of test code generation tool for Java 

programming learning assistant system,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, pp. 51–56, 2017, 

doi: 10.1109/AINA.2017.60. 

[14] Y. W. Syaifudin, S. Rohani, N. Funabiki, and P. Y. Saputra, “Blending Android Programming 

Learning Assistance System into Online Android Programming Course,” 2021 9th Int. Conf. Inf. Educ. 

Technol. ICIET 2021, pp. 26–33, 2021, doi: 10.1109/ICIET51873.2021.9419650. 

[15] Y. W. Syaifudin, N. Funabiki, M. Kuribayashi, and W. chung Kao, “A Proposal of Advanced Widgets 

Learning Topic for Interactive Application in Android Programming Learning Assistance System,” SN 

Comput. Sci., vol. 2, no. 3, pp. 1–13, 2021, doi: 10.1007/s42979-021-00580-1. 

[16] R. Bandara and I. Perera, “Unit Test Code Generation Tool Support for Lower Level Programming 

Languages,” MERCon 2020 - 6th Int. Multidiscip. Moratuwa Eng. Res. Conf. Proc., pp. 1–6, 2020, doi: 

10.1109/MERCon50084.2020.9185378. 

[17] Y. W. Syaifudin, P. N. Malang, N. Funabiki, and M. Kuribayashi, “Learning Model for Android 

Programming Learning Assistant System,” no. December, 2019. 

 


