
The Improvised GZIP, A Technique for Real Time Loss-

less Data Compression

Ahmad Saeed Shah*, Muhammad Athar Javed Sethi

Department of Computer Systems Engineering, University of Engineering and Technology, Peshawar, Pakistan

engrasshah@gmail.com, atharsethi@uetpeshawar.edu.pk

Abstract

Whenever it comes to data processing, the user always faces two major constraints. One is storage capacity and second is

bandwidth. These two resources must be efficiently utilized by compressing the data. Enormous algorithms are used to

compress data. As far as, compression in storage is concern, GZIP is used on large scale for lossless data compression.

However, it is not desirable to carry out lossless data compression for real time data. In this paper, an improvisation is

proposed in the existing GZIP algorithm for compressing real time data by a contemporary concept of introducing Adaptive

Huffman algorithm by replacing the traditional Huffman encoder (static). Simulations have proved that improvised GZIP

has approximate 18% better compression ratio and space saving than traditional GZIP for real time data. This research paper

extends the usability of GZIP algorithm to carry out lossless compression for real time data.

Keywords: Lossless data compression, LZ77, Huffman encoding, GZIP and Adaptive Huffman.

Received on 09 June 2019, accepted on 23 June 2019, published on 26 June 2019

Copyright © 2019 Ahmad Saeed Shah et al., licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and

reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.1-10-2019.160599

1. Introduction

Any technique through which the data size is significantly

reduced is known as data compression. If data is not com-

pressed, then ultimately cost of resources like storage and

bandwidth will be increased [1]. Data compression is cate-

gorized in two types.

1.1 Lossy Compression

In lossy compression, data is compressed in such a way that

hundred percent data is not extracted after decoding the

compressed data. Due to this fact, it is known as irreversi-

ble compression. Common techniques for lossy compres-

sion are scalar quantization, vector quantization and wave-

let [2]. This type of compression is mostly used in com-

pressing general pictures, audios and videos. JPEG, PNG

are the best examples of lossy compression techniques.

1.2 Lossless Compression

In most of the cases the loss of information is not tolerated

due to the precious nature of data. For example, in the field

of medical imaging, finger print data, computer programs

etc. In addition, lossless data compression is more desirable

in case of text. In such cases, data must be compressed in

such a way that hundred percent data is extracted after de-

coding the compressed data. Hence lossless data compres-

sion is more preferred over lossy compression. As the data

is decoded hundred percent as of the original data, that’s

why it is referred as reversible compression.

We know the fact that data contains redundancy. The data

can be compressed by processing the redundant part of

data. As a result, less hardware optimization will be re-

quired. There are two major approaches for carrying out

lossless data compression.

1.2.1 Dictionary Based
 According to this strategy, data is encoded by maintaining

a list or dictionary of the most frequently occurring sym-

bols or literals. The encoded data contains the index or po-

sition number of the symbol in the dictionary. Examples

are LZ77, LZSS and LZ78.

∗Corresponding author. Email: engrasshah@gmail.com

EAI Endorsed Transactions
on Context-aware Systems and Applications Research Article

1 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

mailto:engrasshah@gmail.com
mailto:atharsethi@uetpeshawar.edu.pk
http://creativecommons.org/licenses/by/3.0/

Dictionary based is further categorised into static and dy-

namic dictionary. In static dictionary, the list of symbols is

not changed once the dictionary is maintained. In some

cases, addition to the dictionary is permissible but deletion

is not allowed. On the other hand, in dynamic dictionary,

the list of symbols is updated with the arrival and removal

of symbols. Compression ratio for Dictionary based com-

pression is greater for highly corelated data.

1.2.2 Entropy Based
According to this type of compression strategy, the data is

encoded using the statistical information of the symbols.

For this reason, it is also referred as statistical coding. Ex-

amples include Huffman coding [3, 4] and Shannon Fano

coding.

This paper is divided into nine sections. Section 2 is about

related work. In section 3, existing GZIP is discussed fol-

lowed by the improvisation in existing GZIP in section 4.

Simulations results are discussed in section 5. At the end,

results are discussed in section 6. Conclusions are pre-

sented in section 7 followed by recommendations and lim-

itations in section 8 and 9 respectively.

2. Related Work

In the field of data compression, a lot of research has been

carried out in different ages to address different issues.

Some algorithms are data specific, such as text [5], picture

[6], audio [7] and video [8] etc. whereas some algorithms

focused on compression ratio while some focused-on com-

pression time. Hence, there is a rich literature regarding

data compression. We know that, data may be in any form.

It may be in the form of picture, audio, video or a text file.

In [9] better compression ratio and comparable PSNR

value has been achieved as compared to traditional JPEG

by using histogram-based block optimization & arithmetic

coding technique is used for compressing and decompress-

ing a lossy image. But the algorithm was only implemented

for 8-bit grey scale image. Similarly, in case of text data, a

comparative study [5] was carried out in 2010. Different

lossless compression algorithms were implemented and an-

alysed in terms of compression ratio, compression and de-

compression time. Better results were obtained for Shan-

non Fano algorithm.

One of the well-known algorithms is GZIP. GZIP is a sin-

gle file compressor. It successfully compresses a single

file. Latest research has been carried out to compressed al-

ready compressed files. Such applications are known as ar-

chivers. In 2019, [10] presents a novel scheme of archiving

GZIP compressed files.

In [11] the bzip2 (based on Burrows-Wheeler Transform

(BWT) was improvised for block size of 500 KB and im-

plemented it over FPGA that supports 4KB block size.

The GZIP basically works on the principle of lossless data

compression algorithm called DEFLATE [12], which is a

hybrid algorithm of dictionary based algorithm, LZ77 [

[13, 14] and entropy based algorithm, the Huffman coding.

LZ algorithms searches the incoming symbol in the previ-

ously arrived symbols. If a symbol is successfully found in

previous dictionary then that symbol in the upcoming data

is encoded as pointer to the matching symbol. [14]

GZIP is a widely implemented in many applications to

carry out lossless compression. For Example. GZIP is used

different webservers like Apache and Microsoft Web-

server, IIS [15]. But it has not a remarkable performance to

compress real time data.

3. Existing GZIP

GZIP has two flavours as given in Figure 1. To compress

real time data, GZIP uses a combination LZ77 and static

Huffman encoder. Where as to compress non real time

data, GZIP uses combination of LZ77 and dynamic Huff-

man algorithm. Static Huffman encodes the data in one go

by assigning every symbol a fix length of code. Static Huff-

man encoder does not bother to know the frequency distri-

bution of data. Hence the data is encoded efficiently with a

compromise on compression ratio. The poor compression

ratio is due to the fix length codes. Because the symbols

that have less occurrence also gets the same length code.

On the other side, dynamic Huffman encoder encodes the

data in two passes. In the first go, frequency distribution of

data is calculated and in the second go the symbols are

Figure 1. Two flavors of GZIP

LZ77 Encoder

Static Huffman

Encoder

Data

Encoded Data

LZ77 Encoder

Dynamic Huffman

Encoder

Data

Encoded Data

2 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

Ahmad Saeed Shah, Muhammad Athar Javed Sethi

encoded using the statistical information of every symbol.

a kind of moderate homework is done by dynamic Huffman

encoder to encode the symbols. Dynamic Huffman encodes

the symbols with variable length codes in such a way that

the symbol which occurs the most gets lesser length code

and the symbol which has low density, is encoded with

comparatively lengthy codes. As a result, good compres-

sion ratio is achieved. But the problem associated with dy-

namic Huffman to encode real time data is its two-pass

property.

3.1 Lempel-Ziv 77

It is a dictionary based lossless data compression algorithm

that compresses data sequentially. LZ77 maintains a dic-

tionary of previously encoded literals or symbols. Accord-

ing to this algorithm, the stream of symbols is examined by

a sliding window. Sliding window is comprised of search

buffer and look ahead buffer. Search buffer contains the re-

cently encoded symbols and look ahead buffers contain the

incoming symbols that are going to be encoded.

The symbols are scanned by the sliding window and

matches are found between the two buffers. The lengthier

match found means the more data is compressed. The en-

coded data is obtained in the form of three different infor-

mation like offset (distance between two matched symbols

in two buffers), length (number of symbols matched in two

buffers) & literal (next unencoded symbol in the lookahead

buffer).

Figure 3. Representation of LZ77 encoded data

3.2 Huffman Coding

Huffman coding is the example of statistical based com-

pression. In Huffman coding, the statistical information of

symbols such as frequency distribution are used to encode

symbols.

There are two types of Huffman coding. One is static Huff-

man and other is dynamic Huffman.

3.2.1 Static Huffman
In static Huffman fix length codes are used to encode sym-

bols. Look-up tables are used to encode and decode data.

All the symbols are encoded with fix length codes. Length

of codes is not related to the frequency of symbols. It means

both less and frequently occurring symbols gets the same

length code. This phenomenon is explained in Table 1.

Table 1. Static Huffman coding

Symbols Frequency Fix code

(3 bits)
A 45 000 45×3 = 135

B 13 001 13×3 = 39

C 12 010 12×3 = 36

D 16 011 16×3 = 48

E 9 100 09×3 = 27

F 5 101 05×3 = 15

Total 100 B (Uncompressed) 300 bits or

approx.38 B

Hence the symbols are encoded in one go without calculat-

ing the weights of frequency. This property makes static

Huffman coding desirable for encoding real time data. Be-

cause it is time efficient. The compression ratio is not good

because all the symbols are assigned fix length codes.

3.2.2 Dynamic Huffman
Dynamic Huffman is a two-pass algorithm. In first pass,

frequency distribution of symbols is calculated and in sec-

ond pass symbols are encoded. In dynamic Huffman, vari-

able length codes are assigned to symbols depending upon

their occurrence. Such that symbols with less frequency are

encoded with greater bits and symbols with high occur-

rence are encoded with fewer bits. That results in good

compression ratio.

In dynamic Huffman, a binary tree, as shown in Figure 4,

is maintained for the data in Table 1.

Figure 4. Dynamic Huffman - Binary tree

Figure 2. Working of LZ77

3 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

The Improvised GZIP, A Technique for Real Time Lossless Data Compression

The variable length code obtained from Figure 4 is shown

in Table 2
Table 2. Variable length codes - dynamic Huffman

Symbols Frequency Variable

Code
A 45 0 45 × 1 = 45

B 13 101 13 × 3 = 39

C 12 100 12 × 3 = 36

D 16 111 16 × 3 = 48

E 9 1101 09 × 4 = 36

F 5 1100 05 × 4 = 20

Total 100 B (uncompressed) 224 Bits

4. Improvised GZIP

Improvisation is brought to the existing GZIP by using

Adaptive Huffman coding by replacing Static Huffman

coding as seen in Figure 5. Adaptive Huffman has func-

tionalities of both static Huffman and dynamic Huffman.

like static Huffman encoder, adaptive Huffman encodes

data in one go. initially the symbols are encoded with fix

length codes but the Huffman tree is updated with respect

to the arrival of new symbol and length of code for every

symbol change as per its density. At the end, like dynamic

Huffman encoder the most frequently occurring symbols is

encoded with less length of code.

In first step, the data is encoded by LZ77 compressor. A

sliding window which is further split into two buffers, one

is search buffer and second is look ahead buffer. The sym-

bols are scanned by the sliding window and matches are

found between the two buffers. The encoded data is ob-

tained in the form of three different information like offset

(distance between two matched symbols in two buffers),

length (number of symbols matched in two buffers) & lit-

eral (next unencoded symbol in the lookahead buffer). In

second step data encoded by LZ77 encoder is passed to

adaptive Huffman encoder and the data is finally com-

pressed.

Figure 5. Generic Representation of Improvised GZIP

4.1 Adaptive Huffman

Encoding procedure of Adaptive Huffman is shown in

Figure 6. The symbol is initially assigned some fixed

length code, which is updated gradually as the encoder en-

counters new symbols. If the symbol arrives for the first

time then the symbol is encoded with Not Yet Transmitted

node in association with that initial fix length code. On the

other hand, if the symbol is encountered before then the

symbol is encoded with a code, from root node to the cor-

responding node. The update procedure is called and tree

is updated in such a way that if weight of left node is greater

than the weight of right one, then they are swapped. This

procedure continues until the last symbol is arrived.

As far as, the decoding procedure is concerned, it is done

quickly because the same tree is used for decoding as well.

The detailed decoding procedure of Adaptive Huffman is

shown in Figure 7. Decoding starts from the top, such as

root node. First the current node is checked for the leaf

node followed by the NYT node. In case of the current node

is NYT node, the symbol is decoded in accordance to the

node. If the current node is not an NYT node then the sym-

bol is decoded by fix length code. Then update procedure

is called. This process continues until the last symbol is de-

coded.

Figure 6. Adaptive Huffman encoding procedure

Start

Read the symbol

This symbol

appeared for the

fist time

Send code for the

NYT node

Send fixed code for

the symbol

Send code for the node

corresponding to the

current symbol

Call update

procedure

Is it last symbol?

Stop

yes
no

yes

no

Offset

LZ77

Encoder

Adaptive Huffman 1 Adaptive Huffman 2

Encoded Data

Data

Literal Length

4 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

Ahmad Saeed Shah, Muhammad Athar Javed Sethi

Figure 7. Adaptive Huffman decoding procedure

5. Results

Results are recorded in terms of compression ratio and

space savings. Where, Compression ratio (CR) is the ratio

of original or uncompressed file size to the encoded or

compressed file size.

Compression Ratio =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑧𝑖𝑠𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

If, CR = 1, it means no compression

 CR > 1, Desirable

 CR <1, Blunder

Where the space saving is the amount of space saved after

compression.

Space Saving [5]= [1 −
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑓𝑖𝑙𝑒 𝑠𝑖𝑧𝑒
] %

Table 3. Compression Ratio & Space Saving of GZIP

File

Name

Uncom-

pressed

(bytes)

Com-

pressed

(bytes)

CR

Space

Saving

%

1 sample.html 24603 17047.875 1.443

2
30.71

2 sample.c 11150 7509.625 1.484

8
32.65

3 sample.php 3721 2404.625 1.547

4
35.38

4 sample1.txt 38240 28130.625 1.359

4
26.44

5 sample2.txt 125179 105374.37

5

1.187

9
15.82

6 sample3.txt 152089 123295.12 1.233 18.93

File

Name

Uncom-

pressed

(bytes)

Com-

pressed

(bytes)

CR

Space

 Saving

%

1 sample.html 24603 13039 1.886

9
47

2 sample.c 11150 5754.625 1.937

6
48.39

3 sample.php 3721 1888 1.970

9
49.26

4 sample1.txt 38240 23052.625 1.658

8
39.72

5 sample2.txt 125179 74678.5 1.676

2
40.34

6 sample3.txt 152089 87458.125 1.739 42.5

Table 5. Traditional GZIP for Storage data

File

Name

Uncom-

pressed

(bytes)

Com-

pressed

(bytes)

CR

Space

 Saving

%

1 sample.html 24603 12937.875 1.901

6
47.41

2 sample.c 11150 5662.75 1.969 49.21

3 sample.php 3721 6.3775 2.041

8
51.02

4 sample1.txt 38240 22406.25 1.706

7
41.41

5 sample2.txt 125179 74595.375 1.678

1
40.41

6 sample3.txt 152089 87370 1.740

7
42.55

After oberving Table 3and Table 4, it is revealed that

improvised GZIP (combination of LZ77 and adaptive

Huffman) have good compression ratio as compared to

traditional GZIP (combination of LZ77 and static

Huffman). Whereas, Table 4 and Table 5 show that

adaptive huffman and dynamic huffman has almost similar

results in combination with LZ77.

Start

Go to root node

Is this leaf

node?

Read bit and go to

corresponding node

Is this NYT

node?

Decode symbol

corresponding to node

Decode symbol using

fixed code

Call update procedure

Is this last bit?

stop

yes

no

yes
no

yes

no

Table 4. Improvised GZIP for Real time Data

5 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

The Improvised GZIP, A Technique for Real Time Lossless Data Compression

Figure 8. Comparison of Compression Ratio

Figure 9. Comparisons of Space Savings

Ahmad Saeed Shah, Muhammad Athar Javed Sethi

6 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

6. Discussion

Traditional GZIP was only suitable for compressing non

real time data without any loss in data. In traditional GZIP,

where the dynamic Huffman encoder has its significance in

terms of good compression ratio. On the other hand, it has

several disadvantages which cannot be ignored. One of the

major disadvantages is its two-pass nature. Which makes it

a bad choice for compressing real time data. On the other

hand, this property makes it more complex i.e. higher spec-

ification hardware is required plus greater encoding and de-

coding time is required by GZIP.

Whereas, Improvised GZIP is suitable for hardware imple-

mentation compared to traditional GZIP because of less

memory requirements for code storage. Secondly, Impro-

vised GZIP can be used to carry out lossless data compres-

sion in real time data. The role of Adaptive Huffman en-

coder in improvised GZIP gives it an edge. As it encodes

data in one go. Secondly in Adaptive Huffman the pro-

cessing time is quite small as compared to Dynamic Huff-

man, because same tree is used during encoding and decod-

ing processes [5].

Table 6. Comparison of Space Savings for real-time data

File

Name

Space

 Saving for

GZIP (%)

Space

 Saving for

Improvised

ZIP (%)

Difference

%

1 sample.html 31 47 16

2 sample.c 33 48 16

3 sample.php 35 49 14

4 sample1.txt 26 40 13

5 sample2.txt 16 40 25

6 sample3.txt 19 42 24

Average 18

Hence, in case of real time data, improvised GZIP gives

approximate 18% better results than traditional GZIP.

7. Conclusion

From the above results it is concluded that improvised

GZIP (LZ77 and adaptive Huffman) as approximate 18%

good results in terms of compression ratio and space saving

than traditional GZIP (LZ77 and Static Huffman) for real

time data. On the other side, adaptive Huffman and dy-

namic Huffman have almost similar results in combination

with LZ77 for storage data compression, but dynamic

Huffman is not suitable for real time data due to its 2 – pass

nature. Hence, GZIP is improved for real time data com-

pression by using adaptive Huffman and LZ77 compres-

sors.

8. Recommendations

There are many factors that has either direct or indirect re-

lation with data compression. For example, the size of file,

number of unique symbols in a file, occurrence and posi-

tion of symbols in file, compression and decompression

time etc. As this paper is about lossless data compression,

therefore, the amount of space saved and compression ratio

got an edge over other parameters. The efficiency of im-

provised GZIP is illustrated in terms of compression ratio

and Space saving.

9. Limitations

In this paper, six different files with different file sizes are

taken as source files. The results are obtained from these

source files only. Hence, it is recommended that Impro-

vised GZIP may be applied on files obtained from diverse

sources and different file formats.

References

[1] S. S. Thakare and P. M. Parekar, "Lossless data

compression algorithm–a review," International

Journal of Computer Science & Information

Technologies, vol. 5, no. 1, 2014.

[2] P. S. Asolkar, P. H. Zope and S. R. Suralkar,

"Review of Data Compression and Different

Techniques of Data Compression," International

Journal of Engineering Research & Technology

(IJERT), vol. 2, no. 1, January 2013.

[3] D. Huffman, "A method for the construction of

minimum-redundancy codes," Proceedings of the

IRE, vol. 40, no. 9, pp. 1098-1101, 1952.

[4] D. Huffman, "A method for the construction of

minimum-redundancy codes," Resonance, vol. 11,

no. 2, pp. 91-99, 2006.

[5] S. R. Kodituwakku and U. S. Amarasinghe,

"Comparison of lossless data compression

algorithms for text data," Indian journal of

computer science and engineering, vol. 1, no. 4, pp.

416-425, 2010.

[6] M. U. Ayoobkhan , E. Chikkannan , K.

Ramakrishnan and S. B. Balasubramanian ,

"Prediction-based Lossless Image Compression,"

International Conference on ISMAC in

Computational Vision and Bio-Engineering.

Springer, Cham, 2018., pp. 1749-1761, 2018.

[7] U. K. Mondal , "A novel approach to lossless audio

compression (LAC)," Annual Convention of the

Computer Society of India, Springer, Singapore, pp.

99-106, 2018.

The Improvised GZIP, A Technique for Real Time Lossless Data Compression

7 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

[8] W. Gao , G. Jiang , M. Yu and T. Luo , "Lossless

fragile watermarking algorithm in compressed

domain for multiview video coding," Multimedia

Tools and Applications 2019, vol. 78, no. 8, pp.

9737-9762, 2019.

[9] S. Dutta, A. Abhinav, P. Dutta, P. Kumar and A.

Halder, "An Efficient Image Compression

Algorithm Based on Histogram Based Block

Optimization and Arithmetic Coding," International

Journal of Computer Theory and Engineering, vol.

4, no. 6, p. 954, 2012.

[10] M. Kerbiriou and R. Chikhi, "Parallel

decompression of gzip-compressed files and

random access to DNA sequences," arXiv preprint

arXiv:1905.07224., 17 May 2019.

[11] W. Qiao , Z. Fang , . M. Chang and J. Cong , "An

FPGA-Based BWT Accelerator for Bzip2 Data

Compression," IEEE 27th Annual International

Symposium on Field-Programmable Custom

Computing Machines (FCCM). IEEE, pp. 96-99,

2019.

[12] P. Deutsch, ""DEFLATE Compressed Data Format

Specification version 1.3," Network Working

Group, 1996.

[13] J. Ziv and A. Lempel, "A Universal Algorithm for

Sequential Data Compression," IEEE Transactions

on Information Theory, vol. 23, no. 3, pp. 337-343,

1977.

[14] B. Sailesh, . P. Fleming , L. Mosur , D. Cassetti and

S. Palermo , "Data compression engine for

dictionary based lossless data compression". U.S

Patent Patent Application No. 16/228,300., 25 April

2019.

[15] J. Ouyang , H. Luo , Z. Wang , J. Tian , C. Liu and

K. Sheng , "FPGA implementation of GZIP

compression and decompression for IDC services,"

2010 International Conference on Field-

Programmable Technology IEEE, pp. 265-268,

2010.

[16] P. M. Parekar and S. S. Thakare , "Lossless Data

Compression Algorithm – A Review," International

Journal of Computer Science and Information

Technologies, vol. 5, no. 1, pp. 276-278, 2014.

8 EAI Endorsed Transactions on
Context-aware Systems and Applications

03 2019 - 06 2019 | Volume 6 | Issue 17 | e5

Ahmad Saeed Shah, Muhammad Athar Javed Sethi

