
EAI
European Alliance
for Innovation

EAI Endorsed Transactions
on Industrial Networks and Intelligent Systems Research Article

 1

Energy Efficient Dual Issue Embedded Processor

Hanni Lozano
1

and Mabo Ito
1,

*

1
University of British Columbia, Vancouver, Canada

Abstract

While energy efficiency is essential to extend the battery life of embedded devices, performance cannot be ignored. High

performance superscalar embedded processors are more energy efficient than low performance scalar processors, however,

they consume more power which is very limited in battery operated deeply embedded industrial devices. In this paper we

propose an energy efficient dual issue embedded processor that can deliver up to 60% improvement in IPC (instruction-

per-cycle) performance with less than 20% increase in power consumption compared to a single issue scalar processor. In

contrast to traditional multi-issue embedded processors that use power intensive superscalar techniques to extract

instruction-level parallelism from applications, the proposed processor uses simple hardware techniques to resolve

instruction scheduling conflicts. The processor is optimized for implementation on a low cost FPGA which makes it a

suitable candidate for cost sensitive embedded industrial applications.

Keywords: embedded processor, energy efficiency.

Received on 24 February 2015, accepted on 07 November 2015, published on 01 January 2016

Copyright © 2016 M. Ito and H. Lozano, licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use,

distribution and reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/eai.1-1-2016.150814

1. Introduction

The challenge in designing energy efficient embedded

devices is how to increase the device computational

performance while using the least amount of power. Most

embedded communication devices like remote sensors in

industrial applications operate on batteries and in some

cases these batteries cannot be replaced so frequently or at

all. In these cases, alternative energy sources like energy-

harvesting are used. However, energy-harvesting techniques

supply very limited amount of power; for example, a 36.5 x

64 mm 3-Volts solar panel from PowerFilm delivers 66

mWatts in 100% sun and less than 20 mWatts in 25% sun

which is a typical threshold intensity used by portable

devices [1]. To put these numbers into perspective, the

single issue ARM Cortex-M4 scalar processor consumes

16.5 mWatts at 500 MHz whereas the dual issue ARM

Cortex-A7 superscalar processor consumes 50 mWatts at

500 MHz [5], well above the 20 mWatts that the PowerFilm

solar panel can deliver.

Although the Cortex-M4 scalar processor consumes

much lower power than the Cortex-A7, it can only issue a

single instruction per cycle which limits its performance

potential. In contrast, the Cortex-A7 superscalar processor

can issue multiple instructions per cycle which allows it to

complete tasks faster than scalar processors and,

consequently, turn off unused resources to save energy in

the long run. Overall, the Cortex-A7 delivers 1.5x higher

performance than the Cortex-M4 while consuming 3x more

power [5]. Because the Cortex-A7 consumes more power

than the scalar Cortex-M4 processor, therefore, it cannot be

used in battery operated embedded devices or embedded

devices powered by an energy harvesting source such as the

PowerFilm solar panel mentioned earlier. The challenge for

next generation embedded industrial devices is how to

balance the increasing demand for higher performance with

longer battery life. The ideal solution is to design an

embedded processor that can deliver performance

comparable to a superscalar processor while consuming the

same, or as close as possible, amount of power as a single

issue scalar processor.
*Corresponding author Email: mito@ece.ubc.ca

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

EAI
European Alliance
for Innovation

M. Ito and H. Lozano

 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

b
a
s
ic

m
a
th

b
it
c
o
u
n
t

q
s
o
rt

s
u
s
a
n
.s

m
o
o
th

in
g

s
u
s
a
n
.e

d
g
e
s

s
u
s
a
n
.c

o
rn

e
r

d
ijk

s
tr
a

p
a
tr

ic
ia

b
lo

w
fi
s
h
.e

n
c
o
d
e

b
lo

w
fi
s
h
.d

e
c
o
d
e

ri
jn

d
a
e
l.
e
n
c
o
d
e

ri
jn

d
a
e
l.
d
e
c
o
d
e

s
h
a

a
d
p
c
m

.e
n
c
o
d
e

a
d
p
c
m

.d
e
c
o
d
e

C
R

C
3
2

F
F
T

IF
F
T

s
tr

in
g
s
e
a
rc

h

jp
e
g
.e

n
c
o
d
e

jp
e
g
.d

e
c
o
d
e

IP
C

Figure 1. IPC performance of an ideal dual issue embedded processor.

The reason superscalar processors consume more power

than scalar processors is because they use aggressive and

complex hardware techniques, such as out-of-order issue,

speculative execution, etc., to issue more than one

instruction per cycle. The amount of effort needed to issue

multiple instructions per cycle depends on how much

instruction level parallelism (ILP) is contained in the target

applications. Instruction level parallelism is a measure of the

number of independent instructions that can be issued in

parallel every cycle independent of any other external

factors such as hardware resource limitations. In

applications with high ILP, the processor doesn’t need to

use aggressive techniques to extract available parallelism in

the code, instead simple scalar techniques will suffice. The

amount of ILP varies between applications. For example,

references [23] and [24] showed that general purpose

applications have an average IPC of four regardless of the

type of CPU used, whereas reference [9] showed that

embedded applications can achieve IPC higher than two

using a high-end four-instruction wide superscalar Compaq

Alpha 21264 processor.

Figure 1 shows the max IPC for a number of embedded

applications using an ideal two-instruction wide in-order

scalar processor with four pipeline stages, perfect branch

prediction, unlimited number of registers, unlimited number

of memory ports and unlimited number of functional units.

Results indicate that on average 1.5 instructions are issued

every cycle. Benchmarks that have long basic blocks of code

such as susan.edges, susan.corner, rijndael and sha tend to

have much higher ILP which translates to higher IPC

because it is easier for the processor to locate independent

instructions that it can issue in parallel. The IPC

performance of these benchmarks is well above average; it

is actually close to the max issue capacity of a dual issue

processor. These results confirm that there is an abundance

of ILP in embedded programs that can be easily extracted

using minimal effort.

We propose a dual issue embedded processor that uses

simple hardware techniques to extract available ILP from

applications. The proposed processor delivers up to 60%

higher IPC than a single issue scalar processor while using

only 20% more power. The average increase in IPC is

around 40%. The proposed processor can fetch, decode and

issue two instructions simultaneously every cycle. The dual

issue processor uses approximately 30% more logic gates

than the single issue processor when implemented on a low

cost FPGA which helps keep the power consumption low.

The main reason we limited ourselves to dual-issue

processors is because increasing the processor width beyond

two instructions is very difficult to achieve, especially when

targeting an FPGA. The main source of difficulty is the

implementation of a multi-port register file (RF). The RF of

a four instructions wide processor uses four write ports and

eight read ports whereas FPGA memories as well as most of

low cost standard embedded memories have only two ports

that can be configured as read/write ports or one read port

and one write port. In section 4 we will explore in detail the

implementation of a multi-port register file using dual port

memories.

The main characteristics of the proposed dual issue scalar

processor are:

• A short in-order 4-stage pipeline that executes a rich

32-bit RISC instruction set based on the MIPS

instruction set [2].

• Tightly coupled program and data memories with zero-

wait states using Harvard architecture.

• A static branch predictor that performs within a 5%

range of an ideal branch predictor.

• Result forwarding scheme that uses FPGA built-in

features without any additional external logic.

• An optimized multi-port register file (RF) that uses a

novel memory redundancy technique.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

EAI
European Alliance
for Innovation

Energy Efficient Dual Issue Embedded Processor

3

A custom cycle accurate C simulator that models a single

issue RISC processor and a multi-issue superscalar RISC

processor is used to evaluate architectural design decisions

in the early phases of the design process. All the processor

implementation details such as issue width, number of

memory ports, number of functional units, etc. can be

configured statically by the user. Once all the processor

features were optimally evaluated, the processor is

implemented in a low cost FPGA to measure performance,

power consumption and resource usage.

The paper is organized according to the following outline.

Related works are discussed next in section 2. The

simulation environment including benchmarks and base

processor architectural details are described in section 3. A

detailed description of the dual issue processor is included in

section IV. Section V discusses results and the conclusion is

presented in section VI.

2. Related Work

2.1. Processor Survey

These processors are either used as standalone embedded

processors or as embedded cores in multi-core processors.

For our study we limit our analysis to standalone dual issue

in-order processors that target the low cost and low power

embedded market. This type of embedded processors are

characterized by single thread execution, the use of tightly

coupled data and instruction memories with optional zero

wait state access, a short pipeline usually three or four stages

deep, simple static or no branch prediction, in-order

instruction issue and single cycle execution for most

instructions. Table 1 compares a number of academic and

commercial processors. The main observations are:

• The majority of embedded processors listed in Table 1

use a RISC instruction set. The only exception is Intel

ATOM embedded processor which uses a CISC

instruction set. Despite the popular belief that RISC

processors are more efficient than CISC processors, a

recent study comparing RISC and CISC has shown that

the choice of an instruction set has no impact

performance nor energy efficiency [25].

• The PATMOS processor is designed for academic

research on time-predictable multi-core architecture

and hard real-time embedded systems. It can be

configured as a standalone processor or as a core in a

multi-core processor.

• The LEON3 is part of the LEON family of processors

originally designed by the European Space Agency

(ESA) and currently maintained by Gaisler

(www.gaisler.com).

• The NIOS-II and MicroBlaze are FPGA soft cores

provided by Altera and Xilinx, respectively. These

cores come in different configurations and features and

are mostly used as micro-controller rather than fully

fledged embedded processors.

• Most processors have very short pipelines, three to five

stages. The exception again is Intel ATOM processor

which has a 16-stage deep pipeline. The reason is that

the ATOM processor dynamically converts complex

CISC instructions into RISC-like micro-operations

using multiple pipeline stages.

• A wider pipeline does not necessarily translate to

higher performance. Dual issue ATOM and PATMOS

have a much lower Coremark/MHz score than single

issue microAptive and Cortex-M4. The performance of

PATMOS dual issue version is only 7% higher than the

performance of PATMOS single issue version [26].

The authors in [26] attribute this weak performance to

deficiencies in PATMOS instruction set and compiler.

• The ATOM processor Coremark performance is poor

due to the additional delay caused by the long 16-stage

pipeline; long latency operations which are common in

the Coremark benchmark incur an additional penalty in

processors with a deep pipeline similar to ATOM [1]

[8]. In contrast, the Cortex-M4 which has a short 3-

stage pipeline can deliver a much higher Coremark

performance than ATOM despite its smaller size.

• The microAptive and ARM Cortex-M4 cores have the

highest Coremark/MHz score of all processors. The

biggest differentiating factor is that these two

processors are modern RISC cores that combine a

number of advanced architectural features such as

complex addressing, traditionally used in CISC

processors, with RISC simple and efficient

implementation.

2.2. Other Areas of Embedded Processor
Design

The majority of academic research in the area of embedded

processor architecture focuses on superscalar techniques,

with some of the work specifically targeting FPGA

implementation [10]. Some of the works investigated the use

of simple scalar cores in multi-core processors targeting

standard-cell implementations [11] as well as FPGA [13] to

speed up the execution of multi-threaded applications. Some

research looked into specific aspect of the architecture in

isolation from other architectural elements, for example the

design of the register file [12]. Reference [12] gives a brief

introduction for the different techniques that implement

multi-port register file using standard two port memories.

Reference [17] combined several of these techniques to

optimize the implementation of a 6-write and 12-read ports

register file used in a wide superscalar processor. However,

their technique similar to most previous multi-port

techniques requires an additional pipeline stage to read data

from the register file. Other works investigated the design of

embedded processors that target specific applications such

as biomedical [18] or Smartgrid [19].These processors tend

to be heavily customized and more closely resemble an

application-specific-integrated-circuit (ASIC) than a general

purpose processor. Our focus is on multi-issue techniques

for energy efficient embedded processors.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

EAI
European Alliance
for Innovation 4

Table 1. List of academic and commercial embedded processors. ISA refers to the processor/core instruction-set-
architecture which can be either CISC (Complex-Instruction-Set Computer) or RISC (Reduced-Instruction-Set
Computer).

Processor Core ISA Instruction
Width
(bits)

Issue Width
(instructions)

Number of
Stages

Instruction
Issue

Coremark/MHz
[7]

PATMOS [26] RISC 32 2 5 in-order 1.90

LEON3 [20] RISC 32 1 7 in-order 1.80

Altera NIOS-II (s/f) [3] RISC 32 1 5 - 6 in-order 1.60

Xilinx MicroBlaze [4] RISC 32 1 3 - 5 in-order 1.90

Imagination Tech.
microAptive [2]

RISC 32 1 5 in-order 3.44

Intel ATOM [6] CISC 32 2 16 in-order 2.28

ARM Cortex-M4 [5] RISC 32 1 3 in-order 3.40

3. Simulation Environment

3.1. Benchmarks

The MiBench benchmark suite [9] is used to cover a wide

range of embedded applications grouped into six

categories: automotive, consumer, network, office,

security and telecom. All benchmark programs are cross

compiled and statically linked on a Linux host machine

using a GNU MIPS32 cross-compiler version 4.4.3 and a

GNU lib version 2.4. Each benchmark program is run to

completion using the MiBench provided large data set and

outputs are compared to the outputs generated by

executing the same benchmark program natively on the

Linux host machine. Table 2 lists the benchmark

programs and the total number of instructions executed

for each benchmark. The binary image size of each

benchmark is listed in the last column of Table 2. These

numbers represent the minimum size in bytes that each

program occupies in program memory for a bare metal

implementation with minimal operating system (OS)

support.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

b
a
s
ic

m
a
th

b
itc

o
u
n
t

q
s
o
rt

s
u
s
a
n
.s

m
o
o

th
in

g

s
u
s
a

n
.e

d
g
e
s

s
u
s
a

n
.c

o
rn

e
r

d
ijk

s
tr
a

p
a
tr
ic

ia

b
lo

w
fis

h
.e

n
c
o

d
e

b
lo

w
fis

h
.d

e
c
o

d
e

ri
jn

d
a
e

l.e
n
c
o
d

e

ri
jn

d
a

e
l.d

e
c
o

d
e

s
h
a

a
d
p
c
m

.e
n

c
o

d
e

a
d
p

c
m

.d
e

c
o

d
e

C
R

C
3
2

F
F

T

IF
F

T

s
tr
in

g
s
e
a
rc

h

jp
e
g
.e

n
c
o

d
e

jp
e
g

.d
e
c
o
d
e

T
o

ta
l
In

s
tr

u
c
ti

o
n

s

 IMUL IDIV IALU SHIFT CONTROL MEM REGMOVE FP_ARITH FP_LOGIC

Figure 2. Instruction type distribution using the large data set per MiBench benchmark (IMUL=integer multiply,
IDIV=integer division, IALU=integer ALU as listed in the text, SHIFT=logical and arithmetic shifts,
CONTROL=conditional & unconditional branch, MEM=memory load/store, REGMOVE=register move,
FP_ARITH=floating point arithmetic operations and FP_LOGIC=floating point logic operations).

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

M. Ito and H. Lozano

EAI
European Alliance
for Innovation 5

Table 2. MiBench benchmark list with the
corresponding total number of instructions executed
per run using the large data set and each program
binary image size in bytes.

Benchmark Category Total Number
of Instructions
Executed

Program
Size
(bytes)

basicmath automotive 3,211,569,629 788,464

bitcount automotive 595,183,708 608,512

qsort automotive 616,386,556 621,904

susan.smoothing automotive 392,905,660 684,480

susan.edges automotive 69,545,376 684,480

susan.corner automotive 23,397,130 684,480

jpeg.encode consumer 115,060,309 694,112

jpeg.decode consumer 25,411,302 706,560

stringsearch office 6,227,880 608,848

dijkstra network 289,665,966 605,840

patricia network 918,545,085 607,680

blowfish.encode security 1,949,847,190 614,128

blowfish.decode security 1,946,194,228 614,128

rijndael.encode security 451,426,609 644,384

rijndael.decode security 439,654,189 644,384

sha security 130,156,790 605,792

ADPCM.encode telecom 611,853,238 603,136

ADPCM.decode telecom 524,099,205 603,136

CRC32 telecom 6,014,143,443 604,320

FFT telecom 501,452,631 663,584

IFFT telecom 316,676,257 663,584

Figure 2 shows the distribution per operation type for

each MiBench benchmark program. The Integer

Arithmetic and Logic Unit (IALU) category contains the

following combination of integer arithmetic and logical

operations: integer addition, integer subtraction, bitwise

logical operations and operands comparison. The SHIFT

category contains all bitwise logical and arithmetic shift

operations which in some benchmarks represent 10% of

the total number of operations. There are several

observations to be drawn from the results of Figure 2:

• The percentage of floating point instructions in the

MiBench benchmark programs does not exceed

0.5%. Only the FFT and IFFT benchmarks have a

measurable percentage of floating point instructions

equal to 4% and 7% respectively. Therefore, floating

point operations are emulated in software instead of

using a dedicated floating point functional unit in

hardware.

• Ninety-five percent (95%) of instructions in the

benchmark programs, except the susan.smoothing

benchmark, are distributed between only three types

of operations: ALU operation which includes logical

and arithmetic shift operations, memory operations

and control operations.

• The percentage of integer multiplications does not

exceed 0.2% which eliminates the need to add a

second multiplier in the dual-issue version of the

processor. Using a single multiplier constitute a

major reduction in the size and power consumption

of the dual-issue processor.

• The average percentage of integer ALU operations is

approximately 50% and more than 70% of ALU

operations are addition and subtraction operations.

These results are very meaningful for the dual-issue

processor because instead of duplicating the

complete ALU unit which happens to be the largest

logic block in the processor, we just duplicate the

adder to keep number of gates and power

consumption low without degrading performance.

• Forty percent (40%) of instructions in almost half the

benchmarks are memory load and store instructions.

These numbers show the importance of having a high

speed interface between the data memory and the

processor core. In our case we use tightly coupled

memories with zero wait state to allow memory

accesses to execute in a single cycle on a 4-stage

pipeline processor.

• The percentage of conditional and unconditional

control instructions varies from 5% to 25%. The

adpcm benchmarks contains the highest number of

control operations of all benchmarks due to the

predominance of short loops that convert 16-bit

linear PCM speech samples to 4-bit samples.

• The high percentage of REGMOVE operations in the

susan.smoothing benchmark, as well as in the

basicmath, susan.edges and susan.corner benchmark

but to a much lesser degree, is a result of scaling and

moving 64-bit multiplication results into 32-bit

registers. In the FFT and IFFT benchmarks

REGMOVE instructions are used to move 64-bit

floating point results into 32-bit registers.

• The distribution of instructions in embedded

applications closely resembles the distribution of

instructions in general purpose applications reported

in [23] and [24]. The only minor difference is the

number of control operations in general purpose

applications is marginally higher.

NOP (no-operation) instructions are used in the

MIPS32 ISA to fill empty instruction slots and branch

delay slots in case the compiler is unable to find valid

instructions to schedule in these slots. Branch delay

instructions are instructions that immediately follow a

branch instruction and must be executed before the branch

is executed, i.e. taken or not taken. The percentage of

NOP instructions can be as high as 30% the total number

of instructions in a program. The jpeg.encode benchmark

has the highest percentage of NOP instructions in the

MiBench benchmarks at approximately 25%, while the

average percentage is only around 15%. The drawback of

NOP operations is that they insert bubbles in the pipeline

which results in a considerable loss in performance and

energy efficiency.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

Energy Efficient Dual Issue Embedded Processor

EAI
European Alliance
for Innovation 6

Figure 3. Top level block diagram of the 4-stage
base processor.

3.2. Base Processor Architecture

Figure 3 shows the top level diagram for the base scalar

processor. A custom cycle accurate simulator written in C

is used to conduct a thorough evaluation of different

architectural features as well as to collect run-time

statistics (e.g. total number of cycles, number of

mispredicted branches, etc.). All the processor features

such as the number of pipeline stages, branch prediction

technique, etc. can be configured by the user dynamically

at runtime. The simulator models a 32-bit RISC processor

with a Harvard memory configuration and 4-stage

pipeline: fetch, decode, execute and memory access. We

experimented with different pipeline stages ranging from

three up to six and found out that a four stage pipeline is

less complex to implement in hardware than a five or six

stage pipelines and produced better IPC performance,

20% on average, than a three stage pipeline which was

severely impacted by frequent pipeline stalls from multi-

cycle memory access operations. Figure 4 shows the

percentage of increase in IPC for a 4-stage pipeline

compared to a 3-stage pipeline. Benchmark programs that

contain a large percentage of memory operations and a

low percentage of control operations such as susan.edges

and susan.corner benefited the most from adding a

dedicated pipeline stage for memory access. The increase

in IPC in these two benchmarks ranges from 30% to 40%

respectively which is remarkable considering that the

hardware overhead for adding a fourth pipeline stage is

minimal. Benchmark programs with a high percentage of

memory and control operations such as qsort and FFT

achieved a 20% increase on average but did not perform

as well as the susan benchmarks because the frequent

interruption of the pipeline by the control operations

inserted too many bubbles in the pipeline that eliminated

any gain from adding the extra pipeline stage.

The processor implements the complete MIPS32

instruction set [2] excluding all floating point and co-

processor instructions. Instruction distribution results

presented in the previous section clearly showed that

embedded benchmark programs, with the exception of the

FFT and IFFT benchmarks, contain insignificant numbers

of floating point operations (the average percentage is

around 0.5%) which does not justify adding a dedicated

floating point functional unit in the processor.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

b
a
s
ic

m
a
th

b
itc

o
u
n
t

q
s
o
rt

s
u
s
a
n
.s

m
o
o
th

in
g

s
u
s
a
n
.e

d
g
e
s

s
u
s
a
n
.c

o
rn

e
r

d
ijk

s
tr
a

p
a
tr
ic

ia

b
lo

w
fis

h
.e

n
c
o
d
e

b
lo

w
fis

h
.d

e
c
o
d
e

ri
jn

d
a
e
l.e

n
c
o
d
e

ri
jn

d
a
e
l.d

e
c
o
d
e

s
h
a

a
d
p
c
m

.d
e
c
o
d
e

a
d
p
c
m

.e
n
c
o
d
e

C
R

C
3
2

F
F

T

IF
F
T

s
tr
in

g
s
e
a
rc

h

jp
e
g
.e

n
c
o
d
e

jp
e
g
.d

e
c
o
d
e

a
v
e
ra

g
e

In
c
re

a
s
e
 i
n
 I
P

C

Figure 4. Increase in IPC for a 4-stage processor
compared to a 3-stage processor.

ALU

The processor largest block is the ALU which consumes
60% of the processor total logic gates. The ALU includes a
32-bit fixed-point adder with overflow detection, a 32-bit
fixed-point multiplier with a 64-bit accumulator, a 32-bit
logic unit that performs bitwise operations and a 32-bit
shift unit for bitwise logical and arithmetic shifts. All ALU
operations excluding division which is emulated in
software, execute in a single cycle. In the FPGA, the 32-bit
multiplier is implemented using the FPGA hardwired
embedded multipliers which reduces the total logic
elements (LE) count by 20% compared to implementing
our own multiplier using standard logic. The drawback is
that several 18-bit multipliers need to be cascaded together
to perform 32-bit wide multiplications which increases the
latency of multiplication operations and reduces the
processor clock top speed by almost 40%, from 100 MHz
down to 60 MHz.

Instruction Decoder

The instruction decoder main function is to extract the

relevant fields, e.g. addresses of the source and

destination registers, from newly fetched instructions and

generate the control signals needed to perform the

operation associated with each instruction. The decoder is

also responsible for detecting control instructions,

calculating the branch target address using a dedicated 32-

bit adder and forwarding the result to the instruction fetch

unit to update the program counter for the next fetch

cycle. For conditional branches, a branch recovery

address is calculated and temporarily stored in a register

in case the branch prediction outcome is wrong and the

processor needs to resume normal program execution. In

an always-taken static predictor, the branch recovery

address is calculated by incrementing the current program

counter (PC) by two instructions slots and storing the

result in the branch recovery address register. An

alternative solution would be to store the current PC in the

branch recovery address register and increment when a

branch outcome is mispredicted. In a 4-stage pipeline, the

decode and execute stages are just one cycle apart which

means that the calculation of the branch recovery address

can be easily done one cycle later in the ALU instead of

the decoder. Despite covering a number of functions, the

instruction decoder uses less than 5% the total number of

logic gates in the processor.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

M. Ito and H. Lozano

EAI
European Alliance
for Innovation 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

b
a

s
ic

m
a

th

b
itc

o
u

n
t

q
s
o

rt

s
u

s
a

n
.s

m
o

o
th

in
g

s
u

s
a

n
.e

d
g

e
s

s
u

s
a

n
.c

o
rn

e
r

d
ijk

s
tr

a

p
a

tr
ic

ia

b
lo

w
fis

h
.e

n
c
o

d
e

b
lo

w
fis

h
.d

e
c
o

d
e

ri
jn

d
a

e
l.e

n
c
o

d
e

ri
jn

d
a

e
l.d

e
c
o

d
e

s
h

a

a
d

p
c
m

.e
n

c
o

d
e

a
d

p
c
m

.d
e

c
o

d
e

C
R

C
3

2

F
F

T

IF
F

T

s
tr

in
g

s
e

a
rc

h

jp
e

g
.e

n
c
o

d
e

jp
e

g
.d

e
c
o

d
e

IP
C

no-pred static-taken static-not-taken perfect

Figure 5. IPC performance of the base processor using different branch prediction techniques (no-pred=no
branch prediction, static-taken=static predictor with default taken prediction, static-not-taken=static predictor with
default no-taken prediction, perfect = perfect branch prediction).

Branch Prediction

All branch instructions, except for the indirect jump

instructions which store the target address in a general

purpose register, are executed during the decode stage. A

branch predictor allows conditional branches to be

dispatched before they are executed to prevent stalling the

pipeline. Figure 5 compares IPC results of a single issue

processor using: a static branch predictor with two

prediction heuristics (always taken and always no-taken),

a processor without a branch predictor (no-pred) and a

processor with a perfect predictor (perfect). Results reveal

that IPC degrades by as much as 10% when no branch

predictors are used. On the other hand, a simple static

predictor can boost the average IPC performance to

within 5% the IPC performance of a perfect predictor.

Simulation results also reveal that the always taken

heuristic performs better than the always not-taken

heuristic by an average of 2% which agrees with reference

[18] results. Figure 6 shows the IPC performance for each

heuristic per benchmark. Although the difference is

insignificant, we decided to use the always taken heuristic

for the rest of our simulations. A more idealistic solution

would be to make the choice of heuristic selectable by the

user.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

b
a

s
ic

m
a

th

b
it

c
o

u
n

t

q
s

o
rt

s
u

s
a

n
.s

m
o

o
th

in
g

s
u

s
a

n
.e

d
g

e
s

s
u

s
a

n
.c

o
rn

e
r

d
ijk

s
tr

a

p
a

tr
ic

ia

b
lo

w
fi

s
h

.e
n

c
o

d
e

b
lo

w
fi

s
h

.d
e

c
o

d
e

ri
jn

d
a

e
l.

e
n

c
o

d
e

ri
jn

d
a

e
l.

d
e

c
o

d
e

s
h

a

a
d

p
c

m
.e

n
c

o
d

e

a
d

p
c

m
.d

e
c

o
d

e

C
R

C
3

2

F
F

T

IF
F

T

s
tr

in
g

s
e

a
rc

h

jp
e

g
.e

n
c

o
d

e

jp
e

g
.d

e
c

o
d

e

B
ra

n
c

h
 P

re
d

ic
ti

o
n

 S
u

c
c

e
s

s
 R

a
te

taken not-taken

Figure 6. IPC results for a static branch predictor
using an always taken and always not-taken
heuristics.

Performance improves by as little as 5% when the static

branch predictor is upgraded to a bimodal dynamic

predictor with a 2-bit saturating history counter. Figure 7

shows the gain in IPC for a bimodal branch predictor

using different branch history table (BHT) sizes relative

to the static predictor. A fully-associative bimodal

predictor with a 4K direct-mapped BHT achieves a 2% to

6% gain in IPC compared to the static predictor which

matches very closely the performance of a perfect

predictor. However, a BHT with 4K entries is too big and

consumes too much power to be used in a low power

embedded processor. A BHT with a more realistic number

of entries of 64 or 128 achieves a 2% to 4% improvement

in IPC, respectively, which is too small to justify the

added logic and complexity. Also, accessing the BHT

requires an additional pipeline stage between decode and

execute stages which increases the number of speculative

instructions that has to be flushed out from the pipeline

when a branch is mispredicted. An increase in the number

of missepculated instructions reduces the energy

efficiency of the processor which is critical in battery

operated embedded devices. A shorter pipeline with fewer

missepculated instructions is also the reason why a simple

branch predictor performs so well.

0.96

0.98

1.00

1.02

1.04

1.06

1.08

static 8 16 32 64 128 256 512 1024 2048 4096

Im
p

ro
v

e
m

e
n

t
in

 I
P

C

Automotive Network Security Telecomm Office Consumer

Figure 7. IPC results for a bimodal branch predictor
relative to IPC results of a static predictor using
different BHT sizes.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

Energy Efficient Dual Issue Embedded Processor

EAI
European Alliance
for Innovation 8

Figure 8. Multi-port emulation techniques using
dual-port modules.

Register File

The RF has one write port and two read ports and contains

32 general purpose registers each 32-bit wide. However,

standard embedded memories have only two ports that

can be configured as read ports or write ports. Adding

three or more ports requires the design of custom

memories. An alternative solution is to emulate multi-read

and multi-write memories using basic two port memories

[10]. There are three different techniques, depicted in

Figure 8, for emulating multi-port memories using

standard dual-port memories:

• Replication technique is used to emulate single

write and multiple read memories. The RAM module

is duplicated once per read port. A write is

broadcasted to all the modules at once. Data is read

individually from each module.

• Banking technique can emulate multiple write and

multiple read memories by dividing the RAM

module into as many RAM sub-modules as there are

read and write ports. Dividing the RF into sub-

modules each hardwired to a read/write pair of ports

means that data stored in one sub-module cannot be

read at any read port which makes the data “non-

coherent”.

• Pumping technique supports a variable number of

write and read ports by clocking the RAM module at

higher speed than data writes and reads. This

technique is also known as “time-multiplexing”.

Clocking the RAM module at higher speed than the

write and read ports might not be feasible if the read

and write ports are already operating at the processor

max speed.

We chose a combination of the replication and the

banking methods (Figure 9) because it uses the least

amount of logic resources compared to the other surveyed

techniques for a 1-write and 2-read RF. The drawback is

that we need double the number of memory bits.

However, the 32-entry by 32-bit register file uses a total

of 2-Kbits which can easily fit in a single embedded

memory block on the FPGA.

Figure 9. One write and two read ports RF.

Result Bypass

When a true dependency exists between two consecutive

instructions, results must be made available to the decode

stage as soon as instruction execution finishes (see

diagram below). Otherwise, program execution has to be

stalled for at least one cycle until the result is written back

to the register file or data memory before it can be

retrieved by the consuming instruction. The solution is to

forward the result directly to the decode stage while,

simultaneously, writing it back to the destination register

or memory location.

This technique is known as result bypass and is usually

implemented using a multiplexer and logic comparators.

For the FPGA implementation, instead of using dedicated

bypass logic we use the write-through built-in feature that

exists in FPGA embedded memories [3] [4]. This

technique embeds the external bypass multiplexers and

logic gates into the memory modules themselves which

becomes transparent to the end user. Using the write-

through feature, the new data can be written to a memory

location and read from the same memory location at the

exact same clock edge. Although the write-through

technique uses approximately the same amount of logic as

the traditional bypass method with the external

multiplexers and logic gates, its biggest advantage is it

simplicity and transparency to the user.

3.3. FPGA Implementation

The base scalar processor is coded in Verilog and

implemented on an Altera Cyclone-IV E 22K using Altera

QuartusII web edition toolset version 13.0 [3]. Table 3

lists the FPGA features and compilation options used for

the base processor. The compilation uses a timing driven

place and route algorithm with balanced optimization

technique (giving area and speed equal weights) and

normal physical synthesis effort for post place and route

optimization.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

M. Ito and H. Lozano

EAI
European Alliance
for Innovation

9

Table 3. Compilation options for Quartus-II tools.

Option Value

Target device EP4CE22F17C7

Core voltage 1.2 V

Logic elements (LE) 22,320

Memory bits 608,256

Optimization technique Balanced

Synthesis Timing driven

Physical synthesis effort level Normal

Fitter Auto Fit

A subset of the MiBench benchmarks is simulated

using Modelsim-Altera before the final implementation in

hardware using an off-the-shelf development board.

Compiled benchmarks are downloaded and stored in the

internal program memory during the initialization phase

of the FPGA and then executed until completion. The

built-in JTAG interface in the FPGA serves as a

programming and communication link between the host

system and the FPGA through the Quartus-II toolset. All

logic memories are implemented using the inferred RAM

technique to make the code portable between different

FPGA vendors as well as between FPGA and ASIC.

There are 32 Kbytes of data RAM and 8 Kbytes of

program RAM.

Table 4 shows a summary of the FPGA resources used

by the base scalar processor. The total number of FPGA

LE is approximately 1.8K which corresponds to merely

7% of the total LE in the Cyclone IV-E 22K FPGA. The

total number of RAM bits reported in Table 3 does not

include program and data memory which can be

configured by the end user independently from the

processor core. The 3-port RF uses only 3% of the total

number of embedded memory modules (M9K) in the

FPGA. The 32-bit wide fixed point multiplier uses four

18-bit embedded multipliers cascaded together to form a

32-bit multiplier. If the multiplier width is reduced to 16-

bits, the processor speed can be increased to 100 MHz.

However, a 16-bit multiplier has to be pipelined to

perform 32-bit multiplications which will increase

multiplication latency. The pie chart in Figure 10 shows

the percentage of processor total logic cells that each

module consumes. The ALU is by far the largest module

in the processor but, surprisingly enough, it only

consumes 42% of the total processor core power budget.

Decoder

15%

Register

File

5%

Connectivity

23%

ALU

57%

Figure 10. Percentage of processor logic elements
(LE) per module.

Table 4. FPGA implementation results.

Resource Base Processor

Logic elements (LE) 1,831

LUT / Registers 1,809 / 347

Logic RAM (bits) 2K

Physical RAM block (M9K) 2

Embedded 9-bit multipliers 8

Speed (MHz) 60

Dynamic power (mWatt/MHz) 0.46

Coremark/MHz 2.51

Dynamic power estimates were generated using Altera

PowerPlay tool which is part of Quartus-II. Signal activity

results generated by Modelsim gate level simulation were

fed to PowerPlay to give an accurate power estimates.

The average dynamic power dissipation of the single issue

processor is around 27.5 mWatts when operated at 60

MHz which gives a power rating equal to 0.48

mWatts/MHz. Most of the processor power shown in

Figure 11 (a), 52% to be exact, is consumed by the 32

Kbytes data memory whereas the much smaller 8 Kbytes

program memory consumes 12% of the total power. If we

factor out the power consumed by the data and program

memories then the ALU will end up representing 42% of

the total core power as shown in Figure 11 (b). The RF

will consume 28% and the decoder 11% with the

remaining power consumed by the processor top level

connectivity and glue logic.

Decoder

5%

Data RAM

52%

Program

RAM

12%

Register

File

10%

Connectivity

6%

ALU

15%

Decoder

11%

ALU

43%

Connectivity

18%

Register

File

28%

Figure 11. Percentage of total processor power
consumed per module with (a) program and data
RAMs and (b) standalone core.

The single issue base processor achieves a 2.51

Coremark/MHz performance which is somewhere in the

mid-range performance scale compared to processors

listed in Table 1. The main reason that our processor has a

lower Coremark/MHz rating than the MicroAptive and

Cortex-M4 is because of the lack of a commercial

compiler that can fine tune the code for the specific

processor architecture as well as the lack of optimized

bare metal libraries. On the other hand, our processor

achieved a 10% higher Coremark/MHz result than

ATOM. Similarly, the single issue base processor

achieved 57% and 32% higher Coremark/MHz result than

FPGA based soft cores Xilinx MicroBlaze and Altera

NIOS-II, respectively.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

Energy Efficient Dual Issue Embedded Processor

EAI
European Alliance
for Innovation 10

4. Dual Issue Processor

The single issue processor average IPC performance even

under ideal conditions, i.e. when branches are predicted

perfectly, does not exceed 0.87 instructions per cycle as

shown in Figure 5. To increase the IPC performance of

the single issue processor beyond the scalar level, the

pipeline needs to be widened to allow more instructions to

issue each cycle. Figure 1 results clearly show that the

MiBench benchmark programs have enough ILP to issue

two-instructions in parallel during most cycles. The

traditional way of extracting ILP from applications is to

use superscalar speculative techniques such as out-of-

order issue. However, these aggressive instruction

scheduling techniques are power intensive and are not

well suited for low power embedded devices. Instead we

use simple scalar techniques to resolve instructions

scheduling conflicts, both software conflicts like true-

dependencies and hardware conflicts like resource

allocation, which can be quite challenging especially

when the number of instructions issued in parallel is

higher than two. In this section we evaluate some of the

implementation challenges of a dual issue scalar processor

and propose a simple solution to each challenge. The

order in which the items are listed is irrelevant and does

not represent the challenge severity level.

4.1. Register file

Decoding and executing two instructions simultaneously

each cycle requires two writes and four reads to the

register file, which is double the number of ports used in

the single issue processor. The method used for the single

issue processor can be used for the dual issue processor

but the implementation becomes more complex [10].

Related Work

A number of prior works have researched the challenge

of implementing multi-port RF using dual-port RAMs.

Reference [14] proposed a 2-write and 4-read 64-entry RF

using a combination of replication and banking

techniques. The drawback of this method is that the RF is

divided into two banks and each bank is hardwired to a

separate write port which results in a “coherence’ problem

as each write port can write to only a single RF bank. In

addition, writes have to be coordinated to avoid two

writes to the same bank. To avoid the “coherence”

problem, reference [15] proposed generating a 2-bit tag

for every register write and storing the tag in a live value

table (LVT). The tag indicates which RF replica the latest

register value is stored in. A register read must access the

LVT to retrieve the corresponding tag which requires an

additional pipeline stage between decode and execute.

Adding an extra pipeline stage especially between decode

and execute will increase the number of speculative

instructions that are flushed from the pipeline following a

branch misprediction which increase power waste and

decreases energy efficiency.

Figure 12. Two write and four read ports RF.

In order to eliminate the LVT, reference [15] authors

proposed XORing the content of RF replicas to generate

the latest register value. This technique uses more RAMs

than LVT and it has a much higher latency [16].

Reference [17] proposed replacing the huge

multiplexers used in the pumping technique with very

wide serial to parallel (output) and parallel to serial

(input) shift registers. This technique uses much higher

clock frequency to clock the RF than the pumping

technique which can be unfeasible to implement if the

read and write interface is clocked at the max speed.

Proposed Technique

We propose a novel memory tagging technique similar

to LVT though without the additional pipeline stage. The

new method uses the same amount of RAMs as LVT

which adds up to a total of eight RF replicas, or two RF

replicas per read port, for the 2-write and 4-read port RF.

Because we only use two RF replicas per read port, the 2-

bit tag can be reduced to a single bit. This simplification

allows replacing the LVT with a simple 32-bit tag register

as shown in Figure 12. Registers stored in RAM1-0/1/2/3

are assigned a 1-bit tag value of one and, reciprocally,

stores in RAM0-0/1/2/3 need to clear the corresponding

bit in the tag register which represents a 1-bit tag value of

zero. Reads are executed by retrieving the bit value that

corresponds to the register being read from the tag register

to determine which of the two RAM modules the datum is

stored in. If the retrieved tag register bit is set then the

datum is read from the RAM1 module and vice versa.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

M. Ito and H. Lozano

EAI
European Alliance
for Innovation

11

4.2. True Dependency Stalls

In the single issue processor true dependencies exist only

between two consecutive instructions in different pipeline

stages. Forwarding the result from the execution stage to

the decode stage resolves the dependency and avoids

stalling the pipeline. In a dual issue processor, true-

dependencies can potentially exist between two parallel

instructions. In this case, the pipeline has to be stalled for

at least one clock cycle until the first instruction executes

and its result is forwarded to the next instruction. Figure

13 shows an example of true-dependency between two

parallel instructions. Although, instruction fetching is

halted for a single cycle, in the next two consecutive

cycles only a single instruction is issued which reduces

the IPC by half during these two cycles.

The solution shown in Figure 13 (bottom) is to issue

instruction I2 in parallel with I1 to fill up the empty fetch

slot and maintain the flow of instructions coming to the

decoder. In the following cycle, I3 is moved to the first

slot and a new instruction I4 is fetched from program

memory to fill one of the empty instruction slots. This

process is equivalent to sliding instructions by a single

slot which can be easily achieved by incrementing the

program counter by one instruction instead of the usual

two instructions. The advantage of this solution is that we

can reuse the exact same circuit that detects true-

dependency and slides instructions between different

decoder slots to process control instructions (see next

section for details). With this technique, only a single

instruction slot is wasted instead of two instruction slots

(see Figure 13) which results in a 50% reduction in

wasted instruction slots per true-dependency.

I0: add reg2, reg3, 0x01 (reg2 = reg3 + 0x01)
I1: add reg4, reg2, 0x02 (reg4 = reg2 + 0x02)

Pipeline
Stages

Cycles (one clock cycle per column)

Fetch I0:I1 I2:I3 bubble I4:I5 … …

Decode I0:I1 I1 I2:I3 … …

Execute I0 I1 I2:I3 …

Memory
Access

I0 I1 I2:I3

Pipeline
Stages

Cycles (one clock cycle per column)

Fetch I0:I1 I2:I3 I3:I4 … … …

Decode I0:I1 I1:I2 I3:I4 … …

Execute I0 I1:I2 I3:I4 …

Memory
Access

I0 I1:I2 I3:I4

Figure 13. Example (top) of a true dependency
between instructions within the same cycle and
(bottom) a proposed solution to reduce the number
of wasted instruction slots.

4.3. Branch Misprediction

Recovering from a mispredicted branch outcome is a

difficult task in a dual issue pipeline because a branch

instruction can be in any of the two available instruction

slots. The calculation of the recovery address as well as

the selection of instructions to be flushed out from the

pipeline depends on which instruction slot in the decoder

the branch instruction occupies. A simple solution is to

decode the branch instruction only when it is located in

the first decoder slot which guarantees that the instruction

in the second slot is always going to be the delay slot

instruction. When a branch instruction is detected in the

decoder second slot, an exception is triggered which halts

the issue of the branch instruction.

Although the branch instruction issue is delayed for

one clock cycle, the branch target instruction is still

fetched unless the branch delay slot instruction is not

present in the fetch unit because of a previous branch

instruction. In that case the delay slot instruction is

fetched first. In the following cycle, the branch instruction

is moved to the first slot and issued together with the

delay slot instruction. The technique used to align

branches to the first instruction slot is identical to the

technique used to resolve true-dependency between

instructions which consists of sliding instructions over by

one slot. As a result, the true-dependency stall resolution

logic can be reused as is to align branches to the first

decoder slot with some minor additional logic for

detecting branch instructions when they are present in the

decoder second slot.

In some cases the delay slot instruction is not present in

the fetch unit and has to be explicitly fetched which

occurs when a branch instruction is decoded in the

previous cycle and the target address of that branch

instruction is loaded into the fetch unit instead of the

current branch delay slot instruction (Figure 14 bottom).

The issuing of the branch instruction as well as the

fetching of the branch target address are delayed for an

additional cycle until the delay slot instruction is fetched

and loaded into the decoder unit. This process introduces

a single bubble (empty slots) in the pipeline which cannot

be avoided. Our simulation showed that the percentage of

times that a delay slot instruction is not present in the

fetch unit when a branch is detected in the decoder is less

than 15% on average for the MiBench benchmark

programs which is relatively low.

The decision to delay the issue of branch instructions

until they are located in the first decoder slot wastes only

a single decoder slot and only when the delay slot

instruction I2 is present in the fetch unit as shown in

Figure 14. Otherwise, if the delay slot instruction I2 is not

present in the fetch unit (Figure 14 bottom example) then

both approaches, i.e. issue branch instructions from the

second decoder slot or delay branch instructions until they

are moved to the first slot, have the same performance

because the branch instruction is delayed anyway until the

delay slot instruction is fetched regardless of which

decoder slot the branch is located in.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

Energy Efficient Dual Issue Embedded Processor

EAI
European Alliance
for Innovation 12

I0: add reg3, reg2, 0x1
I1: beqz reg0, addr
I2: add reg0, 0x01 (this is a delay slot instruction)

Pipeline
Stages

Cycles (one clock cycle per column)

Fetch I0:I1 I2:I3 I3:I4 … … …

Decode I0:I1 I1:I2 … … …

Execute I0 I1:I2 … …

Memory
Access

I0 I1:I2 …

Pipeline
Stages

Cycles (one clock cycle per column)

Fetch I0:I1 I8:I9 I2:I3 I3:I4 … …

Decode I0:I1 I1 I1:I2 … …

Execute I0 bubble I1:I2 …

Memory
Access

I0 bubble I1:I2

Figure 14. Example of a branch instruction located
in the second slot and the corresponding delay slot
instruction I2 (top) present and (bottom) not present
in the fetch unit.

Using the above described technique to align branches

to the first decoder slot and load the delay slot instruction

into the second decoder slot guarantees that the effects of

predicting or mispredicting a branch outcome will be

equivalent as shown in Figure 15. The result in both cases

is a single bubble or just two wasted instruction slots per

branch instruction. Processors that don’t have a delay slot

instruction such as the ARM Cortex can issue branch

instructions directly from the second decoder slot.

I0: beqz reg0, In // If (reg0==0) then branch to In

I2: add reg0, 0x01 // this is a delay slot instruction

Pipeline
Stages

Cycles (one clock cycle per column)

Fetch I0:I1 I2:I3 In:In+1 … … …

Decode I0:I1 I2:I3 In:In+1 … …

Execute I0:I1 bubble In:In+1 …

Memory
Access

I0:I1 bubble In:In+1

Pipeline
Stages

Cycles (one clock cycle per column)

Fetch I0:I1 I2:I3 In:In+1 I4:I5 … …

Decode I0:I1 I2:I3 bubble … …

Execute I0:I1 I2:I3 bubble …

Memory
Access

I0:I1 I2:I3 bubble

Figure 15. Example of (top) a correctly predicted
and (bottom) a mispredicted branch instruction.

4.4. Duplication of Resources

ALU

Processing two instructions per cycle requires that all the

processor resources be duplicated, including the ALU.

However, duplicating all the functions in the ALU will

increase the total number of LE dramatically. Considering

that the ALU uses 60% of the processor total LE and

consumes 42% of total power, therefore adding two

complete ALUs will increase power consumption by 2x.

We know from previous instruction distribution

analysis that some of the operations appear very

infrequently in the benchmarks like for example the

multiplication instructions; adding an additional multiplier

will have minimal impact on performance and increase

power consumption unnecessarily. The dynamic power

supplied to the additional multiplier can be either toned

down using a variable clock [27] or turned off completely

using clock gating [28] but it will hurt performance

because it takes at least several cycles to restore the clock

to its full speed. Static power consumption is even more

difficult to switch off because it requires complex layout

modifications to isolate each multiplier [29] and the

response time of dc-to-dc voltage regulators is very slow

[30] which preclude using these techniques in an

embedded processor with a short pipeline. The only

alternative is to reduce the number of duplicated resources

to a minimum in order to minimize the increase in power

consumption.

In order to determine which ALU resources are the

most critical to performance, we conducted a thorough

quantitative analysis for all benchmarks by selectively

duplicating one ALU resource at a time and comparing

the IPC results to the results of a dual issue processor with

a single ALU (1-ALU Figure 16) to verify if there is any

measurable improvement in performance. Results are

summarized in Figure 16 and discussed in section 5.

Memories

A simple way to fetch two 32-bit instructions in

parallel is to increase the program bus width from 32 bits

to 64 bits. This simple scheme will work as long as we

always fetch two consecutive instructions from memory.

On the other hand, data accesses are not necessarily

aligned which means that separate address and separate

read/write ports are needed for each datum. In a dual issue

processor, data memory needs to support two reads and

two writes simultaneously which adds up to four

read/write ports. Using any the methods evaluated for the

RF implementation would be unfeasible because data

memories are much larger than RFs; for example in our

processor we use 32 Kbytes of data RAM. We measured

the percentage of cycles during which two data memory

accesses are issued in parallel using the compiler default

settings and found it to be less than 3% on average for the

MiBench programs. Therefore, we modified the GNU

compiler to enforce mutual exclusivity between memory

operations for the dual issue processor.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

M. Ito and H. Lozano

EAI
European Alliance
for Innovation 13

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

b
a
s
ic

m
a
th

b
itc

o
u
n
t

q
s
o
rt

s
u
s
a
n
.s

m
o
o
th

in
g

s
u
s
a
n
.e

d
g
e
s

s
u
s
a
n
.c

o
rn

e
r

d
ijk

s
tr
a

p
a
tr
ic

ia

b
lo

w
fis

h
.e

n
c
o
d
e

b
lo

w
fis

h
.d

e
c
o
d
e

ri
jn

d
a
e
l.
e
n
c
o
d
e

ri
jn

d
a
e
l.d

e
c
o
d
e

s
h
a

a
d
p
c
m

.e
n
c
o
d
e

a
d
p
c
m

.d
e
c
o
d
e

C
R

C
3
2

F
F
T

IF
F
T

s
tr
in

g
s
e
a
rc

h

jp
e
g
.e

n
c
o
d
e

jp
e
g
.d

e
c
o
d
e

R
e
la

ti
v
e
 I
P

C

ideal 1-ALU 2ADD 2ADD-2LOGIC

Figure 16. IPC results for a dual issue processor relative to the IPC of a single issue processor using a static
branch predictor with an always taken heuristic under different ALU configurations. The ideal case is for a
processor with two complete ALU units.

5. Results

5.1. Simulation

Simulation results for the dual issue processor are

summarized in Figure 16. These results include the

duplication of resources evaluation discussed in section

4.3. The main observations are:

Dual Issue

• The average increase in IPC for a dual issue

processor is around 40%. Some benchmarks like

rijndael and sha experienced an approximately 1.6x

improvement in IPC. Because the dual issue

processor lacks advanced superscalar techniques to

issue instructions out-of-order it can only extract

parallelism from within basic blocks boundaries

which favours benchmarks with longer basic blocks

like rijndael and sha. On the other hand, the worst

performing benchmark, adpcm, still managed to

achieve at least a 20% gain in IPC. Benchmarks with

a high percentage of control instructions like adpcm

might benefit from using a dynamic branch predictor

combined with out-of-order issue to increase the

prediction success rate. Figure 7 results show that

adpcm (telecom group) IPC increased by 5% when a

bimodal branch predictor was used.

• The next best performing benchmarks are

susan.edges and susan.corner which experienced a

1.5x speedup. These benchmarks have a much higher

percentage of memory operations than the rijndael

and sha benchmarks but share the common

characteristic of low control operations. A low

percentage of control operations translate to less

interruption to the pipeline and consequently shorter

overall program latency.

• Despite the low percentage of control operations in

the susan.smoothing benchmark, it did not perform

as well as the other susan benchmarks because the

high percentage of IMUL operations increased the

percentage of true-dependencies between the

multiplication operations and the REGMOV

operations that loads the result of the multiplication

into the RF.

• One benchmark program that did not perform as

good as expected is jpeg. Although the jpeg

benchmark is a compression and decompression

application similar to rijndael, it performed much

worse than rijndael. The reason is that the length of

basic block in the rijndael benchmarks is almost 2x

longer than in the jpeg benchmarks, which translates

to higher ILP and better speedup.

• Using just an advanced branch predictor is not

enough to improve jpeg IPC results as Figure 7

results show (the consumer group IPC only improved

by 2%). Out-of-order issue is mandatory in order to

fetch and issue instructions beyond the jpeg basic

block boundaries.

• The amount of ILP in a basic block that can be

extracted by the processor using available hardware

resources is a key factor for improving performance.

Resource Duplication

• The ideal case results in Figure 16 are for a dual

issue processor with two complete ALU units.

Considering that the ALU uses 60% of the processor

total LE and consumes 42% of the processor total

power budget, it would be unfeasible to implement it

in hardware. However, we include these results for

comparison reasons only. For example, most

benchmarks approached ideal performance with just

minor resource duplications.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

Energy Efficient Dual Issue Embedded Processor

EAI
European Alliance
for Innovation 14

• The average drop in IPC for a single ALU

configuration is around 2% which is negligible. Few

benchmarks like susan, adpcm.encode and

jpeg.decode experienced an IPC loss higher than 5%.

Although the IPC loss is higher than the average it is

still acceptable considering that the total gain in IPC

is higher than 10%. In the case of the susan

benchmarks the gain in IPC is almost 1.5x.

Increasing the number of adders to two helped these

benchmarks recover all the lost performance.

• Only the rijndael benchmarks experienced a loss in

IPC from using a single logic unit. Adding a second

logic unit to the ALU managed to recover just half

the lost IPC. The remaining lost IPC is tied to the

other ALU functions such as logic shifts.

5.2. FPGA Implementation

Table 5 compares the FPGA implementation results of the
dual issue processor with the results of the single issue
processor listed in Table 4. The main observations are:

• The max speed of the dual issue processor is the

same as the single issue processor because it is

determined by the speed of the worst case path which

goes through the 32-bit multiplier.

• The total number of FPGA logical elements

increased by approximately 30% (Figure 17), from

1.8K to 2.3K which is less than 10% of the FPGA

total resources. The biggest increase was in the RF

which grew from 87 LE (5% of total LEs) to 494 LE

(22% of total LEs).

• The total number of RAM bits used by the RF

quadrupled from 2-Kbits to 8-Kbits using our

proposed 1-bit tagging method.

• Power consumption increased by 20% (Figure 18),

from 0.48 mWatts/MHz to 0.57 mWatts/MHz. The

RF power consumption as a percentage of total

power is much higher in the dual issue processor,

56% compared to 28%, which makes it the dominant

power consuming module in the processor. The ALU

power consumption went down to less than 30% total

power because we only added an extra 32-bit adder.

• The Coremark/MHz performance increased by

almost 36% compared to the single issue processor.

The 3.40 Coremark/MHz score is equal to

MicroAptive and Cortex-M4 Coremark/MHz scores.

The reason that the MicroAptive and Cortex-M4

single issue processors can achieve such as high

score is because they use advanced commercial

compilers, such as Green Hills (http://www.ghs.com)

and IAR (http://www.iar.com), to fine tune and

optimize the benchmark code for the specific

processor architecture [31]. In our case we use the

open source GNU compiler which although can

achieve very good performance it consistently

delivered lower Coremark results than commercial

compilers [7].

Table 5. Summary of FPGA resource utilization for
the dual issue processor with a single ALU.

Resource Single Issue Dual Issue

Logic elements 1,831 2,278

Logic RAM (bits) 2K 8K

Physical RAM
block (M9K)

2 8

Embedded 9-bit
multipliers

8 8

Speed (MHz) 60 60

Dynamic power
(mWatt/MHz)

0.48 0.57

Coremark/MHz 2.51 3.40

Decoder

15%

ALU

51%

Connectivity

12%

Register

File

22%

Figure 17. Percentage of processor logic cells per
module for dual issue processor.

Decoder

13%Register

File

56%

Connectivity

6%

ALU

25%

Figure 18. Percentage of total processor power per
module for standalone dual issue core.

6. Conclusion

A single issue scalar processor can operate on a very low

power budget but its performance is constrained. On the

other hand, a multi-issue superscalar processor can deliver

multiple fold increase in performance but is power

intensive. To address this problem, a dual issue scalar

processor capable of processing up to two instructions

simultaneously every cycle is introduced. The processor

delivers an average 40% higher IPC than a single issue

processor while consuming only 20% more power.

Applications that contain a large amount of instruction-

level parallelism are particularly suitable for the dual

issue processor and experience up to 70% improvement in

IPC. The dual issue processor is implemented on a low

cost FPGA using less than 10% of the total logic elements

which leaves plenty of resources to implement additional

functions. The proposed processor is an ideal candidate

for embedded industrial devices that are powered by

green sources of energy similar to PowerFilm embedded

solar panels.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

M. Ito and H. Lozano

EAI
European Alliance
for Innovation

15

References

[1] http://ww.powerfilmsolar.com

[2] http://ww.imgtec.com

[3] http://www.altera.com

[4] http://www.xilinx.com

[5] http://www.arm.com

[6] http://www.intel.com

[7] http://www.eembc.org/coremark/index.php

[8] Gal-On, S. and Levy, M. Exploring CoreMark™ – A

Benchmark Maximizing Simplicity and Efficacy [online:

http://www.eembc.org/techlit/coremark-whitepaper.pdf]

[9] Guthaus M. R. et al. (2001) MiBench: A free,

commercially representative embedded benchmark suite.

[online:

http://wwweb.eecs.umich.edu/mibench/Publications/MiBe

nch.pdf].

[10] Dwiel, B. H. et al. (2012) FPGA modeling of diverse

superscalar processors. In Proceedings of IEEE

International Symposium on Performance Analysis of

Systems and Software, New Brunswick, U.S.A., April 1-3,

188-199.

[11] Bechara, C., Berhault, A., Ventroux, N., Chevobbe, S.,

Lhuillier, Y., David R. and Etiemble D. (2011) A small

footprint interleaved multithreaded processor for

embedded systems. In Proceedings of 18th IEEE

International Conference on Electronics, Circuits and

Systems, Beirut, Lebanon, Dec 11-14, 685-690.

[12] Rosiere, M., Desbarbieux, J. L., Drach, N. and Wajsburt,

F. (2012) An out-of-order superscalar processor on FPGA:

The reorder buffer design. In Proceedings of Design,

Automation & Test in Europe Conference & Exhibition,

Dresden, Germany, March 12-16, 1549-1554.

[13] Saldana, M., Nunes, D., Ramalho, E. and Chow, P. (2006)

Configuration and Programming of Heterogeneous

Multiprocessors on a Multi-FPGA System Using TMD-

MPI. In Proceedings 2006 IEEE International Conference

on Reconfigurable Computing and FPGAs, San Luis

Potosi, Mexico, Sep 20-22, 1-10.

[14] Saghir, M. A. R. and Naous, R. (2007) A configurable

multi-ported register file architecture for soft processor

cores,” in Proceedings of 3rd International Conference on

Reconfigurable Computing: Architectures, Tools and

Applications, Rio de Janeiro, Brazil, March 27-29, 14–25.

[15] LaForest, C. E. and Steffan, J. G. (2010) Efficient multi-

ported memories for FPGAs. In Proceedings of 18th

Annual ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Monterey, U.S.A., Sep 21-23,

41–50.

[16] LaForest, C. E., Liu, M. G., Rapati, E. R. and Steffan, J. G.

(2012) Multi-ported memories for FPGAs via xor. In

Proceedings of 20th Annual ACM/SIGDA International

Symposium on Field Programmable Gate Arrays,

Monterey, U.S.A., Feb 22-24, 209–218.

[17] Yantir, H. E., Bayar, S. and Yurdakul, A. (2013) Efficient

Implementations of Multi-pumped Multi-port Register

Files in FPGAs. In Proceedings of Euromicro Conference

on Digital System Design, Los Alamitos, U.S.A., Sep 4-6,

185-192.

[18] Strydis, C. and Gaydadjiev, G. N. (2009) Evaluating

Various Branch-Prediction Schemes for Biomedical-

Implant Processors. In Proceedings of IEEE International

Conference on Application-specific Systems, Architectures

and Processors, Boston, U.S.A., July 7-9, 169-176.

[19] Sai, R. T. S., Mukherjee, A., Cecchi, V. and Kailas, A.

(2013) Architecture exploration of a heterogeneous

embedded processor for the smart grid. In Proceedings of

IEEE Southeastcon, Jacksonville, U.S.A, April 4-7, 1-6.

[20] Yang, X., Yu, L., Zhuang, W., Wu, Y. and Hao, L. (2013)

Design of instruction decode logic for dual issue

superscalar processor based on LEON2. In Proceedings of

IEEE Third International Conference on Consumer

Electronics, Berlin, Germany, Sep 9-11, 1-4.

[21] Duric, M., Palomar, O., Smith, A., Unsal, O., Cristal, A.,

Valero M. and Burger, D. (2014) EVX: Vector execution

on low power EDGE cores. In Proceedings of Design,

Automation and Test in Europe Conference and

Exhibition, Dresden, Germany, March 24-28, 1-4.

[22] Huang, X., Fan X. and Zhang, S. (2008) Design and

performance analysis of one 32-bit dual issue RISC

processor for embedded application. In Proceedings of 9th

International Conference on Solid-State and Integrated-

Circuit Technology, Beijing, China, Oct 20-23, 1827-1830.

[23] Prakash, T. K. and Peng, L. (2008) Performance

Characterization of SPEC CPU2006 Benchmarks on Intel

Core 2 Duo Processor. Transactions on Computers and

Software Engineering, vol. 2, no. 1, 36-41.

[24] Ye, D., Ray, J., Harle, C. and Kaeli, D. (2006)

Performance Characterization of SPEC CPU2006 Integer

Benchmarks on x86-64 Architecture. In Proceedings of

IEEE International Symposium on Workload

Characterization, San Jose, U.S.A., Oct. 25-27, 120-127.

[25] Blem, E., Menon J. and Sankaralingam, K. (2013) Power

struggles: Revisiting the RISC vs. CISC debate on

contemporary ARM and x86 architectures. In Proceedings

IEEE 19th International Symposium on High Performance

Computer Architecture, Shenzhen, China, Feb 23-27, 1-12.

[26] Schoeberl, M. et al. (2015) T-Crest: Time Predictable

Multi-Core Architecture for Embedded Systems. Journal

of Systems Architecture, volume 61, issue 9, 449-471.

[27] Bagnordi H. and Ito, M. (2008) Performance evaluation of

a FFT using adpative clocking. In Proc. 2008 IEEE Int.

SOC Conference, 2008, pp. 135-138.

[28] Roy, S., Ranganathan, N. and Katkoori, S. (2009) A

Framework for Power-Gating Functional Units in

Embedded Microprocessors. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 17, no. 11,

1640-1649.

[29] Saito, Y., Shirai, T., Nakamura, T., Nishimura, T.,

Hasegawa, Y., Tsutsumi, S., Kashima, T., Nakata, M.,

Takeda, S., Usami, K. and Amano, H. (2008) Leakage

power reduction for coarse grained dynamically

reconfigurable processor arrays with fine grained Power

Gating technique. In Proceedings of International

Conference on Field-Programmable Technology, Taipei,

Taiwan, Dec 7-10, 329-332.

[30] Kim, W., Gupta, M. S., Wei, G. Y. and Brooks, D. (2008)

System level analysis of fast, per-core DVFS using on-chip

switching regulators. In Proceedings of IEEE 14th

International Symposium on High Performance Computer

Architecture, Salt Lake City, U.S.A., Feb 16-20, 123-134.

[31] http://community.arm.com/groups/embedded/blog/2013/02

/21/coremark-and-compiler-performance.

and Intelligent Systems

09 2015 -01 2016 | Volume

3 | Issue 6 | e4

EAI Endorsed Transactions on Industrial Networks

Energy Efficient Dual Issue Embedded Processor

